mz_adapter/coord/timestamp_selection.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! Logic for selecting timestamps for various operations on collections.
use std::fmt;
use async_trait::async_trait;
use chrono::{DateTime, Utc};
use constraints::Constraints;
use differential_dataflow::lattice::Lattice;
use itertools::Itertools;
use mz_adapter_types::dyncfgs::CONSTRAINT_BASED_TIMESTAMP_SELECTION;
use mz_adapter_types::timestamp_selection::ConstraintBasedTimestampSelection;
use mz_compute_types::ComputeInstanceId;
use mz_expr::MirScalarExpr;
use mz_ore::cast::CastLossy;
use mz_ore::soft_assert_eq_or_log;
use mz_repr::explain::ExprHumanizer;
use mz_repr::{GlobalId, RowArena, ScalarType, Timestamp, TimestampManipulation};
use mz_sql::plan::QueryWhen;
use mz_sql::session::metadata::SessionMetadata;
use mz_sql::session::vars::IsolationLevel;
use mz_storage_types::sources::Timeline;
use serde::{Deserialize, Serialize};
use timely::progress::{Antichain, Timestamp as TimelyTimestamp};
use tracing::{event, Level};
use crate::catalog::CatalogState;
use crate::coord::id_bundle::CollectionIdBundle;
use crate::coord::read_policy::ReadHolds;
use crate::coord::timeline::TimelineContext;
use crate::coord::Coordinator;
use crate::optimize::dataflows::{prep_scalar_expr, ExprPrepStyle};
use crate::session::Session;
use crate::AdapterError;
/// The timeline and timestamp context of a read.
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
pub enum TimestampContext<T> {
/// Read is executed in a specific timeline with a specific timestamp.
TimelineTimestamp {
timeline: Timeline,
/// The timestamp that was chosen for a read. This can differ from the
/// `oracle_ts` when collections are not readable at the (linearized)
/// timestamp for the oracle. In those cases (when the chosen timestamp
/// is further ahead than the oracle timestamp) we have to delay
/// returning peek results until the timestamp oracle is also
/// sufficiently advanced.
chosen_ts: T,
/// The timestamp that would have been chosen for the read by the
/// (linearized) timestamp oracle). In most cases this will be picked as
/// the `chosen_ts`.
oracle_ts: Option<T>,
},
/// Read is execute without a timeline or timestamp.
NoTimestamp,
}
impl<T: TimestampManipulation> TimestampContext<T> {
/// Creates a `TimestampContext` from a timestamp and `TimelineContext`.
pub fn from_timeline_context(
chosen_ts: T,
oracle_ts: Option<T>,
transaction_timeline: Option<Timeline>,
timeline_context: &TimelineContext,
) -> TimestampContext<T> {
match timeline_context {
TimelineContext::TimelineDependent(timeline) => {
if let Some(transaction_timeline) = transaction_timeline {
assert_eq!(timeline, &transaction_timeline);
}
Self::TimelineTimestamp {
timeline: timeline.clone(),
chosen_ts,
oracle_ts,
}
}
TimelineContext::TimestampDependent => {
// We default to the `Timeline::EpochMilliseconds` timeline if one doesn't exist.
Self::TimelineTimestamp {
timeline: transaction_timeline.unwrap_or(Timeline::EpochMilliseconds),
chosen_ts,
oracle_ts,
}
}
TimelineContext::TimestampIndependent => Self::NoTimestamp,
}
}
/// The timeline belonging to this context, if one exists.
pub fn timeline(&self) -> Option<&Timeline> {
self.timeline_timestamp().map(|tt| tt.0)
}
/// The timestamp belonging to this context, if one exists.
pub fn timestamp(&self) -> Option<&T> {
self.timeline_timestamp().map(|tt| tt.1)
}
/// The timeline and timestamp belonging to this context, if one exists.
pub fn timeline_timestamp(&self) -> Option<(&Timeline, &T)> {
match self {
Self::TimelineTimestamp {
timeline,
chosen_ts,
..
} => Some((timeline, chosen_ts)),
Self::NoTimestamp => None,
}
}
/// The timestamp belonging to this context, or a sensible default if one does not exists.
pub fn timestamp_or_default(&self) -> T {
match self {
Self::TimelineTimestamp { chosen_ts, .. } => chosen_ts.clone(),
// Anything without a timestamp is given the maximum possible timestamp to indicate
// that they have been closed up until the end of time. This allows us to SUBSCRIBE to
// static views.
Self::NoTimestamp => T::maximum(),
}
}
/// Whether or not the context contains a timestamp.
pub fn contains_timestamp(&self) -> bool {
self.timestamp().is_some()
}
/// Converts this `TimestampContext` to an `Antichain`.
pub fn antichain(&self) -> Antichain<T> {
Antichain::from_elem(self.timestamp_or_default())
}
}
#[async_trait(?Send)]
impl TimestampProvider for Coordinator {
/// Reports a collection's current read frontier.
fn compute_read_frontier(
&self,
instance: ComputeInstanceId,
id: GlobalId,
) -> Antichain<Timestamp> {
self.controller
.compute
.collection_frontiers(id, Some(instance))
.expect("id does not exist")
.read_frontier
}
/// Reports a collection's current write frontier.
fn compute_write_frontier(
&self,
instance: ComputeInstanceId,
id: GlobalId,
) -> Antichain<Timestamp> {
self.controller
.compute
.collection_frontiers(id, Some(instance))
.expect("id does not exist")
.write_frontier
}
fn storage_frontiers(
&self,
ids: Vec<GlobalId>,
) -> Vec<(GlobalId, Antichain<Timestamp>, Antichain<Timestamp>)> {
self.controller
.storage
.collections_frontiers(ids)
.expect("missing collections")
}
fn acquire_read_holds(&self, id_bundle: &CollectionIdBundle) -> ReadHolds<Timestamp> {
self.acquire_read_holds(id_bundle)
}
fn catalog_state(&self) -> &CatalogState {
self.catalog().state()
}
}
/// A timestamp determination, which includes the timestamp, constraints, and session oracle read
/// timestamp.
