arrow_schema/
datatype_parse.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

use std::{fmt::Display, iter::Peekable, str::Chars, sync::Arc};

use crate::{ArrowError, DataType, Field, IntervalUnit, TimeUnit};

pub(crate) fn parse_data_type(val: &str) -> ArrowResult<DataType> {
    Parser::new(val).parse()
}

type ArrowResult<T> = Result<T, ArrowError>;

fn make_error(val: &str, msg: &str) -> ArrowError {
    let msg = format!("Unsupported type '{val}'. Must be a supported arrow type name such as 'Int32' or 'Timestamp(Nanosecond, None)'. Error {msg}" );
    ArrowError::ParseError(msg)
}

fn make_error_expected(val: &str, expected: &Token, actual: &Token) -> ArrowError {
    make_error(val, &format!("Expected '{expected}', got '{actual}'"))
}

#[derive(Debug)]
/// Implementation of `parse_data_type`, modeled after <https://github.com/sqlparser-rs/sqlparser-rs>
struct Parser<'a> {
    val: &'a str,
    tokenizer: Tokenizer<'a>,
}

impl<'a> Parser<'a> {
    fn new(val: &'a str) -> Self {
        Self {
            val,
            tokenizer: Tokenizer::new(val),
        }
    }

    fn parse(mut self) -> ArrowResult<DataType> {
        let data_type = self.parse_next_type()?;
        // ensure that there is no trailing content
        if self.tokenizer.next().is_some() {
            Err(make_error(
                self.val,
                &format!("checking trailing content after parsing '{data_type}'"),
            ))
        } else {
            Ok(data_type)
        }
    }

    /// parses the next full DataType
    fn parse_next_type(&mut self) -> ArrowResult<DataType> {
        match self.next_token()? {
            Token::SimpleType(data_type) => Ok(data_type),
            Token::Timestamp => self.parse_timestamp(),
            Token::Time32 => self.parse_time32(),
            Token::Time64 => self.parse_time64(),
            Token::Duration => self.parse_duration(),
            Token::Interval => self.parse_interval(),
            Token::FixedSizeBinary => self.parse_fixed_size_binary(),
            Token::Decimal128 => self.parse_decimal_128(),
            Token::Decimal256 => self.parse_decimal_256(),
            Token::Dictionary => self.parse_dictionary(),
            Token::List => self.parse_list(),
            Token::LargeList => self.parse_large_list(),
            Token::FixedSizeList => self.parse_fixed_size_list(),
            tok => Err(make_error(
                self.val,
                &format!("finding next type, got unexpected '{tok}'"),
            )),
        }
    }

    /// Parses the List type
    fn parse_list(&mut self) -> ArrowResult<DataType> {
        self.expect_token(Token::LParen)?;
        let data_type = self.parse_next_type()?;
        self.expect_token(Token::RParen)?;
        Ok(DataType::List(Arc::new(Field::new(
            "item", data_type, true,
        ))))
    }

    /// Parses the LargeList type
    fn parse_large_list(&mut self) -> ArrowResult<DataType> {
        self.expect_token(Token::LParen)?;
        let data_type = self.parse_next_type()?;
        self.expect_token(Token::RParen)?;
        Ok(DataType::LargeList(Arc::new(Field::new(
            "item", data_type, true,
        ))))
    }

    /// Parses the FixedSizeList type
    fn parse_fixed_size_list(&mut self) -> ArrowResult<DataType> {
        self.expect_token(Token::LParen)?;
        let length = self.parse_i32("FixedSizeList")?;
        self.expect_token(Token::Comma)?;
        let data_type = self.parse_next_type()?;
        self.expect_token(Token::RParen)?;
        Ok(DataType::FixedSizeList(
            Arc::new(Field::new("item", data_type, true)),
            length,
        ))
    }

    /// Parses the next timeunit
    fn parse_time_unit(&mut self, context: &str) -> ArrowResult<TimeUnit> {
        match self.next_token()? {
            Token::TimeUnit(time_unit) => Ok(time_unit),
            tok => Err(make_error(
                self.val,
                &format!("finding TimeUnit for {context}, got {tok}"),
            )),
        }
    }

