encoding/codec/
simpchinese.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
// This is a part of rust-encoding.
// Copyright (c) 2013-2015, Kang Seonghoon.
// See README.md and LICENSE.txt for details.

//! Legacy simplified Chinese encodings based on GB 2312 and GB 18030.

use std::convert::Into;
use std::marker::PhantomData;
use std::default::Default;
use util::StrCharIndex;
use index_simpchinese as index;
use types::*;

/// An implementation type for GBK.
///
/// Can be used as a type parameter to `GBEncoding` and `GBEncoder`.
/// (GB18030Decoder is shared by both.)
#[derive(Clone, Copy)]
pub struct GBK;

/// An implementation type for GB18030.
///
/// Can be used as a type parameter to `GBEncoding` and `GBEncoder.'
/// (GB18030Decoder is shared by both.)
#[derive(Clone, Copy)]
pub struct GB18030;

/// An internal trait used to customize GBK and GB18030 implementations.
#[doc(hidden)] // XXX never intended to be used publicly, should be gone later
pub trait GBType: Clone + 'static {
    fn name() -> &'static str;
    fn whatwg_name() -> Option<&'static str>;
    fn initial_gbk_flag() -> bool;
}

impl GBType for GBK {
    fn name() -> &'static str { "gbk" }
    fn whatwg_name() -> Option<&'static str> { Some("gbk") }
    fn initial_gbk_flag() -> bool { true }
}

impl GBType for GB18030 {
    fn name() -> &'static str { "gb18030" }
    fn whatwg_name() -> Option<&'static str> { Some("gb18030") }
    fn initial_gbk_flag() -> bool { false }
}

/**
 * GBK and GB 18030-2005.
 *
 * The original GBK 1.0 region spans `[81-FE] [40-7E 80-FE]`, and is derived from
 * several different revisions of a family of encodings named "GBK":
 *
 * - GBK as specified in the normative annex of GB 13000.1-93,
 *   the domestic standard equivalent to Unicode 1.1,
 *   consisted of characters included in Unicode 1.1 and not in GB 2312-80.
 * - Windows code page 936 is the widespread extension to GBK.
 * - Due to the popularity of Windows code page 936,
 *   a formal encoding based on Windows code page 936 (while adding new characters)
 *   was standardized into GBK 1.0.
 * - Finally, GB 18030 added four-byte sequences to GBK for becoming a pan-Unicode encoding,
 *   while adding new characters to the (former) GBK region again.
 *
 * GB 18030-2005 is a simplified Chinese encoding which extends GBK 1.0 to a pan-Unicode encoding.
 * It assigns four-byte sequences to every Unicode codepoint missing from the GBK area,
 * lexicographically ordered with occasional "gaps" for codepoints in the GBK area.
 * Due to this compatibility decision,
 * there is no simple relationship between these four-byte sequences and Unicode codepoints,
 * though there *exists* a relatively simple mapping algorithm with a small lookup table.
 *
 * ## Specialization
 *
 * This type is specialized with GBType `T`,
 * which should be either `GBK` or `GB18030`.
 */
#[derive(Clone, Copy)]
pub struct GBEncoding<T> {
    _marker: PhantomData<T>
}

/// A type for GBK.
pub type GBKEncoding = GBEncoding<GBK>;
/// A type for GB18030.
pub type GB18030Encoding = GBEncoding<GB18030>;

/// An instance for GBK.
pub const GBK_ENCODING: GBKEncoding = GBEncoding { _marker: PhantomData };
/// An instance for GB18030.
pub const GB18030_ENCODING: GB18030Encoding = GBEncoding { _marker: PhantomData };

impl<T: GBType> Encoding for GBEncoding<T> {
    fn name(&self) -> &'static str { <T as GBType>::name() }
    fn whatwg_name(&self) -> Option<&'static str> { <T as GBType>::whatwg_name() }
    fn raw_encoder(&self) -> Box<RawEncoder> { GBEncoder::<T>::new() }
    fn raw_decoder(&self) -> Box<RawDecoder> { GB18030Decoder::new() }
}

