1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! Transformation based on pushing demand information about columns toward sources.
use itertools::Itertools;
use mz_ore::assert_none;
use std::collections::{BTreeMap, BTreeSet};
use mz_expr::{
AggregateExpr, AggregateFunc, Id, JoinInputMapper, MirRelationExpr, MirScalarExpr,
RECURSION_LIMIT,
};
use mz_ore::stack::{CheckedRecursion, RecursionGuard};
use mz_repr::{Datum, Row};
use crate::TransformCtx;
/// Drive demand from the root through operators.
///
/// This transform alerts operators to their columns that influence the
/// ultimate output of the expression, and gives them permission to swap
/// other columns for dummy values. As part of this, operators should not
/// actually use any of these dummy values, lest they run-time error.
///
/// This transformation primarily informs the `Join` operator, which can
/// simplify its intermediate state when it knows that certain columns are
/// not observed in its output. Internal arrangements need not maintain
/// columns that are no longer required in the join pipeline, which are
/// those columns not required by the output nor any further equalities.
///
/// Nowadays, this transform is mostly obsoleted by `ProjectionPushdown`.
/// However, I know of one thing that it still does that `ProjectionPushdown`
/// doesn't do (there might be more such things):
/// if you have something like
/// ```code
/// Project (#0, #1)
/// Join on=(#0 = #1)
/// ```
/// then this is turned into
/// ```code
/// Project (#0, #0)
/// Join on=(#0 = #1)
/// ```
/// This can be beneficial for projecting out some columns earlier inside a complex join (by the LIR
/// planning), and then recovering them after the join (if needed) by duplicating existing columns.
///
/// After the last run of `Demand`, there should always be a `ProjectionPushdown`, so that dummies
/// are eliminated from plans.
#[derive(Debug)]
pub struct Demand {
recursion_guard: RecursionGuard,
}
impl Default for Demand {
fn default() -> Demand {
Demand {
recursion_guard: RecursionGuard::with_limit(RECURSION_LIMIT),
}
}
}
impl CheckedRecursion for Demand {
fn recursion_guard(&self) -> &RecursionGuard {
&self.recursion_guard
}
}
impl crate::Transform for Demand {
fn name(&self) -> &'static str {
"Demand"
}
#[mz_ore::instrument(
target = "optimizer",
level = "debug",
fields(path.segment = "demand")
)]
fn actually_perform_transform(
&self,
relation: &mut MirRelationExpr,
_: &mut TransformCtx,
) -> Result<(), crate::TransformError> {
let result = self.action(
relation,
(0..relation.arity()).collect(),
&mut BTreeMap::new(),
);
mz_repr::explain::trace_plan(&*relation);
result
}
}
impl Demand {
/// Columns to be produced.
fn action(
&self,
relation: &mut MirRelationExpr,
mut columns: BTreeSet<usize>,
gets: &mut BTreeMap<Id, BTreeSet<usize>>,
) -> Result<(), crate::TransformError> {
self.checked_recur(|_| {
// A valid relation type is only needed for Maps, but we can't borrow
// the relation in the corresponding branch of the match statement, since
// it is already borrowed mutably.
let relation_type = if matches!(relation, MirRelationExpr::Map { .. }) {
Some(relation.typ())
} else {
None
};
match relation {
MirRelationExpr::Constant { .. } => {
// Nothing clever to do with constants, that I can think of.
Ok(())
}
MirRelationExpr::Get { id, .. } => {
gets.entry(*id)
.or_insert_with(BTreeSet::new)
.extend(columns);
Ok(())
}
MirRelationExpr::Let { id, value, body } => {
// Let harvests any requirements of get from its body,
// and pushes the union of the requirements at its value.
let id = Id::Local(*id);
let prior = gets.insert(id, BTreeSet::new());
assert_none!(prior); // no shadowing
self.action(body, columns, gets)?;
let needs = gets.remove(&id).expect("existing gets entry");
if let Some(prior) = prior {
gets.insert(id, prior);
}
self.action(value, needs, gets)
}
MirRelationExpr::LetRec {
ids,
values,
limits: _,
body,
} => {
let ids_used_across_iterations = MirRelationExpr::recursive_ids(ids, values)
.iter()
.map(|id| Id::Local(*id))
.collect::<BTreeSet<_>>();
let ids = ids.iter().map(|id| Id::Local(*id)).collect_vec();
for id in ids.iter() {
let prior = gets.insert(id.clone(), BTreeSet::new());
assert_none!(prior); // no shadowing
}
self.action(body, columns, gets)?;
for (id, value) in ids.iter().rev().zip_eq(values.iter_mut().rev()) {
let needs = if !ids_used_across_iterations.contains(id) {
gets.remove(id).expect("existing gets entry")
} else {
// Remove, but ignore the collected needs
gets.remove(id).expect("existing gets entry");
// Instead of using `gets`, we'll say we need all columns for a
// recursive id
(0..value.arity()).collect::<BTreeSet<_>>()
};
self.action(value, needs, gets)?;
}
Ok(())
}
MirRelationExpr::Project { input, outputs } => self.action(
input,
columns.into_iter().map(|c| outputs[c]).collect(),
gets,
),
MirRelationExpr::Map { input, scalars } => {
let relation_type = relation_type.as_ref().unwrap();
let arity = input.arity();
// contains columns whose supports have yet to be explored
let mut new_columns = columns.clone();
new_columns.retain(|c| *c >= arity);
while !new_columns.is_empty() {
// explore supports
new_columns = new_columns
.iter()
.flat_map(|c| scalars[*c - arity].support())
.filter(|c| !columns.contains(c))
.collect();
// add those columns to the seen list
columns.extend(new_columns.clone());
new_columns.retain(|c| *c >= arity);
}
// Replace un-read expressions with literals to prevent evaluation.
