ropey/tree/node_text.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
use std::borrow::Borrow;
use std::ops::Deref;
use std::str;
use crate::crlf;
/// A custom small string. The unsafe guts of this are in `NodeSmallString`
/// further down in this file.
#[derive(Clone, Default)]
#[repr(C)]
pub(crate) struct NodeText(inner::NodeSmallString);
impl NodeText {
/// Creates a new empty `NodeText`
#[inline(always)]
pub fn new() -> Self {
NodeText(inner::NodeSmallString::new())
}
/// Creates a new `NodeText` with the same contents as the given `&str`.
pub fn from_str(string: &str) -> Self {
NodeText(inner::NodeSmallString::from_str(string))
}
/// Inserts a `&str` at byte offset `byte_idx`.
pub fn insert_str(&mut self, byte_idx: usize, string: &str) {
self.0.insert_str(byte_idx, string);
}
/// Inserts `string` at `byte_idx` and splits the resulting string in half,
/// returning the right half.
///
/// Only splits on code point boundaries and will never split CRLF pairs,
/// so if the whole string is a single code point or CRLF pair, the split
/// will fail and the returned string will be empty.
pub fn insert_str_split(&mut self, byte_idx: usize, string: &str) -> Self {
debug_assert!(self.is_char_boundary(byte_idx));
let tot_len = self.len() + string.len();
let mid_idx = tot_len / 2;
let a = byte_idx;
let b = byte_idx + string.len();
// Figure out the split index, accounting for code point
// boundaries and CRLF pairs.
// We first copy the bytes in the area of the proposed split point into
// a small 8-byte buffer. We then use that buffer to look for the
// real split point.
let split_idx = {
let mut buf = [0u8; 8];
let start = mid_idx - 4.min(mid_idx);
let end = (mid_idx + 4).min(tot_len);
for i in start..end {
buf[i - start] = if i < a {
self.as_bytes()[i]
} else if i < b {
string.as_bytes()[i - a]
} else {
self.as_bytes()[i - string.len()]
};
}
crlf::nearest_internal_break(mid_idx - start, &buf[..(end - start)]) + start
};
let mut right = NodeText::new();
if split_idx <= a {
right.push_str(&self[split_idx..a]);
right.push_str(string);
right.push_str(&self[a..]);
self.truncate(split_idx);
} else if split_idx <= b {
right.push_str(&string[(split_idx - a)..]);
right.push_str(&self[a..]);
self.truncate(a);
self.push_str(&string[..(split_idx - a)]);
} else {
right.push_str(&self[(split_idx - string.len())..]);
self.truncate(split_idx - string.len());
self.insert_str(a, string);
}
self.0.inline_if_possible();
right
}
/// Appends a `&str` to end the of the `NodeText`.
pub fn push_str(&mut self, string: &str) {
let len = self.len();
self.0.insert_str(len, string);
}
/// Appends a `&str` and splits the resulting string in half, returning
/// the right half.
///
/// Only splits on code point boundaries and will never split CRLF pairs,
/// so if the whole string is a single code point or CRLF pair, the split
/// will fail and the returned string will be empty.
pub fn push_str_split(&mut self, string: &str) -> Self {
let len = self.len();
self.insert_str_split(len, string)
}
/// Drops the text after byte index `byte_idx`.
pub fn truncate(&mut self, byte_idx: usize) {
self.0.truncate(byte_idx);
self.0.inline_if_possible();
}
/// Drops the text before byte index `byte_idx`, shifting the
/// rest of the text to fill in the space.
pub fn truncate_front(&mut self, byte_idx: usize) {
self.0.remove_range(0, byte_idx);
self.0.inline_if_possible();
}
/// Removes the text in the byte index interval `[byte_start, byte_end)`.
pub fn remove_range(&mut self, byte_start: usize, byte_end: usize) {
self.0.remove_range(byte_start, byte_end);
self.0.inline_if_possible();
}
/// Splits the `NodeText` at `byte_idx`.