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct RawTimestampDetermination<T> {
pub timestamp: T,
pub constraints: Option<Constraints>,
pub session_oracle_read_ts: Option<T>,
}
#[async_trait(?Send)]
pub trait TimestampProvider {
fn compute_read_frontier(
&self,
instance: ComputeInstanceId,
id: GlobalId,
) -> Antichain<Timestamp>;
fn compute_write_frontier(
&self,
instance: ComputeInstanceId,
id: GlobalId,
) -> Antichain<Timestamp>;
/// Returns the implied capability (since) and write frontier (upper) for
/// the specified storage collections.
fn storage_frontiers(
&self,
ids: Vec<GlobalId>,
) -> Vec<(GlobalId, Antichain<Timestamp>, Antichain<Timestamp>)>;
fn catalog_state(&self) -> &CatalogState;
fn get_timeline(timeline_context: &TimelineContext) -> Option<Timeline> {
let timeline = match timeline_context {
TimelineContext::TimelineDependent(timeline) => Some(timeline.clone()),
// We default to the `Timeline::EpochMilliseconds` timeline if one doesn't exist.
TimelineContext::TimestampDependent => Some(Timeline::EpochMilliseconds),
TimelineContext::TimestampIndependent => None,
};
timeline
}
/// Returns true if-and-only-if the given configuration needs a linearized
/// read timetamp from a timestamp oracle.
///
/// This assumes that the query happens in the context of a timeline. If
/// there is no timeline, we cannot and don't have to get a linearized read
/// timestamp.
fn needs_linearized_read_ts(isolation_level: &IsolationLevel, when: &QueryWhen) -> bool {
// When we're in the context of a timline (assumption) and one of these
// scenarios hold, we need to use a linearized read timestamp:
// - The isolation level is Strict Serializable and the `when` allows us to use the
// the timestamp oracle (ex: queries with no AS OF).
// - The `when` requires us to use the timestamp oracle (ex: read-then-write queries).
when.must_advance_to_timeline_ts()
|| (when.can_advance_to_timeline_ts()
&& matches!(
isolation_level,
IsolationLevel::StrictSerializable | IsolationLevel::StrongSessionSerializable
))
}
/// Determines the timestamp for a query using the classical logic (as opposed to constraint-based).
fn determine_timestamp_classical(
&self,
session: &Session,
read_holds: &ReadHolds<Timestamp>,
id_bundle: &CollectionIdBundle,
when: &QueryWhen,
oracle_read_ts: Option<Timestamp>,
compute_instance: ComputeInstanceId,
real_time_recency_ts: Option<Timestamp>,
isolation_level: &IsolationLevel,
timeline: &Option<Timeline>,
largest_not_in_advance_of_upper: Timestamp,
since: &Antichain<Timestamp>,
) -> Result<RawTimestampDetermination<Timestamp>, AdapterError> {
let mut session_oracle_read_ts = None;
// Each involved trace has a validity interval `[since, upper)`.
// The contents of a trace are only guaranteed to be correct when
// accumulated at a time greater or equal to `since`, and they
// are only guaranteed to be currently present for times not
// greater or equal to `upper`.
//
// The plan is to first determine a timestamp, based on the requested
// timestamp policy, and then determine if it can be satisfied using
// the compacted arrangements we have at hand. It remains unresolved
// what to do if it cannot be satisfied (perhaps the query should use
// a larger timestamp and block, perhaps the user should intervene).
{
// TODO: We currently split out getting the oracle timestamp because
// it's a potentially expensive call, but a call that can be done in an
// async task. TimestampProvider is not Send (nor Sync), so we cannot do
// the call to `determine_timestamp_for` (including the oracle call) on
// an async task. If/when TimestampProvider can become Send, we can fold
// the call to the TimestampOracle back into this function.
//
// We assert here that the logic that determines the oracle timestamp
// matches our expectations.
if timeline.is_some() && Self::needs_linearized_read_ts(isolation_level, when) {
assert!(
oracle_read_ts.is_some(),
"should get a timestamp from the oracle for linearized timeline {:?} but didn't",
timeline);
}
}
// Initialize candidate to the minimum correct time.
let mut candidate = Timestamp::minimum();
if let Some(timestamp) = when.advance_to_timestamp() {
let catalog_state = self.catalog_state();
let ts = Coordinator::evaluate_when(catalog_state, timestamp, session)?;
candidate.join_assign(&ts);
}
if when.advance_to_since() {
candidate.advance_by(since.borrow());
}
// If we've acquired a read timestamp from the timestamp oracle, use it
// as the new lower bound for the candidate.
// In Strong Session Serializable, we ignore the oracle timestamp for now, unless we need
// to use it.
if let Some(timestamp) = &oracle_read_ts {
if isolation_level != &IsolationLevel::StrongSessionSerializable
|| when.must_advance_to_timeline_ts()
{
candidate.join_assign(timestamp);
}
}
// We advance to the upper in the following scenarios:
// - The isolation level is Serializable and the `when` allows us to advance to upper (ex:
// queries with no AS OF). We avoid using the upper in Strict Serializable to prevent
// reading source data that is being written to in the future.