for (index, scalar) in scalars.iter_mut().enumerate() {
if !columns.contains(&(arity + index)) {
// Leave literals as they are, to benefit explain.
if !scalar.is_literal() {
let typ = relation_type.column_types[arity + index].clone();
*scalar = MirScalarExpr::Literal(
Ok(Row::pack_slice(&[Datum::Dummy])),
typ,
);
}
}
}
columns.retain(|c| *c < arity);
self.action(input, columns, gets)
}
MirRelationExpr::FlatMap {
input,
func: _,
exprs,
} => {
// A FlatMap which returns zero rows acts like a filter
// so we always need to execute it
for expr in exprs {
expr.support_into(&mut columns);
}
columns.retain(|c| *c < input.arity());
self.action(input, columns, gets)
}
MirRelationExpr::Filter { input, predicates } => {
for predicate in predicates {
predicate.support_into(&mut columns)
}
self.action(input, columns, gets)
}
MirRelationExpr::Join {
inputs,
equivalences,
implementation: _,
} => {
let input_mapper = JoinInputMapper::new(inputs);
// Each produced column that is equivalent to a prior column should be remapped
// so that upstream uses depend only on the first column, simplifying the demand
// analysis. In principle we could choose any representative, if it turns out
// that some other column would have been more helpful, but we don't have a great
// reason to do that at the moment.
let mut permutation: Vec<usize> = (0..input_mapper.total_columns()).collect();
for equivalence in equivalences.iter() {
let mut first_column = None;
for expr in equivalence.iter() {
if let MirScalarExpr::Column(c) = expr {
if let Some(prior) = &first_column {
permutation[*c] = *prior;
} else {
first_column = Some(*c);
}
}
}
}
let should_permute = columns.iter().any(|c| permutation[*c] != *c);
// Each equivalence class imposes internal demand for columns.
for equivalence in equivalences.iter() {
for expr in equivalence.iter() {
expr.support_into(&mut columns);
}
}
// Populate child demands from external and internal demands.
let new_columns = input_mapper.split_column_set_by_input(columns.iter());
// Recursively indicate the requirements.
for (input, columns) in inputs.iter_mut().zip(new_columns) {
self.action(input, columns, gets)?;
}
// Install a permutation if any demanded column is not the
// canonical column.
if should_permute {
*relation = relation.take_dangerous().project(permutation);
}
Ok(())
}
MirRelationExpr::Reduce {
input,
group_key,
aggregates,
monotonic: _,
expected_group_size: _,
} => {
let mut new_columns = BTreeSet::new();
// Group keys determine aggregation granularity and are
// each crucial in determining aggregates and even the
// multiplicities of other keys.
for k in group_key.iter() {
k.support_into(&mut new_columns)
}
for column in columns.iter() {
// No obvious requirements on aggregate columns.
// A "non-empty" requirement, I guess?
if *column >= group_key.len() {
aggregates[*column - group_key.len()]
.expr
.support_into(&mut new_columns);
}
}
// Replace un-demanded aggregations with dummies.
let input_type = input.typ();
for index in (0..aggregates.len()).rev() {
if !columns.contains(&(group_key.len() + index)) {
let typ = aggregates[index].typ(&input_type.column_types);
aggregates[index] = AggregateExpr {
func: AggregateFunc::Dummy,
expr: MirScalarExpr::literal_ok(Datum::Dummy, typ.scalar_type),
distinct: false,
};
}
}
self.action(input, new_columns, gets)
}
MirRelationExpr::TopK {
input,
group_key,
order_key,
limit,
..
} => {
// Group and order keys and limit must be retained, as they
// define which rows are retained.
columns.extend(group_key.iter().cloned());
columns.extend(order_key.iter().map(|o| o.column));
if let Some(limit) = limit {
// Strictly speaking not needed because the
// `limit` support should be a subset of the
// `group_key` support, but we don't want to
// take this for granted here.
limit.support_into(&mut columns)
}
self.action(input, columns, gets)
}
MirRelationExpr::Negate { input } => self.action(input, columns, gets),
MirRelationExpr::Threshold { input } => {
// Threshold requires all columns, as collapsing any distinct values
// has the potential to change how it thresholds counts. This could
// be improved with reasoning about distinctness or non-negativity.
let arity = input.arity();
self.action(input, (0..arity).collect(), gets)
}
MirRelationExpr::Union { base, inputs } => {
self.action(base, columns.clone(), gets)?;
for input in inputs {
self.action(input, columns.clone(), gets)?;
}
Ok(())
}
MirRelationExpr::ArrangeBy { input, keys } => {
for key_set in keys {
for key in key_set {
key.support_into(&mut columns);
}
}
self.action(input, columns, gets)
}
}
})
}
}