    /// Parses the next timezone
    fn parse_timezone(&mut self, context: &str) -> ArrowResult<Option<String>> {
        match self.next_token()? {
            Token::None => Ok(None),
            Token::Some => {
                self.expect_token(Token::LParen)?;
                let timezone = self.parse_double_quoted_string("Timezone")?;
                self.expect_token(Token::RParen)?;
                Ok(Some(timezone))
            }
            tok => Err(make_error(
                self.val,
                &format!("finding Timezone for {context}, got {tok}"),
            )),
        }
    }

    /// Parses the next double quoted string
    fn parse_double_quoted_string(&mut self, context: &str) -> ArrowResult<String> {
        match self.next_token()? {
            Token::DoubleQuotedString(s) => Ok(s),
            tok => Err(make_error(
                self.val,
                &format!("finding double quoted string for {context}, got '{tok}'"),
            )),
        }
    }

    /// Parses the next integer value
    fn parse_i64(&mut self, context: &str) -> ArrowResult<i64> {
        match self.next_token()? {
            Token::Integer(v) => Ok(v),
            tok => Err(make_error(
                self.val,
                &format!("finding i64 for {context}, got '{tok}'"),
            )),
        }
    }

    /// Parses the next i32 integer value
    fn parse_i32(&mut self, context: &str) -> ArrowResult<i32> {
        let length = self.parse_i64(context)?;
        length.try_into().map_err(|e| {
            make_error(
                self.val,
                &format!("converting {length} into i32 for {context}: {e}"),
            )
        })
    }

    /// Parses the next i8 integer value
    fn parse_i8(&mut self, context: &str) -> ArrowResult<i8> {
        let length = self.parse_i64(context)?;
        length.try_into().map_err(|e| {
            make_error(
                self.val,
                &format!("converting {length} into i8 for {context}: {e}"),
            )
        })
    }

    /// Parses the next u8 integer value
    fn parse_u8(&mut self, context: &str) -> ArrowResult<u8> {
        let length = self.parse_i64(context)?;
        length.try_into().map_err(|e| {
            make_error(
                self.val,
                &format!("converting {length} into u8 for {context}: {e}"),
            )
        })
    }

    /// Parses the next timestamp (called after `Timestamp` has been consumed)
    fn parse_timestamp(&mut self) -> ArrowResult<DataType> {
        self.expect_token(Token::LParen)?;
        let time_unit = self.parse_time_unit("Timestamp")?;
        self.expect_token(Token::Comma)?;
        let timezone = self.parse_timezone("Timestamp")?;
        self.expect_token(Token::RParen)?;
        Ok(DataType::Timestamp(time_unit, timezone.map(Into::into)))
    }

    /// Parses the next Time32 (called after `Time32` has been consumed)
    fn parse_time32(&mut self) -> ArrowResult<DataType> {
        self.expect_token(Token::LParen)?;
        let time_unit = self.parse_time_unit("Time32")?;
        self.expect_token(Token::RParen)?;
        Ok(DataType::Time32(time_unit))
    }

    /// Parses the next Time64 (called after `Time64` has been consumed)
    fn parse_time64(&mut self) -> ArrowResult<DataType> {
        self.expect_token(Token::LParen)?;
        let time_unit = self.parse_time_unit("Time64")?;
        self.expect_token(Token::RParen)?;
        Ok(DataType::Time64(time_unit))
    }

    /// Parses the next Duration (called after `Duration` has been consumed)
    fn parse_duration(&mut self) -> ArrowResult<DataType> {
        self.expect_token(Token::LParen)?;
        let time_unit = self.parse_time_unit("Duration")?;
        self.expect_token(Token::RParen)?;
        Ok(DataType::Duration(time_unit))
    }