// - The isolation level is Strict Serializable but there is no timelines and the `when`
// allows us to advance to upper.
if when.can_advance_to_upper()
&& (isolation_level == &IsolationLevel::Serializable || timeline.is_none())
{
candidate.join_assign(&largest_not_in_advance_of_upper);
}
if let Some(real_time_recency_ts) = real_time_recency_ts {
if !(session.vars().real_time_recency()
&& isolation_level == &IsolationLevel::StrictSerializable)
{
// Erring on the side of caution, lets bail out here.
// This should never happen in practice, as the real time recency timestamp should
// only be supplied when real time recency is enabled.
coord_bail!(
"real time recency timestamp should only be supplied when real time recency \
is enabled and the isolation level is strict serializable"
);
}
candidate.join_assign(&real_time_recency_ts);
}
if isolation_level == &IsolationLevel::StrongSessionSerializable {
if let Some(timeline) = &timeline {
if let Some(oracle) = session.get_timestamp_oracle(timeline) {
let session_ts = oracle.read_ts();
candidate.join_assign(&session_ts);
session_oracle_read_ts = Some(session_ts);
}
}
// When advancing the read timestamp under Strong Session Serializable, there is a
// trade-off to make between freshness and latency. We can choose a timestamp close the
// `upper`, but then later queries might block if the `upper` is too far into the
// future. We can chose a timestamp close to the current time, but then we may not be
// getting results that are as fresh as possible. As a heuristic, we choose the minimum
// of now and the upper, where we use the global timestamp oracle read timestamp as a
// proxy for now. If upper > now, then we choose now and prevent blocking future
// queries. If upper < now, then we choose the upper and prevent blocking the current
// query.
if when.can_advance_to_upper() && when.can_advance_to_timeline_ts() {
let mut advance_to = largest_not_in_advance_of_upper;
if let Some(oracle_read_ts) = oracle_read_ts {
advance_to = std::cmp::min(advance_to, oracle_read_ts);
}
candidate.join_assign(&advance_to);
}
}
// If the timestamp is greater or equal to some element in `since` we are
// assured that the answer will be correct.
//
// It's ok for this timestamp to be larger than the current timestamp of
// the timestamp oracle. For Strict Serializable queries, the Coord will
// linearize the query by holding back the result until the timestamp
// oracle catches up.
let timestamp = if since.less_equal(&candidate) {
event!(
Level::DEBUG,
conn_id = format!("{}", session.conn_id()),
since = format!("{since:?}"),
largest_not_in_advance_of_upper = format!("{largest_not_in_advance_of_upper}"),
timestamp = format!("{candidate}")
);
candidate
} else {
coord_bail!(generate_timestamp_not_valid_error_msg(
id_bundle,
compute_instance,
read_holds,
candidate
));
};
Ok(RawTimestampDetermination {
timestamp,
constraints: None,
session_oracle_read_ts,
})
}
/// Uses constraints and preferences to determine a timestamp for a query.
/// Returns the determined timestamp, the constraints that were applied, and
/// session_oracle_read_ts.
fn determine_timestamp_via_constraints(
&self,
session: &Session,
read_holds: &ReadHolds<Timestamp>,
id_bundle: &CollectionIdBundle,
when: &QueryWhen,
oracle_read_ts: Option<Timestamp>,
compute_instance: ComputeInstanceId,
real_time_recency_ts: Option<Timestamp>,
isolation_level: &IsolationLevel,
timeline: &Option<Timeline>,
largest_not_in_advance_of_upper: Timestamp,
) -> Result<RawTimestampDetermination<Timestamp>, AdapterError> {
use constraints::{Constraints, Preference, Reason};
let mut session_oracle_read_ts = None;
// We start by establishing the hard constraints that must be applied to timestamp determination.
// These constraints are derived from the input arguments, and properties of the collections involved.
// TODO: Many of the constraints are expressed obliquely, and could be made more direct.
let constraints = {
// Constraints we will populate through a sequence of opinions.
let mut constraints = Constraints::default();
// First, we have validity constraints from the `id_bundle` argument which indicates
// which collections we are reading from.
// TODO: Refine the detail about which identifiers are binding and which are not.
// TODO(dov): It's not entirely clear to me that there ever would be a non
// binding constraint introduced by the `id_bundle`. We should revisit this.
let since = self.least_valid_read(read_holds);
let storage = id_bundle
.storage_ids
.iter()
.cloned()
.collect::<Vec<GlobalId>>();
if !storage.is_empty() {
constraints
.lower
.push((since.clone(), Reason::StorageInput(storage)));
}
let compute = id_bundle
.compute_ids
.iter()
.flat_map(|(key, ids)| ids.iter().map(|id| (*key, *id)))
.collect::<Vec<(ComputeInstanceId, GlobalId)>>();
if !compute.is_empty() {
constraints
.lower
.push((since.clone(), Reason::ComputeInput(compute)));
}
// The query's `when` may indicates a specific timestamp we must advance to, or a specific value we must use.
if let Some(timestamp) = when.advance_to_timestamp() {
let catalog_state = self.catalog_state();
let ts = Coordinator::evaluate_when(catalog_state, timestamp, session)?;
constraints
.lower
.push((Antichain::from_elem(ts), Reason::QueryAsOf));
// If the query is at a specific timestamp, we must introduce an upper bound as well.
if when.constrains_upper() {
constraints
.upper
.push((Antichain::from_elem(ts), Reason::QueryAsOf));
}
}
// The specification of an `oracle_read_ts` may indicates that we must advance to it,
// except in one isolation mode, or if `when` does not indicate that we should.
// At the moment, only `QueryWhen::FreshestTableWrite` indicates that we should.