/**
 * An encoder for GBK and GB18030.
 *
 * ## Specialization
 *
 * This type is specialized with GBType `T`,
 * which should be either `GBK` or `GB18030`.
 */
#[derive(Clone, Copy)]
pub struct GBEncoder<T> {
    _marker: PhantomData<T>
}

impl<T: GBType> GBEncoder<T> {
    pub fn new() -> Box<RawEncoder> {
        Box::new(GBEncoder::<T> { _marker: PhantomData })
    }
}

impl<T: GBType> RawEncoder for GBEncoder<T> {
    fn from_self(&self) -> Box<RawEncoder> { GBEncoder::<T>::new() }
    fn is_ascii_compatible(&self) -> bool { true }

    fn raw_feed(&mut self, input: &str, output: &mut ByteWriter) -> (usize, Option<CodecError>) {
        output.writer_hint(input.len());

        let gbk_flag = <T as GBType>::initial_gbk_flag();
        for ((i, j), ch) in input.index_iter() {
            if ch < '\u{80}' {
                output.write_byte(ch as u8);
            } else if gbk_flag && ch == '\u{20AC}' {
                output.write_byte('\u{80}' as u8)
            } else {
                let ptr = index::gb18030::backward(ch as u32);
                if ptr == 0xffff {
                    if gbk_flag {
                        return (i, Some(CodecError {
                            upto: j as isize,
                            cause: "gbk doesn't support gb18030 extensions".into()
                        }));
                    }
                    let ptr = index::gb18030_ranges::backward(ch as u32);
                    assert!(ptr != 0xffffffff);
                    let (ptr, byte4) = (ptr / 10, ptr % 10);
                    let (ptr, byte3) = (ptr / 126, ptr % 126);
                    let (byte1, byte2) = (ptr / 10, ptr % 10);
                    output.write_byte((byte1 + 0x81) as u8);
                    output.write_byte((byte2 + 0x30) as u8);
                    output.write_byte((byte3 + 0x81) as u8);
                    output.write_byte((byte4 + 0x30) as u8);
                } else {
                    let lead = ptr / 190 + 0x81;
                    let trail = ptr % 190;
                    let trailoffset = if trail < 0x3f {0x40} else {0x41};
                    output.write_byte(lead as u8);
                    output.write_byte((trail + trailoffset) as u8);
                }
            }
        }
        (input.len(), None)
    }

    fn raw_finish(&mut self, _output: &mut ByteWriter) -> Option<CodecError> {
        None
    }
}

/// A decoder for GB 18030 (also used by GBK).
#[derive(Clone, Copy)]
struct GB18030Decoder {
    st: gb18030::State,
}

impl GB18030Decoder {
    pub fn new() -> Box<RawDecoder> {
        Box::new(GB18030Decoder { st: Default::default() })
    }
}

impl RawDecoder for GB18030Decoder {
    fn from_self(&self) -> Box<RawDecoder> { GB18030Decoder::new() }
    fn is_ascii_compatible(&self) -> bool { true }

    fn raw_feed(&mut self, input: &[u8], output: &mut StringWriter) -> (usize, Option<CodecError>) {
        let (st, processed, err) = gb18030::raw_feed(self.st, input, output, &());
        self.st = st;
        (processed, err)
    }

    fn raw_finish(&mut self, output: &mut StringWriter) -> Option<CodecError> {
        let (st, err) = gb18030::raw_finish(self.st, output, &());
        self.st = st;
        err
    }
}

stateful_decoder! {
    module gb18030;

    internal pub fn map_two_bytes(lead: u8, trail: u8) -> u32 {
        use index_simpchinese as index;

        let lead = lead as u16;
        let trail = trail as u16;
        let index = match (lead, trail) {
            (0x81...0xfe, 0x40...0x7e) | (0x81...0xfe, 0x80...0xfe) => {
                let trailoffset = if trail < 0x7f {0x40} else {0x41};
                (lead - 0x81) * 190 + trail - trailoffset
            }
            _ => 0xffff,
        };
        index::gb18030::forward(index)
    }

    internal pub fn map_four_bytes(b1: u8, b2: u8, b3: u8, b4: u8) -> u32 {
        use index_simpchinese as index;

        // no range check here, caller should have done all checks
        let index = (b1 as u32 - 0x81) * 12600 + (b2 as u32 - 0x30) * 1260 +
                    (b3 as u32 - 0x81) * 10 + (b4 as u32 - 0x30);
        index::gb18030_ranges::forward(index)
    }

initial:
    // gb18030 first = 0x00, gb18030 second = 0x00, gb18030 third = 0x00
    state S0(ctx: Context) {
        case b @ 0x00...0x7f => ctx.emit(b as u32);
        case 0x80 => ctx.emit(0x20ac);
        case b @ 0x81...0xfe => S1(ctx, b);
        case _ => ctx.err("invalid sequence");
    }

transient:
    // gb18030 first != 0x00, gb18030 second = 0x00, gb18030 third = 0x00
    state S1(ctx: Context, first: u8) {
        case b @ 0x30...0x39 => S2(ctx, first, b);
        case b => match map_two_bytes(first, b) {
            0xffff => ctx.backup_and_err(1, "invalid sequence"), // unconditional
            ch => ctx.emit(ch)
        };
    }