    /// Parses the next Interval (called after `Interval` has been consumed)
    fn parse_interval(&mut self) -> ArrowResult<DataType> {
        self.expect_token(Token::LParen)?;
        let interval_unit = match self.next_token()? {
            Token::IntervalUnit(interval_unit) => interval_unit,
            tok => {
                return Err(make_error(
                    self.val,
                    &format!("finding IntervalUnit for Interval, got {tok}"),
                ))
            }
        };
        self.expect_token(Token::RParen)?;
        Ok(DataType::Interval(interval_unit))
    }

    /// Parses the next FixedSizeBinary (called after `FixedSizeBinary` has been consumed)
    fn parse_fixed_size_binary(&mut self) -> ArrowResult<DataType> {
        self.expect_token(Token::LParen)?;
        let length = self.parse_i32("FixedSizeBinary")?;
        self.expect_token(Token::RParen)?;
        Ok(DataType::FixedSizeBinary(length))
    }

    /// Parses the next Decimal128 (called after `Decimal128` has been consumed)
    fn parse_decimal_128(&mut self) -> ArrowResult<DataType> {
        self.expect_token(Token::LParen)?;
        let precision = self.parse_u8("Decimal128")?;
        self.expect_token(Token::Comma)?;
        let scale = self.parse_i8("Decimal128")?;
        self.expect_token(Token::RParen)?;
        Ok(DataType::Decimal128(precision, scale))
    }

    /// Parses the next Decimal256 (called after `Decimal256` has been consumed)
    fn parse_decimal_256(&mut self) -> ArrowResult<DataType> {
        self.expect_token(Token::LParen)?;
        let precision = self.parse_u8("Decimal256")?;
        self.expect_token(Token::Comma)?;
        let scale = self.parse_i8("Decimal256")?;
        self.expect_token(Token::RParen)?;
        Ok(DataType::Decimal256(precision, scale))
    }

    /// Parses the next Dictionary (called after `Dictionary` has been consumed)
    fn parse_dictionary(&mut self) -> ArrowResult<DataType> {
        self.expect_token(Token::LParen)?;
        let key_type = self.parse_next_type()?;
        self.expect_token(Token::Comma)?;
        let value_type = self.parse_next_type()?;
        self.expect_token(Token::RParen)?;
        Ok(DataType::Dictionary(
            Box::new(key_type),
            Box::new(value_type),
        ))
    }

    /// return the next token, or an error if there are none left
    fn next_token(&mut self) -> ArrowResult<Token> {
        match self.tokenizer.next() {
            None => Err(make_error(self.val, "finding next token")),
            Some(token) => token,
        }
    }

    /// consume the next token, returning OK(()) if it matches tok, and Err if not
    fn expect_token(&mut self, tok: Token) -> ArrowResult<()> {
        let next_token = self.next_token()?;
        if next_token == tok {
            Ok(())
        } else {
            Err(make_error_expected(self.val, &tok, &next_token))
        }
    }
}

/// returns true if this character is a separator
fn is_separator(c: char) -> bool {
    c == '(' || c == ')' || c == ',' || c == ' '
}

#[derive(Debug)]
/// Splits a strings like Dictionary(Int32, Int64) into tokens sutable for parsing
///
/// For example the string "Timestamp(Nanosecond, None)" would be parsed into:
///
/// * Token::Timestamp
/// * Token::Lparen
/// * Token::IntervalUnit(IntervalUnit::Nanosecond)
/// * Token::Comma,
/// * Token::None,
/// * Token::Rparen,
struct Tokenizer<'a> {
    val: &'a str,
    chars: Peekable<Chars<'a>>,
    // temporary buffer for parsing words
    word: String,
}

impl<'a> Tokenizer<'a> {
    fn new(val: &'a str) -> Self {
        Self {
            val,
            chars: val.chars().peekable(),
            word: String::new(),
        }
    }

    /// returns the next char, without consuming it
    fn peek_next_char(&mut self) -> Option<char> {
        self.chars.peek().copied()
    }

    /// returns the next char, and consuming it
    fn next_char(&mut self) -> Option<char> {
        self.chars.next()
    }