// TODO: Should this just depend on the isolation level?
if let Some(timestamp) = &oracle_read_ts {
if isolation_level != &IsolationLevel::StrongSessionSerializable
|| when.must_advance_to_timeline_ts()
{
// When specification of an `oracle_read_ts` is required, we must advance to it.
// If it's not present, lets bail out.
constraints.lower.push((
Antichain::from_elem(*timestamp),
Reason::IsolationLevel(*isolation_level),
));
}
}
// If a real time recency timestamp is supplied, we must advance to it.
if let Some(real_time_recency_ts) = real_time_recency_ts {
assert!(
session.vars().real_time_recency()
&& isolation_level == &IsolationLevel::StrictSerializable,
"real time recency timestamp should only be supplied when real time recency \
is enabled and the isolation level is strict serializable"
);
constraints.lower.push((
Antichain::from_elem(real_time_recency_ts),
Reason::RealTimeRecency,
));
}
// If we are operating in Strong Session Serializable, we use an alternate timestamp lower bound.
if isolation_level == &IsolationLevel::StrongSessionSerializable {
if let Some(timeline) = &timeline {
if let Some(oracle) = session.get_timestamp_oracle(timeline) {
let session_ts = oracle.read_ts();
constraints.lower.push((
Antichain::from_elem(session_ts),
Reason::IsolationLevel(*isolation_level),
));
session_oracle_read_ts = Some(session_ts);
}
// When advancing the read timestamp under Strong Session Serializable, there is a
// trade-off to make between freshness and latency. We can choose a timestamp close the
// `upper`, but then later queries might block if the `upper` is too far into the
// future. We can chose a timestamp close to the current time, but then we may not be
// getting results that are as fresh as possible. As a heuristic, we choose the minimum
// of now and the upper, where we use the global timestamp oracle read timestamp as a
// proxy for now. If upper > now, then we choose now and prevent blocking future
// queries. If upper < now, then we choose the upper and prevent blocking the current
// query.
if when.can_advance_to_upper() && when.can_advance_to_timeline_ts() {
let mut advance_to = largest_not_in_advance_of_upper;
if let Some(oracle_read_ts) = oracle_read_ts {
advance_to = std::cmp::min(advance_to, oracle_read_ts);
}
constraints.lower.push((
Antichain::from_elem(advance_to),
Reason::IsolationLevel(*isolation_level),
));
}
}
}
constraints.minimize();
constraints
};
// Next we establish the preferences that we would like to apply to timestamp determination.
// Generally, we want to choose the freshest timestamp possible, although there are exceptions
// when we either want a maximally *stale* timestamp, or we want to protect other queries from
// a recklessly advanced timestamp.
let preferences = {
// Counter-intuitively, the only `when` that allows `can_advance_to_upper` is `Immediately`,
// and not `FreshestTableWrite`. This is because `FreshestTableWrite` instead imposes a lower
// bound through the `oracle_read_ts`, and then requires the stalest valid timestamp.
if when.can_advance_to_upper()
&& (isolation_level == &IsolationLevel::Serializable || timeline.is_none())
{
Preference::FreshestAvailable
} else {
Preference::StalestValid
}
// TODO: `StrongSessionSerializable` has a different set of preferences that starts to tease
// out the trade-off between freshness and responsiveness. I think we don't yet know enough
// to properly frame these preferences, though they are clearly aimed at the right concerns.
};
// Determine a candidate based on constraints and preferences.
let constraint_candidate = {
let mut candidate = Timestamp::minimum();
candidate.advance_by(constraints.lower_bound().borrow());
// If we have a preference to be the freshest available, advance to the minimum
// of the upper bound constraints and the `largest_not_in_advance_of_upper`.
if let Preference::FreshestAvailable = preferences {
let mut upper_bound = constraints.upper_bound();
upper_bound.insert(largest_not_in_advance_of_upper);
candidate.advance_by(upper_bound.borrow());
}
// If the candidate strictly exceeds the upper bound, we didn't have a viable timestamp.
if constraints.upper_bound().less_than(&candidate) {
coord_bail!(generate_timestamp_not_valid_error_msg(
id_bundle,
compute_instance,
read_holds,
candidate
));
} else {
candidate
}
};
Ok(RawTimestampDetermination {
timestamp: constraint_candidate,
constraints: Some(constraints),
session_oracle_read_ts,
})
}
/// Determines the timestamp for a query.
///
/// Timestamp determination may fail due to the restricted validity of
/// traces. Each has a `since` and `upper` frontier, and are only valid
/// after `since` and sure to be available not after `upper`.
///
/// The timeline that `id_bundle` belongs to is also returned, if one exists.
fn determine_timestamp_for(
&self,
session: &Session,
id_bundle: &CollectionIdBundle,
when: &QueryWhen,
compute_instance: ComputeInstanceId,
timeline_context: &TimelineContext,
oracle_read_ts: Option<Timestamp>,
real_time_recency_ts: Option<mz_repr::Timestamp>,
isolation_level: &IsolationLevel,
constraint_based: &ConstraintBasedTimestampSelection,
) -> Result<
(
TimestampDetermination<mz_repr::Timestamp>,
ReadHolds<mz_repr::Timestamp>,
),
AdapterError,
> {
// First, we acquire read holds that will ensure the queried collections
// stay queryable at the chosen timestamp.