    // gb18030 first != 0x00, gb18030 second != 0x00, gb18030 third = 0x00
    state S2(ctx: Context, first: u8, second: u8) {
        case b @ 0x81...0xfe => S3(ctx, first, second, b);
        case _ => ctx.backup_and_err(2, "invalid sequence");
    }

    // gb18030 first != 0x00, gb18030 second != 0x00, gb18030 third != 0x00
    state S3(ctx: Context, first: u8, second: u8, third: u8) {
        case b @ 0x30...0x39 => match map_four_bytes(first, second, third, b) {
            0xffffffff => ctx.backup_and_err(3, "invalid sequence"), // unconditional
            ch => ctx.emit(ch)
        };
        case _ => ctx.backup_and_err(3, "invalid sequence");
    }
}

#[cfg(test)]
mod gb18030_tests {
    extern crate test;
    use super::GB18030_ENCODING;
    use testutils;
    use types::*;

    #[test]
    fn test_encoder() {
        let mut e = GB18030_ENCODING.raw_encoder();
        assert_feed_ok!(e, "A", "", [0x41]);
        assert_feed_ok!(e, "BC", "", [0x42, 0x43]);
        assert_feed_ok!(e, "", "", []);
        assert_feed_ok!(e, "\u{4e2d}\u{534e}\u{4eba}\u{6c11}\u{5171}\u{548c}\u{56fd}", "",
                        [0xd6, 0xd0, 0xbb, 0xaa, 0xc8, 0xcb, 0xc3, 0xf1,
                         0xb9, 0xb2, 0xba, 0xcd, 0xb9, 0xfa]);
        assert_feed_ok!(e, "1\u{20ac}/m", "", [0x31, 0xa2, 0xe3, 0x2f, 0x6d]);
        assert_feed_ok!(e, "\u{ff21}\u{ff22}\u{ff23}", "", [0xa3, 0xc1, 0xa3, 0xc2, 0xa3, 0xc3]);
        assert_feed_ok!(e, "\u{80}", "", [0x81, 0x30, 0x81, 0x30]);
        assert_feed_ok!(e, "\u{81}", "", [0x81, 0x30, 0x81, 0x31]);
        assert_feed_ok!(e, "\u{a3}", "", [0x81, 0x30, 0x84, 0x35]);
        assert_feed_ok!(e, "\u{a4}", "", [0xa1, 0xe8]);
        assert_feed_ok!(e, "\u{a5}", "", [0x81, 0x30, 0x84, 0x36]);
        assert_feed_ok!(e, "\u{10ffff}", "", [0xe3, 0x32, 0x9a, 0x35]);
        assert_feed_ok!(e, "\u{2a6a5}\u{3007}", "", [0x98, 0x35, 0xee, 0x37, 0xa9, 0x96]);
        assert_finish_ok!(e, []);
    }

    #[test]
    fn test_decoder_valid() {
        let mut d = GB18030_ENCODING.raw_decoder();
        assert_feed_ok!(d, [0x41], [], "A");
        assert_feed_ok!(d, [0x42, 0x43], [], "BC");
        assert_feed_ok!(d, [], [], "");
        assert_feed_ok!(d, [0xd6, 0xd0, 0xbb, 0xaa, 0xc8, 0xcb, 0xc3, 0xf1,
                            0xb9, 0xb2, 0xba, 0xcd, 0xb9, 0xfa], [],
                        "\u{4e2d}\u{534e}\u{4eba}\u{6c11}\u{5171}\u{548c}\u{56fd}");
        assert_feed_ok!(d, [0x31, 0x80, 0x2f, 0x6d], [], "1\u{20ac}/m");
        assert_feed_ok!(d, [0xa3, 0xc1, 0xa3, 0xc2, 0xa3, 0xc3], [], "\u{ff21}\u{ff22}\u{ff23}");
        assert_feed_ok!(d, [0x81, 0x30, 0x81, 0x30], [], "\u{80}");
        assert_feed_ok!(d, [0x81, 0x30, 0x81, 0x31], [], "\u{81}");
        assert_feed_ok!(d, [0x81, 0x30, 0x84, 0x35], [], "\u{a3}");
        assert_feed_ok!(d, [0xa1, 0xe8], [], "\u{a4}" );
        assert_feed_ok!(d, [0x81, 0x30, 0x84, 0x36], [], "\u{a5}");
        assert_feed_ok!(d, [0xe3, 0x32, 0x9a, 0x35], [], "\u{10ffff}");
        assert_feed_ok!(d, [0x98, 0x35, 0xee, 0x37, 0xa9, 0x96], [], "\u{2a6a5}\u{3007}");
        assert_finish_ok!(d, "");
    }