    /// parse the characters in val starting at pos, until the next
    /// `,`, `(`, or `)` or end of line
    fn parse_word(&mut self) -> ArrowResult<Token> {
        // reset temp space
        self.word.clear();
        loop {
            match self.peek_next_char() {
                None => break,
                Some(c) if is_separator(c) => break,
                Some(c) => {
                    self.next_char();
                    self.word.push(c);
                }
            }
        }

        if let Some(c) = self.word.chars().next() {
            // if it started with a number, try parsing it as an integer
            if c == '-' || c.is_numeric() {
                let val: i64 = self.word.parse().map_err(|e| {
                    make_error(self.val, &format!("parsing {} as integer: {e}", self.word))
                })?;
                return Ok(Token::Integer(val));
            }
            // if it started with a double quote `"`, try parsing it as a double quoted string
            else if c == '"' {
                let len = self.word.chars().count();

                // to verify it's double quoted
                if let Some(last_c) = self.word.chars().last() {
                    if last_c != '"' || len < 2 {
                        return Err(make_error(
                            self.val,
                            &format!(
                                "parsing {} as double quoted string: last char must be \"",
                                self.word
                            ),
                        ));
                    }
                }

                if len == 2 {
                    return Err(make_error(
                        self.val,
                        &format!(
                            "parsing {} as double quoted string: empty string isn't supported",
                            self.word
                        ),
                    ));
                }

                let val: String = self.word.parse().map_err(|e| {
                    make_error(
                        self.val,
                        &format!("parsing {} as double quoted string: {e}", self.word),
                    )
                })?;

                let s = val[1..len - 1].to_string();
                if s.contains('"') {
                    return Err(make_error(
                        self.val,
                        &format!("parsing {} as double quoted string: escaped double quote isn't supported", self.word),
                    ));
                }

                return Ok(Token::DoubleQuotedString(s));
            }
        }

        // figure out what the word was
        let token = match self.word.as_str() {
            "Null" => Token::SimpleType(DataType::Null),
            "Boolean" => Token::SimpleType(DataType::Boolean),

            "Int8" => Token::SimpleType(DataType::Int8),
            "Int16" => Token::SimpleType(DataType::Int16),
            "Int32" => Token::SimpleType(DataType::Int32),
            "Int64" => Token::SimpleType(DataType::Int64),

            "UInt8" => Token::SimpleType(DataType::UInt8),
            "UInt16" => Token::SimpleType(DataType::UInt16),
            "UInt32" => Token::SimpleType(DataType::UInt32),
            "UInt64" => Token::SimpleType(DataType::UInt64),

            "Utf8" => Token::SimpleType(DataType::Utf8),
            "LargeUtf8" => Token::SimpleType(DataType::LargeUtf8),
            "Utf8View" => Token::SimpleType(DataType::Utf8View),
            "Binary" => Token::SimpleType(DataType::Binary),
            "BinaryView" => Token::SimpleType(DataType::BinaryView),
            "LargeBinary" => Token::SimpleType(DataType::LargeBinary),

            "Float16" => Token::SimpleType(DataType::Float16),
            "Float32" => Token::SimpleType(DataType::Float32),
            "Float64" => Token::SimpleType(DataType::Float64),

            "Date32" => Token::SimpleType(DataType::Date32),
            "Date64" => Token::SimpleType(DataType::Date64),

            "List" => Token::List,
            "LargeList" => Token::LargeList,
            "FixedSizeList" => Token::FixedSizeList,

            "Second" => Token::TimeUnit(TimeUnit::Second),
            "Millisecond" => Token::TimeUnit(TimeUnit::Millisecond),
            "Microsecond" => Token::TimeUnit(TimeUnit::Microsecond),
            "Nanosecond" => Token::TimeUnit(TimeUnit::Nanosecond),

            "Timestamp" => Token::Timestamp,
            "Time32" => Token::Time32,
            "Time64" => Token::Time64,
            "Duration" => Token::Duration,
            "Interval" => Token::Interval,
            "Dictionary" => Token::Dictionary,