let read_holds = self.acquire_read_holds(id_bundle);
let timeline = Self::get_timeline(timeline_context);
let since = self.least_valid_read(&read_holds);
let upper = self.least_valid_write(id_bundle);
let largest_not_in_advance_of_upper = Coordinator::largest_not_in_advance_of_upper(&upper);
let raw_determination = match constraint_based {
ConstraintBasedTimestampSelection::Disabled => self.determine_timestamp_classical(
session,
&read_holds,
id_bundle,
when,
oracle_read_ts,
compute_instance,
real_time_recency_ts,
isolation_level,
&timeline,
largest_not_in_advance_of_upper,
&since,
)?,
ConstraintBasedTimestampSelection::Enabled => self
.determine_timestamp_via_constraints(
session,
&read_holds,
id_bundle,
when,
oracle_read_ts,
compute_instance,
real_time_recency_ts,
isolation_level,
&timeline,
largest_not_in_advance_of_upper,
)?,
ConstraintBasedTimestampSelection::Verify => {
let classical_determination = self.determine_timestamp_classical(
session,
&read_holds,
id_bundle,
when,
oracle_read_ts,
compute_instance,
real_time_recency_ts,
isolation_level,
&timeline,
largest_not_in_advance_of_upper,
&since,
)?;
match self.determine_timestamp_via_constraints(
session,
&read_holds,
id_bundle,
when,
oracle_read_ts,
compute_instance,
real_time_recency_ts,
isolation_level,
&timeline,
largest_not_in_advance_of_upper,
) {
Ok(constraint_determination) => {
soft_assert_eq_or_log!(
classical_determination.timestamp,
constraint_determination.timestamp,
"timestamp determination mismatch"
);
if classical_determination.timestamp != constraint_determination.timestamp {
tracing::info!(
"timestamp constrains: {:?}",
constraint_determination.constraints
);
}
RawTimestampDetermination {
timestamp: classical_determination.timestamp,
constraints: constraint_determination.constraints,
session_oracle_read_ts: classical_determination.session_oracle_read_ts,
}
}
Err(e) => {
event!(Level::ERROR, error = ?e, "constraint-based timestamp determination failed");
RawTimestampDetermination {
timestamp: classical_determination.timestamp,
constraints: classical_determination.constraints,
session_oracle_read_ts: classical_determination.session_oracle_read_ts,
}
}
}
}
};
let timestamp_context = TimestampContext::from_timeline_context(
raw_determination.timestamp,
oracle_read_ts,
timeline,
timeline_context,
);
let determination = TimestampDetermination {
timestamp_context,
since,
upper,
largest_not_in_advance_of_upper,
oracle_read_ts,
session_oracle_read_ts: raw_determination.session_oracle_read_ts,
real_time_recency_ts,
constraints: raw_determination.constraints,
};
Ok((determination, read_holds))
}
/// The smallest common valid read frontier among times in the given
/// [ReadHolds].
fn least_valid_read(
&self,
read_holds: &ReadHolds<mz_repr::Timestamp>,
) -> Antichain<mz_repr::Timestamp> {
read_holds.least_valid_read()
}
/// Acquires [ReadHolds], for the given `id_bundle` at the earliest possible
/// times.
fn acquire_read_holds(&self, id_bundle: &CollectionIdBundle) -> ReadHolds<mz_repr::Timestamp>;
/// The smallest common valid write frontier among the specified collections.
///
/// Times that are not greater or equal to this frontier are complete for all collections
/// identified as arguments.
fn least_valid_write(&self, id_bundle: &CollectionIdBundle) -> Antichain<mz_repr::Timestamp> {
let mut upper = Antichain::new();
{
for (_id, _since, collection_upper) in
self.storage_frontiers(id_bundle.storage_ids.iter().cloned().collect_vec())
{
upper.extend(collection_upper);
}
}
{
for (instance, compute_ids) in &id_bundle.compute_ids {
for id in compute_ids.iter() {
upper.extend(self.compute_write_frontier(*instance, *id).into_iter());
}
}
}
upper
}
/// Returns `least_valid_write` - 1, i.e., each time in `least_valid_write` stepped back in a
/// saturating way.
fn greatest_available_read(&self, id_bundle: &CollectionIdBundle) -> Antichain<Timestamp> {
let mut frontier = Antichain::new();
for t in self.least_valid_write(id_bundle) {
frontier.insert(t.step_back().unwrap_or(t));
}
frontier
}
}
fn generate_timestamp_not_valid_error_msg(
id_bundle: &CollectionIdBundle,
compute_instance: ComputeInstanceId,
read_holds: &ReadHolds<mz_repr::Timestamp>,
candidate: mz_repr::Timestamp,
) -> String {
let mut invalid = Vec::new();
if let Some(compute_ids) = id_bundle.compute_ids.get(&compute_instance) {
for id in compute_ids {
let since = read_holds.since(id);
if !since.less_equal(&candidate) {
invalid.push((*id, since));
}
}
}
for id in id_bundle.storage_ids.iter() {
let since = read_holds.since(id);
if !since.less_equal(&candidate) {
invalid.push((*id, since));
}
}
format!(
"Timestamp ({}) is not valid for all inputs: {:?}",
candidate, invalid,
)
}
impl Coordinator {
pub(crate) async fn oracle_read_ts(
&self,
session: &Session,
timeline_ctx: &TimelineContext,
when: &QueryWhen,
) -> Option<Timestamp> {
let isolation_level = session.vars().transaction_isolation().clone();
let timeline = Coordinator::get_timeline(timeline_ctx);
let needs_linearized_read_ts =
Coordinator::needs_linearized_read_ts(&isolation_level, when);
let oracle_read_ts = match timeline {
Some(timeline) if needs_linearized_read_ts => {
let timestamp_oracle = self.get_timestamp_oracle(&timeline);
Some(timestamp_oracle.read_ts().await)
}
Some(_) | None => None,
};
oracle_read_ts
}
/// Determines the timestamp for a query, acquires read holds that ensure the
/// query remains executable at that time, and returns those.