    #[test]
    fn test_decoder_valid_partial() {
        let mut d = GB18030_ENCODING.raw_decoder();
        assert_feed_ok!(d, [], [0xa1], "");
        assert_feed_ok!(d, [0xa1], [], "\u{3000}");
        assert_feed_ok!(d, [], [0x81], "");
        assert_feed_ok!(d, [], [0x30], "");
        assert_feed_ok!(d, [], [0x81], "");
        assert_feed_ok!(d, [0x30], [], "\u{80}");
        assert_feed_ok!(d, [], [0x81], "");
        assert_feed_ok!(d, [], [0x30], "");
        assert_feed_ok!(d, [0x81, 0x31], [], "\u{81}");
        assert_feed_ok!(d, [], [0x81], "");
        assert_feed_ok!(d, [0x30, 0x81, 0x32], [], "\u{82}");
        assert_feed_ok!(d, [], [0x81], "");
        assert_feed_ok!(d, [], [0x30, 0x81], "");
        assert_feed_ok!(d, [0x33], [], "\u{83}");
        assert_feed_ok!(d, [], [0x81, 0x30], "");
        assert_feed_ok!(d, [], [0x81], "");
        assert_feed_ok!(d, [0x34], [], "\u{84}");
        assert_feed_ok!(d, [], [0x81, 0x30], "");
        assert_feed_ok!(d, [0x81, 0x35], [], "\u{85}");
        assert_feed_ok!(d, [], [0x81, 0x30, 0x81], "");
        assert_feed_ok!(d, [0x36], [], "\u{86}");
        assert_finish_ok!(d, "");
    }

    #[test]
    fn test_decoder_invalid_partial() {
        let mut d = GB18030_ENCODING.raw_decoder();
        assert_feed_ok!(d, [], [0xa1], "");
        assert_finish_err!(d, "");

        let mut d = GB18030_ENCODING.raw_decoder();
        assert_feed_ok!(d, [], [0x81], "");
        assert_finish_err!(d, "");

        let mut d = GB18030_ENCODING.raw_decoder();
        assert_feed_ok!(d, [], [0x81, 0x30], "");
        assert_finish_err!(d, "");

        let mut d = GB18030_ENCODING.raw_decoder();
        assert_feed_ok!(d, [], [0x81, 0x30, 0x81], "");
        assert_finish_err!(d, "");
    }

    #[test]
    fn test_decoder_invalid_out_of_range() {
        let mut d = GB18030_ENCODING.raw_decoder();
        assert_feed_err!(d, [], [0xff], [], "");
        assert_feed_err!(d, [], [0x81], [0x00], "");
        assert_feed_err!(d, [], [0x81], [0x7f], "");
        assert_feed_err!(d, [], [0x81], [0xff], "");
        assert_feed_err!(d, [], [0x81], [0x31, 0x00], "");
        assert_feed_err!(d, [], [0x81], [0x31, 0x80], "");
        assert_feed_err!(d, [], [0x81], [0x31, 0xff], "");
        assert_feed_err!(d, [], [0x81], [0x31, 0x81, 0x00], "");
        assert_feed_err!(d, [], [0x81], [0x31, 0x81, 0x2f], "");
        assert_feed_err!(d, [], [0x81], [0x31, 0x81, 0x3a], "");
        assert_feed_err!(d, [], [0x81], [0x31, 0x81, 0xff], "");
        assert_finish_ok!(d, "");
    }

    #[test]
    fn test_decoder_invalid_boundary() {
        // U+10FFFF (E3 32 9A 35) is the last Unicode codepoint, E3 32 9A 36 is invalid.
        // note that since the 2nd to 4th bytes may coincide with ASCII, bytes 32 9A 36 is
        // not considered to be in the problem. this is compatible to WHATWG Encoding standard.
        let mut d = GB18030_ENCODING.raw_decoder();
        assert_feed_ok!(d, [], [0xe3], "");
        assert_feed_err!(d, [], [], [0x32, 0x9a, 0x36], "");
        assert_finish_ok!(d, "");

        let mut d = GB18030_ENCODING.raw_decoder();
        assert_feed_ok!(d, [], [0xe3], "");
        assert_feed_ok!(d, [], [0x32, 0x9a], "");
        assert_feed_err!(d, -2, [], [], [0x32, 0x9a, 0x36], "");
        assert_finish_ok!(d, "");
    }