            "FixedSizeBinary" => Token::FixedSizeBinary,
            "Decimal128" => Token::Decimal128,
            "Decimal256" => Token::Decimal256,

            "YearMonth" => Token::IntervalUnit(IntervalUnit::YearMonth),
            "DayTime" => Token::IntervalUnit(IntervalUnit::DayTime),
            "MonthDayNano" => Token::IntervalUnit(IntervalUnit::MonthDayNano),

            "Some" => Token::Some,
            "None" => Token::None,

            _ => {
                return Err(make_error(
                    self.val,
                    &format!("unrecognized word: {}", self.word),
                ))
            }
        };
        Ok(token)
    }
}

impl Iterator for Tokenizer<'_> {
    type Item = ArrowResult<Token>;

    fn next(&mut self) -> Option<Self::Item> {
        loop {
            match self.peek_next_char()? {
                ' ' => {
                    // skip whitespace
                    self.next_char();
                    continue;
                }
                '(' => {
                    self.next_char();
                    return Some(Ok(Token::LParen));
                }
                ')' => {
                    self.next_char();
                    return Some(Ok(Token::RParen));
                }
                ',' => {
                    self.next_char();
                    return Some(Ok(Token::Comma));
                }
                _ => return Some(self.parse_word()),
            }
        }
    }
}

/// Grammar is
///
#[derive(Debug, PartialEq)]
enum Token {
    // Null, or Int32
    SimpleType(DataType),
    Timestamp,
    Time32,
    Time64,
    Duration,
    Interval,
    FixedSizeBinary,
    Decimal128,
    Decimal256,
    Dictionary,
    TimeUnit(TimeUnit),
    IntervalUnit(IntervalUnit),
    LParen,
    RParen,
    Comma,
    Some,
    None,
    Integer(i64),
    DoubleQuotedString(String),
    List,
    LargeList,
    FixedSizeList,
}

impl Display for Token {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            Token::SimpleType(t) => write!(f, "{t}"),
            Token::List => write!(f, "List"),
            Token::LargeList => write!(f, "LargeList"),
            Token::FixedSizeList => write!(f, "FixedSizeList"),
            Token::Timestamp => write!(f, "Timestamp"),
            Token::Time32 => write!(f, "Time32"),
            Token::Time64 => write!(f, "Time64"),
            Token::Duration => write!(f, "Duration"),
            Token::Interval => write!(f, "Interval"),
            Token::TimeUnit(u) => write!(f, "TimeUnit({u:?})"),
            Token::IntervalUnit(u) => write!(f, "IntervalUnit({u:?})"),
            Token::LParen => write!(f, "("),
            Token::RParen => write!(f, ")"),
            Token::Comma => write!(f, ","),
            Token::Some => write!(f, "Some"),
            Token::None => write!(f, "None"),
            Token::FixedSizeBinary => write!(f, "FixedSizeBinary"),
            Token::Decimal128 => write!(f, "Decimal128"),
            Token::Decimal256 => write!(f, "Decimal256"),
            Token::Dictionary => write!(f, "Dictionary"),
            Token::Integer(v) => write!(f, "Integer({v})"),
            Token::DoubleQuotedString(s) => write!(f, "DoubleQuotedString({s})"),
        }
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn test_parse_data_type() {
        // this ensures types can be parsed correctly from their string representations
        for dt in list_datatypes() {
            round_trip(dt)
        }
    }