/// The caller is responsible for eventually dropping those read holds.
#[mz_ore::instrument(level = "debug")]
pub(crate) fn determine_timestamp(
&self,
session: &Session,
id_bundle: &CollectionIdBundle,
when: &QueryWhen,
compute_instance: ComputeInstanceId,
timeline_context: &TimelineContext,
oracle_read_ts: Option<Timestamp>,
real_time_recency_ts: Option<mz_repr::Timestamp>,
) -> Result<
(
TimestampDetermination<mz_repr::Timestamp>,
ReadHolds<mz_repr::Timestamp>,
),
AdapterError,
> {
let constraint_based = ConstraintBasedTimestampSelection::from_str(
&CONSTRAINT_BASED_TIMESTAMP_SELECTION
.get(self.catalog_state().system_config().dyncfgs()),
);
let isolation_level = session.vars().transaction_isolation();
let (det, read_holds) = self.determine_timestamp_for(
session,
id_bundle,
when,
compute_instance,
timeline_context,
oracle_read_ts,
real_time_recency_ts,
isolation_level,
&constraint_based,
)?;
self.metrics
.determine_timestamp
.with_label_values(&[
match det.respond_immediately() {
true => "true",
false => "false",
},
isolation_level.as_str(),
&compute_instance.to_string(),
constraint_based.as_str(),
])
.inc();
if !det.respond_immediately()
&& isolation_level == &IsolationLevel::StrictSerializable
&& real_time_recency_ts.is_none()
{
if let Some(strict) = det.timestamp_context.timestamp() {
let (serializable_det, _tmp_read_holds) = self.determine_timestamp_for(
session,
id_bundle,
when,
compute_instance,
timeline_context,
oracle_read_ts,
real_time_recency_ts,
&IsolationLevel::Serializable,
&constraint_based,
)?;
if let Some(serializable) = serializable_det.timestamp_context.timestamp() {
self.metrics
.timestamp_difference_for_strict_serializable_ms
.with_label_values(&[
&compute_instance.to_string(),
constraint_based.as_str(),
])
.observe(f64::cast_lossy(u64::from(
strict.saturating_sub(*serializable),
)));
}
}
}
Ok((det, read_holds))
}
/// The largest timestamp not greater or equal to an element of `upper`.
///
/// If no such timestamp exists, for example because `upper` contains only the
/// minimal timestamp, the return value is `Timestamp::minimum()`.
pub(crate) fn largest_not_in_advance_of_upper(
upper: &Antichain<mz_repr::Timestamp>,
) -> mz_repr::Timestamp {
// We peek at the largest element not in advance of `upper`, which
// involves a subtraction. If `upper` contains a zero timestamp there
// is no "prior" answer, and we do not want to peek at it as it risks
// hanging awaiting the response to data that may never arrive.
if let Some(upper) = upper.as_option() {
upper.step_back().unwrap_or_else(Timestamp::minimum)
} else {
// A complete trace can be read in its final form with this time.
//
// This should only happen for literals that have no sources or sources that
// are known to have completed (non-tailed files for example).
Timestamp::MAX
}
}
pub(crate) fn evaluate_when(
catalog: &CatalogState,
mut timestamp: MirScalarExpr,
session: &Session,
) -> Result<mz_repr::Timestamp, AdapterError> {
let temp_storage = RowArena::new();
prep_scalar_expr(&mut timestamp, ExprPrepStyle::AsOfUpTo)?;
let evaled = timestamp.eval(&[], &temp_storage)?;
if evaled.is_null() {
coord_bail!("can't use {} as a mz_timestamp for AS OF or UP TO", evaled);
}
let ty = timestamp.typ(&[]);
Ok(match ty.scalar_type {
ScalarType::MzTimestamp => evaled.unwrap_mz_timestamp(),
ScalarType::Numeric { .. } => {
let n = evaled.unwrap_numeric().0;
n.try_into()?
}
ScalarType::Int16 => i64::from(evaled.unwrap_int16()).try_into()?,
ScalarType::Int32 => i64::from(evaled.unwrap_int32()).try_into()?,
ScalarType::Int64 => evaled.unwrap_int64().try_into()?,
ScalarType::UInt16 => u64::from(evaled.unwrap_uint16()).into(),
ScalarType::UInt32 => u64::from(evaled.unwrap_uint32()).into(),
ScalarType::UInt64 => evaled.unwrap_uint64().into(),
ScalarType::TimestampTz { .. } => {
evaled.unwrap_timestamptz().timestamp_millis().try_into()?
}
ScalarType::Timestamp { .. } => evaled
.unwrap_timestamp()
.and_utc()
.timestamp_millis()
.try_into()?,
_ => coord_bail!(
"can't use {} as a mz_timestamp for AS OF or UP TO",
catalog
.for_session(session)
.humanize_column_type(&ty, false)
),
})
}
}
/// Information used when determining the timestamp for a query.
#[derive(Serialize, Deserialize, Debug, Clone)]
pub struct TimestampDetermination<T> {
/// The chosen timestamp context from `determine_timestamp`.
pub timestamp_context: TimestampContext<T>,
/// The read frontier of all involved sources.
pub since: Antichain<T>,
/// The write frontier of all involved sources.
pub upper: Antichain<T>,
/// The largest timestamp not in advance of upper.
pub largest_not_in_advance_of_upper: T,
/// The value of the timeline's oracle timestamp, if used.
pub oracle_read_ts: Option<T>,
/// The value of the session local timestamp's oracle timestamp, if used.
pub session_oracle_read_ts: Option<T>,
/// The value of the real time recency timestamp, if used.
pub real_time_recency_ts: Option<T>,
/// The constraints used by the constraint based solver.