    #[test]
    fn test_decoder_feed_after_finish() {
        let mut d = GB18030_ENCODING.raw_decoder();
        assert_feed_ok!(d, [0xd2, 0xbb], [0xd2], "\u{4e00}");
        assert_finish_err!(d, "");
        assert_feed_ok!(d, [0xd2, 0xbb], [], "\u{4e00}");
        assert_finish_ok!(d, "");

        let mut d = GB18030_ENCODING.raw_decoder();
        assert_feed_ok!(d, [0x98, 0x35, 0xee, 0x37], [0x98, 0x35, 0xee], "\u{2a6a5}");
        assert_finish_err!(d, "");
        assert_feed_ok!(d, [0x98, 0x35, 0xee, 0x37], [0x98, 0x35], "\u{2a6a5}");
        assert_finish_err!(d, "");
        assert_feed_ok!(d, [0x98, 0x35, 0xee, 0x37], [0x98], "\u{2a6a5}");
        assert_finish_err!(d, "");
        assert_feed_ok!(d, [0x98, 0x35, 0xee, 0x37], [], "\u{2a6a5}");
        assert_finish_ok!(d, "");
    }

    #[bench]
    fn bench_encode_short_text(bencher: &mut test::Bencher) {
        let s = testutils::SIMPLIFIED_CHINESE_TEXT;
        bencher.bytes = s.len() as u64;
        bencher.iter(|| test::black_box({
            GB18030_ENCODING.encode(&s, EncoderTrap::Strict)
        }))
    }

    #[bench]
    fn bench_decode_short_text(bencher: &mut test::Bencher) {
        let s = GB18030_ENCODING.encode(testutils::SIMPLIFIED_CHINESE_TEXT,
                                       EncoderTrap::Strict).ok().unwrap();
        bencher.bytes = s.len() as u64;
        bencher.iter(|| test::black_box({
            GB18030_ENCODING.decode(&s, DecoderTrap::Strict)
        }))
    }
}

#[cfg(test)]
mod gbk_tests {
    extern crate test;
    use super::GBK_ENCODING;
    use testutils;
    use types::*;

    // GBK and GB 18030 share the same decoder logic.

    #[test]
    fn test_encoder() {
        let mut e = GBK_ENCODING.raw_encoder();
        assert_feed_ok!(e, "A", "", [0x41]);
        assert_feed_ok!(e, "BC", "", [0x42, 0x43]);
        assert_feed_ok!(e, "", "", []);
        assert_feed_ok!(e, "\u{4e2d}\u{534e}\u{4eba}\u{6c11}\u{5171}\u{548c}\u{56fd}", "",
                        [0xd6, 0xd0, 0xbb, 0xaa, 0xc8, 0xcb, 0xc3, 0xf1,
                         0xb9, 0xb2, 0xba, 0xcd, 0xb9, 0xfa]);
        assert_feed_ok!(e, "1\u{20ac}/m", "", [0x31, 0x80, 0x2f, 0x6d]);
        assert_feed_ok!(e, "\u{ff21}\u{ff22}\u{ff23}", "", [0xa3, 0xc1, 0xa3, 0xc2, 0xa3, 0xc3]);
        assert_feed_err!(e, "", "\u{80}", "", []);
        assert_feed_err!(e, "", "\u{81}", "", []);
        assert_feed_err!(e, "", "\u{a3}", "", []);
        assert_feed_ok!(e, "\u{a4}", "", [0xa1, 0xe8]);
        assert_feed_err!(e, "", "\u{a5}", "", []);
        assert_feed_err!(e, "", "\u{10ffff}", "", []);
        assert_feed_err!(e, "", "\u{2a6a5}", "\u{3007}", []);
        assert_feed_err!(e, "\u{3007}", "\u{2a6a5}", "", [0xa9, 0x96]);
        assert_finish_ok!(e, []);
    }

    #[bench]
    fn bench_encode_short_text(bencher: &mut test::Bencher) {
        let s = testutils::SIMPLIFIED_CHINESE_TEXT;
        bencher.bytes = s.len() as u64;
        bencher.iter(|| test::black_box({
            GBK_ENCODING.encode(&s, EncoderTrap::Strict)
        }))
    }
}