    /// convert data_type to a string, and then parse it as a type
    /// verifying it is the same
    fn round_trip(data_type: DataType) {
        let data_type_string = data_type.to_string();
        println!("Input '{data_type_string}' ({data_type:?})");
        let parsed_type = parse_data_type(&data_type_string).unwrap();
        assert_eq!(
            data_type, parsed_type,
            "Mismatch parsing {data_type_string}"
        );
    }

    fn list_datatypes() -> Vec<DataType> {
        vec![
            // ---------
            // Non Nested types
            // ---------
            DataType::Null,
            DataType::Boolean,
            DataType::Int8,
            DataType::Int16,
            DataType::Int32,
            DataType::Int64,
            DataType::UInt8,
            DataType::UInt16,
            DataType::UInt32,
            DataType::UInt64,
            DataType::Float16,
            DataType::Float32,
            DataType::Float64,
            DataType::Timestamp(TimeUnit::Second, None),
            DataType::Timestamp(TimeUnit::Millisecond, None),
            DataType::Timestamp(TimeUnit::Microsecond, None),
            DataType::Timestamp(TimeUnit::Nanosecond, None),
            // we can't cover all possible timezones, here we only test utc and +08:00
            DataType::Timestamp(TimeUnit::Nanosecond, Some("+00:00".into())),
            DataType::Timestamp(TimeUnit::Microsecond, Some("+00:00".into())),
            DataType::Timestamp(TimeUnit::Millisecond, Some("+00:00".into())),
            DataType::Timestamp(TimeUnit::Second, Some("+00:00".into())),
            DataType::Timestamp(TimeUnit::Nanosecond, Some("+08:00".into())),
            DataType::Timestamp(TimeUnit::Microsecond, Some("+08:00".into())),
            DataType::Timestamp(TimeUnit::Millisecond, Some("+08:00".into())),
            DataType::Timestamp(TimeUnit::Second, Some("+08:00".into())),
            DataType::Date32,
            DataType::Date64,
            DataType::Time32(TimeUnit::Second),
            DataType::Time32(TimeUnit::Millisecond),
            DataType::Time32(TimeUnit::Microsecond),
            DataType::Time32(TimeUnit::Nanosecond),
            DataType::Time64(TimeUnit::Second),
            DataType::Time64(TimeUnit::Millisecond),
            DataType::Time64(TimeUnit::Microsecond),
            DataType::Time64(TimeUnit::Nanosecond),
            DataType::Duration(TimeUnit::Second),
            DataType::Duration(TimeUnit::Millisecond),
            DataType::Duration(TimeUnit::Microsecond),
            DataType::Duration(TimeUnit::Nanosecond),
            DataType::Interval(IntervalUnit::YearMonth),
            DataType::Interval(IntervalUnit::DayTime),
            DataType::Interval(IntervalUnit::MonthDayNano),
            DataType::Binary,
            DataType::BinaryView,
            DataType::FixedSizeBinary(0),
            DataType::FixedSizeBinary(1234),
            DataType::FixedSizeBinary(-432),
            DataType::LargeBinary,
            DataType::Utf8,
            DataType::Utf8View,
            DataType::LargeUtf8,
            DataType::Decimal128(7, 12),
            DataType::Decimal256(6, 13),
            // ---------
            // Nested types
            // ---------
            DataType::Dictionary(Box::new(DataType::Int32), Box::new(DataType::Utf8)),
            DataType::Dictionary(Box::new(DataType::Int8), Box::new(DataType::Utf8)),
            DataType::Dictionary(
                Box::new(DataType::Int8),
                Box::new(DataType::Timestamp(TimeUnit::Nanosecond, None)),
            ),
            DataType::Dictionary(
                Box::new(DataType::Int8),
                Box::new(DataType::FixedSizeBinary(23)),
            ),
            DataType::Dictionary(
                Box::new(DataType::Int8),
                Box::new(
                    // nested dictionaries are probably a bad idea but they are possible
                    DataType::Dictionary(Box::new(DataType::Int8), Box::new(DataType::Utf8)),
                ),
            ),
            // TODO support more structured types (List, LargeList, Struct, Union, Map, RunEndEncoded, etc)
        ]
    }