///
/// The left part remains in the original, and the right part is
/// returned in a new `NodeText`.
pub fn split_off(&mut self, byte_idx: usize) -> Self {
let other = NodeText(self.0.split_off(byte_idx));
self.0.inline_if_possible();
other
}
}
impl std::cmp::PartialEq for NodeText {
fn eq(&self, other: &Self) -> bool {
let (s1, s2): (&str, &str) = (self, other);
s1 == s2
}
}
impl<'a> PartialEq<NodeText> for &'a str {
fn eq(&self, other: &NodeText) -> bool {
*self == (other as &str)
}
}
impl<'a> PartialEq<&'a str> for NodeText {
fn eq(&self, other: &&'a str) -> bool {
(self as &str) == *other
}
}
impl std::fmt::Display for NodeText {
fn fmt(&self, fm: &mut std::fmt::Formatter) -> Result<(), std::fmt::Error> {
NodeText::deref(self).fmt(fm)
}
}
impl std::fmt::Debug for NodeText {
fn fmt(&self, fm: &mut std::fmt::Formatter) -> std::fmt::Result {
NodeText::deref(self).fmt(fm)
}
}
impl<'a> From<&'a str> for NodeText {
fn from(s: &str) -> Self {
Self::from_str(s)
}
}
impl Deref for NodeText {
type Target = str;
fn deref(&self) -> &str {
self.0.as_str()
}
}
impl AsRef<str> for NodeText {
fn as_ref(&self) -> &str {
self.0.as_str()
}
}
impl Borrow<str> for NodeText {
fn borrow(&self) -> &str {
self.0.as_str()
}
}
//=======================================================================
/// Takes two `NodeText`s and mends the CRLF break between them, if any.
///
/// Note: this will leave one of the strings empty if the entire composite string
/// is a single CRLF pair.
pub(crate) fn fix_segment_seam(l: &mut NodeText, r: &mut NodeText) {
// Early out, if there's nothing to do.
if crlf::seam_is_break(l.as_bytes(), r.as_bytes()) {
return;
}
let tot_len = l.len() + r.len();
// Find the new split position, if any.
let new_split_pos = {
let l_split = crlf::prev_break(l.len(), l.as_bytes());
let r_split = l.len() + crlf::next_break(0, r.as_bytes());
if l_split != 0 && (r_split == tot_len || l.len() > r.len()) {
l_split
} else {
r_split
}
};
// Move the bytes to create the new split
if new_split_pos < l.len() {
r.insert_str(0, &l[new_split_pos..]);
l.truncate(new_split_pos);
} else {
let pos = new_split_pos - l.len();
l.push_str(&r[..pos]);
r.truncate_front(pos);
}
}
//=======================================================================
/// The unsafe guts of NodeText, exposed through a safe API.
///
/// Try to keep this as small as possible, and implement functionality on
/// NodeText via the safe APIs whenever possible.
mod inner {
use crate::tree::MAX_BYTES;
use smallvec::{Array, SmallVec};
use std::str;
/// The backing internal buffer type for `NodeText`.
#[derive(Copy, Clone)]
struct BackingArray([u8; MAX_BYTES]);
/// We need a very specific size of array, which is not necessarily
/// supported directly by the impls in the smallvec crate. We therefore
/// have to implement this unsafe trait for our specific array size.
/// TODO: once integer const generics land, and smallvec updates its APIs
/// to use them, switch over and get rid of this unsafe impl.
unsafe impl Array for BackingArray {
type Item = u8;
fn size() -> usize {
MAX_BYTES
}
}
/// Internal small string for `NodeText`.
#[derive(Clone, Default)]
#[repr(C)]
pub struct NodeSmallString {
buffer: SmallVec<BackingArray>,
}
impl NodeSmallString {
#[inline(always)]
pub fn new() -> Self {
NodeSmallString {
buffer: SmallVec::new(),
}
}
#[inline(always)]
pub fn with_capacity(capacity: usize) -> Self {
NodeSmallString {
buffer: SmallVec::with_capacity(capacity),
}
}
#[inline(always)]
pub fn from_str(string: &str) -> Self {
let mut nodetext = NodeSmallString::with_capacity(string.len());
nodetext.insert_str(0, string);
nodetext
}
#[inline(always)]
pub fn len(&self) -> usize {
self.buffer.len()
}
#[inline(always)]
pub fn as_str(&self) -> &str {
// NodeSmallString's methods don't allow `buffer` to become invalid
// utf8, so this is safe.
unsafe { str::from_utf8_unchecked(self.buffer.as_ref()) }
}
/// Inserts `string` at `byte_idx`.
///
/// Panics on out-of-bounds or of `byte_idx` isn't a char boundary.
#[inline(always)]
pub fn insert_str(&mut self, byte_idx: usize, string: &str) {
assert!(self.as_str().is_char_boundary(byte_idx));
// Copy bytes from `string` into the appropriate space in the
// buffer.
self.buffer.insert_from_slice(byte_idx, string.as_bytes());
}
/// Removes text in range `[start_byte_idx, end_byte_idx)`
///
/// Panics on out-of-bounds or non-char-boundary indices.