/**
 * HZ. (RFC 1843)
 *
 * This is a simplified Chinese encoding based on GB 2312.
 * It bears a resemblance to ISO 2022 encodings in such that the printable escape sequences `~{`
 * and `~}` are used to delimit a sequence of 7-bit-safe GB 2312 sequences. For the comparison,
 * they are equivalent to ISO-2022-CN escape sequences `ESC $ ) A` and `ESC ( B`.
 * Additional escape sequences `~~` (for a literal `~`) and `~\n` (ignored) are also supported.
 */
#[derive(Clone, Copy)]
pub struct HZEncoding;

impl Encoding for HZEncoding {
    fn name(&self) -> &'static str { "hz" }
    fn whatwg_name(&self) -> Option<&'static str> { None }
    fn raw_encoder(&self) -> Box<RawEncoder> { HZEncoder::new() }
    fn raw_decoder(&self) -> Box<RawDecoder> { HZDecoder::new() }
}

/// An encoder for HZ.
#[derive(Clone, Copy)]
pub struct HZEncoder {
    escaped: bool,
}

impl HZEncoder {
    pub fn new() -> Box<RawEncoder> { Box::new(HZEncoder { escaped: false }) }
}

impl RawEncoder for HZEncoder {
    fn from_self(&self) -> Box<RawEncoder> { HZEncoder::new() }
    fn is_ascii_compatible(&self) -> bool { false }

    fn raw_feed(&mut self, input: &str, output: &mut ByteWriter) -> (usize, Option<CodecError>) {
        output.writer_hint(input.len());

        let mut escaped = self.escaped;
        macro_rules! ensure_escaped(
            () => (if !escaped { output.write_bytes(b"~{"); escaped = true; })
        );
        macro_rules! ensure_unescaped(
            () => (if escaped { output.write_bytes(b"~}"); escaped = false; })
        );

        for ((i,j), ch) in input.index_iter() {
            if ch < '\u{80}' {
                ensure_unescaped!();
                output.write_byte(ch as u8);
                if ch == '~' { output.write_byte('~' as u8); }
            } else {
                let ptr = index::gb18030::backward(ch as u32);
                if ptr == 0xffff {
                    self.escaped = escaped; // do NOT reset the state!
                    return (i, Some(CodecError {
                        upto: j as isize, cause: "unrepresentable character".into()
                    }));
                } else {
                    let lead = ptr / 190;
                    let trail = ptr % 190;
                    if lead < 0x21 - 1 || trail < 0x21 + 0x3f { // GBK extension, ignored
                        self.escaped = escaped; // do NOT reset the state!
                        return (i, Some(CodecError {
                            upto: j as isize, cause: "unrepresentable character".into()
                        }));
                    } else {
                        ensure_escaped!();
                        output.write_byte((lead + 1) as u8);
                        output.write_byte((trail - 0x3f) as u8);
                    }
                }
            }
        }

        self.escaped = escaped;
        (input.len(), None)
    }

    fn raw_finish(&mut self, _output: &mut ByteWriter) -> Option<CodecError> {
        None
    }
}

/// A decoder for HZ.
#[derive(Clone, Copy)]
struct HZDecoder {
    st: hz::State,
}

impl HZDecoder {
    pub fn new() -> Box<RawDecoder> {
        Box::new(HZDecoder { st: Default::default() })
    }
}

impl RawDecoder for HZDecoder {
    fn from_self(&self) -> Box<RawDecoder> { HZDecoder::new() }
    fn is_ascii_compatible(&self) -> bool { true }

    fn raw_feed(&mut self, input: &[u8], output: &mut StringWriter) -> (usize, Option<CodecError>) {
        let (st, processed, err) = hz::raw_feed(self.st, input, output, &());
        self.st = st;
        (processed, err)
    }

    fn raw_finish(&mut self, output: &mut StringWriter) -> Option<CodecError> {
        let (st, err) = hz::raw_finish(self.st, output, &());
        self.st = st;
        err
    }
}

stateful_decoder! {
    module hz;

    internal pub fn map_two_bytes(lead: u8, trail: u8) -> u32 {
        use index_simpchinese as index;

        let lead = lead as u16;
        let trail = trail as u16;
        let index = match (lead, trail) {
            (0x20...0x7f, 0x21...0x7e) => (lead - 1) * 190 + (trail + 0x3f),
            _ => 0xffff,
        };
        index::gb18030::forward(index)
    }