    #[test]
    fn test_parse_data_type_whitespace_tolerance() {
        // (string to parse, expected DataType)
        let cases = [
            ("Int8", DataType::Int8),
            (
                "Timestamp        (Nanosecond,      None)",
                DataType::Timestamp(TimeUnit::Nanosecond, None),
            ),
            (
                "Timestamp        (Nanosecond,      None)  ",
                DataType::Timestamp(TimeUnit::Nanosecond, None),
            ),
            (
                "          Timestamp        (Nanosecond,      None               )",
                DataType::Timestamp(TimeUnit::Nanosecond, None),
            ),
            (
                "Timestamp        (Nanosecond,      None               )  ",
                DataType::Timestamp(TimeUnit::Nanosecond, None),
            ),
        ];

        for (data_type_string, expected_data_type) in cases {
            println!("Parsing '{data_type_string}', expecting '{expected_data_type:?}'");
            let parsed_data_type = parse_data_type(data_type_string).unwrap();
            assert_eq!(parsed_data_type, expected_data_type);
        }
    }

    #[test]
    fn parse_data_type_errors() {
        // (string to parse, expected error message)
        let cases = [
            ("", "Unsupported type ''"),
            ("", "Error finding next token"),
            ("null", "Unsupported type 'null'"),
            ("Nu", "Unsupported type 'Nu'"),
            (
                r#"Timestamp(Nanosecond, Some(+00:00))"#,
                "Error unrecognized word: +00:00",
            ),
            (
                r#"Timestamp(Nanosecond, Some("+00:00))"#,
                r#"parsing "+00:00 as double quoted string: last char must be ""#,
            ),
            (
                r#"Timestamp(Nanosecond, Some(""))"#,
                r#"parsing "" as double quoted string: empty string isn't supported"#,
            ),
            (
                r#"Timestamp(Nanosecond, Some("+00:00""))"#,
                r#"parsing "+00:00"" as double quoted string: escaped double quote isn't supported"#,
            ),
            ("Timestamp(Nanosecond, ", "Error finding next token"),
            (
                "Float32 Float32",
                "trailing content after parsing 'Float32'",
            ),
            ("Int32, ", "trailing content after parsing 'Int32'"),
            ("Int32(3), ", "trailing content after parsing 'Int32'"),
            ("FixedSizeBinary(Int32), ", "Error finding i64 for FixedSizeBinary, got 'Int32'"),
            ("FixedSizeBinary(3.0), ", "Error parsing 3.0 as integer: invalid digit found in string"),
            // too large for i32
            ("FixedSizeBinary(4000000000), ", "Error converting 4000000000 into i32 for FixedSizeBinary: out of range integral type conversion attempted"),
            // can't have negative precision
            ("Decimal128(-3, 5)", "Error converting -3 into u8 for Decimal128: out of range integral type conversion attempted"),
            ("Decimal256(-3, 5)", "Error converting -3 into u8 for Decimal256: out of range integral type conversion attempted"),
            ("Decimal128(3, 500)", "Error converting 500 into i8 for Decimal128: out of range integral type conversion attempted"),
            ("Decimal256(3, 500)", "Error converting 500 into i8 for Decimal256: out of range integral type conversion attempted"),

        ];

        for (data_type_string, expected_message) in cases {
            print!("Parsing '{data_type_string}', expecting '{expected_message}'");
            match parse_data_type(data_type_string) {
                Ok(d) => panic!("Expected error while parsing '{data_type_string}', but got '{d}'"),
                Err(e) => {
                    let message = e.to_string();
                    assert!(
                        message.contains(expected_message),
                        "\n\ndid not find expected in actual.\n\nexpected: {expected_message}\nactual:{message}\n"
                    );
                    // errors should also contain  a help message
                    assert!(message.contains("Must be a supported arrow type name such as 'Int32' or 'Timestamp(Nanosecond, None)'"));
                }
            }
        }
    }

    #[test]
    fn parse_error_type() {
        let err = parse_data_type("foobar").unwrap_err();
        assert!(matches!(err, ArrowError::ParseError(_)));
        assert_eq!(err.to_string(), "Parser error: Unsupported type 'foobar'. Must be a supported arrow type name such as 'Int32' or 'Timestamp(Nanosecond, None)'. Error unrecognized word: foobar");
    }
}