#[inline(always)]
pub fn remove_range(&mut self, start_byte_idx: usize, end_byte_idx: usize) {
assert!(start_byte_idx <= end_byte_idx);
// Already checked by copy_within/is_char_boundary.
debug_assert!(end_byte_idx <= self.len());
assert!(self.as_str().is_char_boundary(start_byte_idx));
assert!(self.as_str().is_char_boundary(end_byte_idx));
let len = self.len();
let amt = end_byte_idx - start_byte_idx;
self.buffer.copy_within(end_byte_idx..len, start_byte_idx);
self.buffer.truncate(len - amt);
}
/// Removes text after `byte_idx`.
#[inline(always)]
pub fn truncate(&mut self, byte_idx: usize) {
// Already checked by is_char_boundary.
debug_assert!(byte_idx <= self.len());
assert!(self.as_str().is_char_boundary(byte_idx));
self.buffer.truncate(byte_idx);
}
/// Splits at `byte_idx`, returning the right part and leaving the
/// left part in the original.
///
/// Panics on out-of-bounds or of `byte_idx` isn't a char boundary.
#[inline(always)]
pub fn split_off(&mut self, byte_idx: usize) -> Self {
// Already checked by is_char_boundary.
debug_assert!(byte_idx <= self.len());
assert!(self.as_str().is_char_boundary(byte_idx));
let len = self.len();
let mut other = NodeSmallString::with_capacity(len - byte_idx);
other.buffer.extend_from_slice(&self.buffer[byte_idx..]);
self.buffer.truncate(byte_idx);
other
}
/// Re-inlines the data if it's been heap allocated but can
/// fit inline.
#[inline(always)]
pub fn inline_if_possible(&mut self) {
if self.buffer.spilled() && (self.buffer.len() <= self.buffer.inline_size()) {
self.buffer.shrink_to_fit();
}
}
}
//-----------------------------------------------------------------------
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn small_string_basics() {
let s = NodeSmallString::from_str("Hello!");
assert_eq!("Hello!", s.as_str());
assert_eq!(6, s.len());
}
#[test]
fn insert_str_01() {
let mut s = NodeSmallString::from_str("Hello!");
s.insert_str(3, "oz");
assert_eq!("Helozlo!", s.as_str());
}
#[test]
#[should_panic]
fn insert_str_02() {
let mut s = NodeSmallString::from_str("Hello!");
s.insert_str(7, "oz");
}
#[test]
#[should_panic]
fn insert_str_03() {
let mut s = NodeSmallString::from_str("こんにちは");
s.insert_str(4, "oz");
}
#[test]
fn remove_range_01() {
let mut s = NodeSmallString::from_str("Hello!");
s.remove_range(2, 4);
assert_eq!("Heo!", s.as_str());
}
#[test]
#[should_panic]
fn remove_range_02() {
let mut s = NodeSmallString::from_str("Hello!");
s.remove_range(4, 2);
}
#[test]
#[should_panic]
fn remove_range_03() {
let mut s = NodeSmallString::from_str("Hello!");
s.remove_range(2, 7);
}
#[test]
#[should_panic]
fn remove_range_04() {
let mut s = NodeSmallString::from_str("こんにちは");
s.remove_range(2, 4);
}
#[test]
fn truncate_01() {
let mut s = NodeSmallString::from_str("Hello!");
s.truncate(4);
assert_eq!("Hell", s.as_str());
}
#[test]
#[should_panic]
fn truncate_02() {
let mut s = NodeSmallString::from_str("Hello!");
s.truncate(7);
}
#[test]
#[should_panic]
fn truncate_03() {
let mut s = NodeSmallString::from_str("こんにちは");
s.truncate(4);
}
#[test]
fn split_off_01() {
let mut s1 = NodeSmallString::from_str("Hello!");
let s2 = s1.split_off(4);
assert_eq!("Hell", s1.as_str());
assert_eq!("o!", s2.as_str());
}
#[test]
#[should_panic]
fn split_off_02() {
let mut s1 = NodeSmallString::from_str("Hello!");
s1.split_off(7);
}
#[test]
#[should_panic]
fn split_off_03() {
let mut s1 = NodeSmallString::from_str("こんにちは");
s1.split_off(4);
}
}
}