initial:
    // hz-gb-2312 flag = unset, hz-gb-2312 lead = 0x00
    state A0(ctx: Context) {
        case 0x7e => A1(ctx);
        case b @ 0x00...0x7f => ctx.emit(b as u32);
        case _ => ctx.err("invalid sequence");
        final => ctx.reset();
    }

checkpoint:
    // hz-gb-2312 flag = set, hz-gb-2312 lead = 0x00
    state B0(ctx: Context) {
        case 0x7e => B1(ctx);
        case b @ 0x20...0x7f => B2(ctx, b);
        case 0x0a => ctx.err("invalid sequence"); // error *and* reset
        case _ => ctx.err("invalid sequence"), B0(ctx);
        final => ctx.reset();
    }

transient:
    // hz-gb-2312 flag = unset, hz-gb-2312 lead = 0x7e
    state A1(ctx: Context) {
        case 0x7b => B0(ctx);
        case 0x7d => A0(ctx);
        case 0x7e => ctx.emit(0x7e), A0(ctx);
        case 0x0a => A0(ctx);
        case _ => ctx.backup_and_err(1, "invalid sequence");
        final => ctx.err("incomplete sequence");
    }

    // hz-gb-2312 flag = set, hz-gb-2312 lead = 0x7e
    state B1(ctx: Context) {
        case 0x7b => B0(ctx);
        case 0x7d => A0(ctx);
        case 0x7e => ctx.emit(0x7e), B0(ctx);
        case 0x0a => A0(ctx);
        case _ => ctx.backup_and_err(1, "invalid sequence"), B0(ctx);
        final => ctx.err("incomplete sequence");
    }

    // hz-gb-2312 flag = set, hz-gb-2312 lead != 0 & != 0x7e
    state B2(ctx: Context, lead: u8) {
        case 0x0a => ctx.err("invalid sequence"); // should reset the state!
        case b =>
            match map_two_bytes(lead, b) {
                0xffff => ctx.err("invalid sequence"),
                ch => ctx.emit(ch)
            },
            B0(ctx);
        final => ctx.err("incomplete sequence");
    }
}

#[cfg(test)]
mod hz_tests {
    extern crate test;
    use super::HZEncoding;
    use testutils;
    use types::*;

    #[test]
    fn test_encoder_valid() {
        let mut e = HZEncoding.raw_encoder();
        assert_feed_ok!(e, "A", "", *b"A");
        assert_feed_ok!(e, "BC", "", *b"BC");
        assert_feed_ok!(e, "", "", *b"");
        assert_feed_ok!(e, "\u{4e2d}\u{534e}\u{4eba}\u{6c11}\u{5171}\u{548c}\u{56fd}", "",
                        *b"~{VP;*HKCq92:M9z");
        assert_feed_ok!(e, "\u{ff21}\u{ff22}\u{ff23}", "", *b"#A#B#C");
        assert_feed_ok!(e, "1\u{20ac}/m", "", *b"~}1~{\"c~}/m");
        assert_feed_ok!(e, "~<\u{a4}~\u{0a4}>~", "", *b"~~<~{!h~}~~~{!h~}>~~");
        assert_finish_ok!(e, []);
    }

    #[test]
    fn test_encoder_invalid() {
        let mut e = HZEncoding.raw_encoder();
        assert_feed_err!(e, "", "\u{ffff}", "", []);
        assert_feed_err!(e, "?", "\u{ffff}", "!", [0x3f]);
        // no support for GBK extension
        assert_feed_err!(e, "", "\u{3007}", "", []);
        assert_finish_ok!(e, []);
    }

    #[test]
    fn test_decoder_valid() {
        let mut d = HZEncoding.raw_decoder();
        assert_feed_ok!(d, *b"A", *b"", "A");
        assert_feed_ok!(d, *b"BC", *b"", "BC");
        assert_feed_ok!(d, *b"D~~E", *b"~", "D~E");
        assert_feed_ok!(d, *b"~F~\nG", *b"~", "~FG");
        assert_feed_ok!(d, *b"", *b"", "");
        assert_feed_ok!(d, *b"\nH", *b"~", "H");
        assert_feed_ok!(d, *b"{VP~}~{;*~{HKCq92:M9z", *b"",
                        "\u{4e2d}\u{534e}\u{4eba}\u{6c11}\u{5171}\u{548c}\u{56fd}");
        assert_feed_ok!(d, *b"", *b"#", "");
        assert_feed_ok!(d, *b"A", *b"~", "\u{ff21}");
        assert_feed_ok!(d, *b"~#B~~#C", *b"~", "~\u{ff22}~\u{ff23}");
        assert_feed_ok!(d, *b"", *b"", "");
        assert_feed_ok!(d, *b"\n#D~{#E~\n#F~{#G", *b"~", "#D\u{ff25}#F\u{ff27}");
        assert_feed_ok!(d, *b"}X~}YZ", *b"", "XYZ");
        assert_finish_ok!(d, "");
    }