/// See the [`constraints`] module for more information.
pub constraints: Option<Constraints>,
}
impl<T: TimestampManipulation> TimestampDetermination<T> {
pub fn respond_immediately(&self) -> bool {
match &self.timestamp_context {
TimestampContext::TimelineTimestamp { chosen_ts, .. } => {
!self.upper.less_equal(chosen_ts)
}
TimestampContext::NoTimestamp => true,
}
}
}
/// Information used when determining the timestamp for a query.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct TimestampExplanation<T> {
/// The chosen timestamp from `determine_timestamp`.
pub determination: TimestampDetermination<T>,
/// Details about each source.
pub sources: Vec<TimestampSource<T>>,
/// Wall time of first statement executed in this transaction
pub session_wall_time: DateTime<Utc>,
/// Cached value of determination.respond_immediately()
pub respond_immediately: bool,
}
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct TimestampSource<T> {
pub name: String,
pub read_frontier: Vec<T>,
pub write_frontier: Vec<T>,
}
pub trait DisplayableInTimeline {
fn fmt(&self, timeline: Option<&Timeline>, f: &mut fmt::Formatter) -> fmt::Result;
fn display<'a>(&'a self, timeline: Option<&'a Timeline>) -> DisplayInTimeline<'a, Self> {
DisplayInTimeline { t: self, timeline }
}
}
impl DisplayableInTimeline for mz_repr::Timestamp {
fn fmt(&self, timeline: Option<&Timeline>, f: &mut fmt::Formatter) -> fmt::Result {
if let Some(Timeline::EpochMilliseconds) = timeline {
let ts_ms: u64 = self.into();
if let Ok(ts_ms) = i64::try_from(ts_ms) {
if let Some(ndt) = DateTime::from_timestamp_millis(ts_ms) {
return write!(f, "{:13} ({})", self, ndt.format("%Y-%m-%d %H:%M:%S%.3f"));
}
}
}
write!(f, "{:13}", self)
}
}
pub struct DisplayInTimeline<'a, T: ?Sized> {
t: &'a T,
timeline: Option<&'a Timeline>,
}
impl<'a, T> fmt::Display for DisplayInTimeline<'a, T>
where
T: DisplayableInTimeline,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.t.fmt(self.timeline, f)
}
}
impl<'a, T> fmt::Debug for DisplayInTimeline<'a, T>
where
T: DisplayableInTimeline,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Display::fmt(&self, f)
}
}
impl<T: fmt::Display + fmt::Debug + DisplayableInTimeline + TimestampManipulation> fmt::Display
for TimestampExplanation<T>
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let timeline = self.determination.timestamp_context.timeline();
writeln!(
f,
" query timestamp: {}",
self.determination
.timestamp_context
.timestamp_or_default()
.display(timeline)
)?;
if let Some(oracle_read_ts) = &self.determination.oracle_read_ts {
writeln!(
f,
" oracle read timestamp: {}",
oracle_read_ts.display(timeline)
)?;
}
if let Some(session_oracle_read_ts) = &self.determination.session_oracle_read_ts {
writeln!(
f,
" session oracle read timestamp: {}",
session_oracle_read_ts.display(timeline)
)?;
}
if let Some(real_time_recency_ts) = &self.determination.real_time_recency_ts {
writeln!(
f,
" real time recency timestamp: {}",
real_time_recency_ts.display(timeline)
)?;
}
writeln!(
f,
"largest not in advance of upper: {}",
self.determination
.largest_not_in_advance_of_upper
.display(timeline),
)?;
writeln!(
f,
" upper:{:?}",
self.determination
.upper
.iter()
.map(|t| t.display(timeline))
.collect::<Vec<_>>()
)?;
writeln!(
f,
" since:{:?}",
self.determination
.since
.iter()
.map(|t| t.display(timeline))
.collect::<Vec<_>>()
)?;
writeln!(
f,
" can respond immediately: {}",
self.respond_immediately
)?;
writeln!(f, " timeline: {:?}", &timeline)?;
writeln!(
f,
" session wall time: {:13} ({})",
self.session_wall_time.timestamp_millis(),
self.session_wall_time.format("%Y-%m-%d %H:%M:%S%.3f"),
)?;
for source in &self.sources {
writeln!(f, "")?;
writeln!(f, "source {}:", source.name)?;
writeln!(
f,
" read frontier:{:?}",
source
.read_frontier
.iter()
.map(|t| t.display(timeline))
.collect::<Vec<_>>()
)?;
writeln!(
f,
" write frontier:{:?}",
source
.write_frontier
.iter()
.map(|t| t.display(timeline))
.collect::<Vec<_>>()
)?;
}
if let Some(constraints) = &self.determination.constraints {
writeln!(f, "")?;
writeln!(f, "binding constraints:")?;
write!(f, "{}", constraints.display(timeline))?;
}
Ok(())
}
}
/// Types and logic in support of a constraint-based approach to timestamp determination.
mod constraints {
use core::fmt;
use std::fmt::Debug;
use differential_dataflow::lattice::Lattice;
use mz_storage_types::sources::Timeline;
use serde::{Deserialize, Serialize};
use timely::progress::{Antichain, Timestamp};
use mz_compute_types::ComputeInstanceId;
use mz_repr::GlobalId;
use mz_sql::session::vars::IsolationLevel;
use super::DisplayableInTimeline;
/// Constraints expressed on the timestamp of a query.
///
/// The constraints are expressed on the minimum and maximum values,
/// resulting in a (possibly empty) interval of valid timestamps.
///
/// The constraints may be redundant, in the interest of providing
/// more complete explanations, but they may also be minimized at
/// any point without altering their behavior by removing redundant
/// constraints.
///
/// When combined with a `Preference` one can determine an
/// ideal timestamp to use.
#[derive(Default, Serialize, Deserialize, Clone)]
pub struct Constraints {
/// Timestamps and reasons that impose an inclusive lower bound.
pub lower: Vec<(Antichain<mz_repr::Timestamp>, Reason)>,
/// Timestamps and reasons that impose an inclusive upper bound.
pub upper: Vec<(Antichain<mz_repr::Timestamp>, Reason)>,
}
impl DisplayableInTimeline for Constraints {
fn fmt(&self, timeline: Option<&Timeline>, f: &mut fmt::Formatter) -> fmt::Result {
if !self.lower.is_empty() {
writeln!(f, "lower:")?;
for (ts, reason) in &self.lower {
let ts = ts.iter().map(|t| t.display(timeline)).collect::<Vec<_>>();
writeln!(f, " ({:?}): {:?}", reason, ts)?;
}
}
if !self.upper.is_empty() {
writeln!(f, "upper:")?;
for (ts, reason) in &self.upper {
let ts = ts.iter().map(|t| t.display(timeline)).collect::<Vec<_>>();
writeln!(f, " ({:?}): {:?}", reason, ts)?;
}
}
Ok(())
}
}
impl Debug for Constraints {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.display(None).fmt(f)?;
Ok(())
}
}
impl Constraints {
/// Remove constraints that are dominated by other constraints.
///
/// This removes redundant constraints, without removing constraints
/// that are "tight" in the sense that the interval would be
/// meaningfully different without them.
/// For example, two constraints at the same
/// time will both be retained, in the interest of full information.
/// But a lower bound constraint at time `t` will be removed if there is a
/// constraint at time `t + 1` (or any larger time).
pub fn minimize(&mut self) {
// Establish the upper bound of lower constraints.
let lower_frontier = self.lower_bound();
// Retain constraints that intersect `lower_frontier`.
self.lower.retain(|(anti, _)| {
anti.iter()
.any(|time| lower_frontier.elements().contains(time))
});
// Establish the lower bound of upper constraints.
let upper_frontier = self.upper_bound();
// Retain constraints that intersect `upper_frontier`.
self.upper.retain(|(anti, _)| {
anti.iter()
.any(|time| upper_frontier.elements().contains(time))
});
}
/// An antichain equal to the least upper bound of lower bounds.
pub fn lower_bound(&self) -> Antichain<mz_repr::Timestamp> {
let mut lower = Antichain::from_elem(mz_repr::Timestamp::minimum());
for (anti, _) in self.lower.iter() {
lower = lower.join(anti);
}
lower
}
/// An antichain equal to the greatest lower bound of upper bounds.
pub fn upper_bound(&self) -> Antichain<mz_repr::Timestamp> {
self.upper
.iter()
.flat_map(|(anti, _)| anti.iter())
.cloned()
.collect()
}
}
/// An explanation of reasons for a timestamp constraint.
#[derive(Serialize, Deserialize, Clone)]
pub enum Reason {
/// A compute input at a compute instance.
/// This is something like an index or view
/// that is mantained by compute.
ComputeInput(Vec<(ComputeInstanceId, GlobalId)>),
/// A storage input.
StorageInput(Vec<GlobalId>),
/// A specified isolation level and the timestamp it requires.
IsolationLevel(IsolationLevel),
/// Real-time recency may constrains the timestamp from below.
RealTimeRecency,
/// The query expressed its own constraint on the timestamp.
QueryAsOf,
}
impl Debug for Reason {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
Reason::ComputeInput(ids) => write_split_ids(f, "ComputeInput", ids),
Reason::StorageInput(ids) => write_split_ids(f, "StorageInput", ids),
Reason::IsolationLevel(level) => {
write!(f, "IsolationLevel({:?})", level)
}
Reason::RealTimeRecency => {
write!(f, "RealTimeRecency")
}
Reason::QueryAsOf => {
write!(f, "QueryAsOf")
}
}
}
}
//TODO: This is a bit of a hack to make the debug output of constraints more readable.
//We should probably have a more structured way to do this.
fn write_split_ids<T: Debug>(f: &mut fmt::Formatter, label: &str, ids: &[T]) -> fmt::Result {
let (ids, rest) = if ids.len() > 10 {
ids.split_at(10)
} else {
let rest: &[T] = &[];
(ids, rest)
};
if rest.is_empty() {
write!(f, "{}({:?})", label, ids)
} else {
write!(f, "{}({:?}, ... {} more)", label, ids, rest.len())
}
}
/// Given an interval [read, write) of timestamp options,
/// this expresses a preference for either end of the spectrum.
pub enum Preference {
/// Prefer the greatest timestamp immediately available.
///
/// This considers the immediate inputs to a query and
/// selects the greatest timestamp not greater or equal
/// to any of their write frontiers.
///
/// The preference only relates to immediate query inputs,
/// but it could be extended to transitive inputs as well.
/// For example, one could imagine prefering the freshest
/// data known to be ingested into Materialize, under the
/// premise that those answers should soon become available,
/// and may be more fresh than the immediate inputs.
FreshestAvailable,
/// Prefer the least valid timeastamp.
///
/// This is useful when one has no expressed freshness
/// constraints, and wants to minimally impact others.
/// For example, `AS OF AT LEAST <time>`.
StalestValid,
}
}