    #[test]
    fn test_decoder_invalid_out_or_range() {
        let mut d = HZEncoding.raw_decoder();
        assert_feed_ok!(d, *b"~{", *b"", "");
        assert_feed_err!(d, *b"", *b"\x20\x20", *b"", "");
        assert_feed_err!(d, *b"", *b"\x20\x7f", *b"", ""); // do not reset the state (except for CR)
        assert_feed_err!(d, *b"", *b"\x21\x7f", *b"", "");
        assert_feed_err!(d, *b"", *b"\x7f\x20", *b"", "");
        assert_feed_err!(d, *b"", *b"\x7f\x21", *b"", "");
        assert_feed_err!(d, *b"", *b"\x7f\x7f", *b"", "");
        assert_finish_ok!(d, "");
    }

    #[test]
    fn test_decoder_invalid_carriage_return() {
        // CR in the multibyte mode is invalid but *also* resets the state
        let mut d = HZEncoding.raw_decoder();
        assert_feed_ok!(d, *b"~{#A", *b"", "\u{ff21}");
        assert_feed_err!(d, *b"", *b"\n", *b"", "");
        assert_feed_ok!(d, *b"#B~{#C", *b"", "#B\u{ff23}");
        assert_feed_err!(d, *b"", *b"#\n", *b"", "");
        assert_feed_ok!(d, *b"#D", *b"", "#D");
        assert_finish_ok!(d, "");
    }

    #[test]
    fn test_decoder_invalid_partial() {
        let mut d = HZEncoding.raw_decoder();
        assert_feed_ok!(d, *b"", *b"~", "");
        assert_finish_err!(d, "");

        let mut d = HZEncoding.raw_decoder();
        assert_feed_ok!(d, *b"~{", *b"#", "");
        assert_finish_err!(d, "");

        let mut d = HZEncoding.raw_decoder();
        assert_feed_ok!(d, *b"~{#A", *b"~", "\u{ff21}");
        assert_finish_err!(d, "");
    }

    #[test]
    fn test_decoder_invalid_escape() {
        let mut d = HZEncoding.raw_decoder();
        assert_feed_ok!(d, *b"#A", *b"", "#A");
        assert_feed_err!(d, *b"", *b"~", *b"xy", "");
        assert_feed_ok!(d, *b"#B", *b"", "#B");
        assert_feed_ok!(d, *b"", *b"~", "");
        assert_feed_err!(d, *b"", *b"", *b"xy", "");
        assert_feed_ok!(d, *b"#C~{#D", *b"", "#C\u{ff24}");
        assert_feed_err!(d, *b"", *b"~", *b"xy", "");
        assert_feed_ok!(d, *b"#E", *b"", "\u{ff25}"); // does not reset to ASCII
        assert_feed_ok!(d, *b"", *b"~", "");
        assert_feed_err!(d, *b"", *b"", *b"xy", "");
        assert_feed_ok!(d, *b"#F~}#G", *b"", "\u{ff26}#G");
        assert_finish_ok!(d, "");
    }

    #[test]
    fn test_decoder_feed_after_finish() {
        let mut d = HZEncoding.raw_decoder();
        assert_feed_ok!(d, *b"R;~{R;", *b"R", "R;\u{4e00}");
        assert_finish_err!(d, "");
        assert_feed_ok!(d, *b"R;~{R;", *b"", "R;\u{4e00}");
        assert_finish_ok!(d, "");
    }

    #[bench]
    fn bench_encode_short_text(bencher: &mut test::Bencher) {
        let s = testutils::SIMPLIFIED_CHINESE_TEXT;
        bencher.bytes = s.len() as u64;
        bencher.iter(|| test::black_box({
            HZEncoding.encode(&s, EncoderTrap::Strict)
        }))
    }

    #[bench]
    fn bench_decode_short_text(bencher: &mut test::Bencher) {
        let s = HZEncoding.encode(testutils::SIMPLIFIED_CHINESE_TEXT,
                                  EncoderTrap::Strict).ok().unwrap();
        bencher.bytes = s.len() as u64;
        bencher.iter(|| test::black_box({
            HZEncoding.decode(&s, DecoderTrap::Strict)
        }))
    }
}