persistcli/maelstrom/
txn_list_append_single.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.

//! An implementation of the Maelstrom txn-list-append workload using a single
//! persist shard.

use std::collections::BTreeMap;
use std::sync::Arc;
use std::time::{Duration, SystemTime, UNIX_EPOCH};

use async_trait::async_trait;
use differential_dataflow::consolidation::consolidate_updates;
use differential_dataflow::lattice::Lattice;
use mz_ore::metrics::MetricsRegistry;
use mz_ore::now::SYSTEM_TIME;
use mz_persist::cfg::{BlobConfig, ConsensusConfig};
use mz_persist::location::{Blob, Consensus, ExternalError};
use mz_persist::unreliable::{UnreliableBlob, UnreliableConsensus, UnreliableHandle};
use mz_persist_client::async_runtime::IsolatedRuntime;
use mz_persist_client::cache::StateCache;
use mz_persist_client::cfg::PersistConfig;
use mz_persist_client::critical::SinceHandle;
use mz_persist_client::metrics::Metrics;
use mz_persist_client::read::{Listen, ListenEvent};
use mz_persist_client::rpc::PubSubClientConnection;
use mz_persist_client::write::WriteHandle;
use mz_persist_client::{Diagnostics, PersistClient, ShardId};
use timely::order::TotalOrder;
use timely::progress::{Antichain, Timestamp};
use timely::PartialOrder;
use tokio::sync::Mutex;
use tracing::{debug, info, trace};

use crate::maelstrom::api::{Body, ErrorCode, MaelstromError, NodeId, ReqTxnOp, ResTxnOp};
use crate::maelstrom::node::{Handle, Service};
use crate::maelstrom::services::{CachingBlob, MaelstromBlob, MaelstromConsensus};
use crate::maelstrom::txn_list_append_single::codec_impls::{
    MaelstromKeySchema, MaelstromValSchema,
};
use crate::maelstrom::Args;

/// Key of the persist shard used by [Transactor]
#[derive(Debug, Clone, Default, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct MaelstromKey(u64);

/// Val of the persist shard used by [Transactor]
#[derive(Debug, Clone, Default, PartialEq, Eq, PartialOrd, Ord)]
pub struct MaelstromVal(Vec<u64>);

/// An implementation of read-write transactions on top of persist
///
/// This executes Maelstrom [txn-list-append] transactions. The timestamp
/// selection is modeled after Materialize's SQL implementation.
///
/// [txn-list-append]: https://github.com/jepsen-io/maelstrom/blob/v0.2.1/doc/workloads.md#workload-txn-list-append
///
/// A persist shard is maintained that directly represents a key-value map as it
/// evolves over time. (Our real SQL implementation would likely instead
/// maintain a WAL of updates to multiple tables.) Each transaction has
/// associated timestamps:
///
/// - `read_ts`: at which the contents of the map are read (inclusive)
/// - `write_ts`: at which txn mutations (if any) are written
/// - `expected_upper`: the upper bound of the previous txn
/// - `new_upper`: the upper bound after this transaction commits, if it does
///
/// To keep things simple, `write_ts` is always `read_ts+1`, `expected_upper` is
/// `antichain[write_ts]`, and `new_upper` is `antichain[write_ts+1]`.
///
/// Transactions are "committed" by using `[WriteHandle::compare_and_append]`,
/// which atomically:
/// - verifies that `expected_upper` matches
/// - writes the updates
/// - advances the upper to `new_upper`.
///
/// This guarantees that all transactions are linearized with each txn's
/// `read_ts` equal to the previous txn's `write_ts`. If two transactions race
/// by reading at the same `read_ts` and writing at the same `write_ts`, the
/// `compare_and_append` guarantees that only one of them succeeds and the other
/// must retry with new timestamps.
///
/// Upon first use, the persist shard is initialized by advancing the upper to
/// `antichain[T::minimum() + 1]`. This allows the first txn to use 0 as the
/// `read_ts` and 1 as the `write_ts`.
///
/// Similarly modeling Materialize, the since of the shard is kept following the
/// upper. To keep things simple, this is done by a fixed offset. This exercises
/// persist compaction.
///
/// To ensure that both [mz_persist_client::read::ReadHandle::snapshot] and
/// [mz_persist_client::read::ReadHandle::listen] are exercised, when a txn
/// reads the state at `read_ts`, it artificially picks an `as_of` timestamp in
/// `[since, read_ts]` and splits up the read data between snapshot and listen
/// along this timestamp.
#[derive(Debug)]
pub struct Transactor {
    cads_token: u64,
    shard_id: ShardId,
    client: PersistClient,
    since: SinceHandle<MaelstromKey, MaelstromVal, u64, i64, u64>,
    write: WriteHandle<MaelstromKey, MaelstromVal, u64, i64>,

    read_ts: u64,

    // Keep a long-lived listen, which is incrementally read as we go. Then
    // assert that it has the same data as the short-lived snapshot+listen in
    // `read`. This hopefully stresses slightly different parts of the system.
    long_lived_updates: Vec<(
        (Result<MaelstromKey, String>, Result<MaelstromVal, String>),
        u64,
        i64,
    )>,
    long_lived_listen: Listen<MaelstromKey, MaelstromVal, u64, i64>,
}

impl Transactor {
    pub async fn new(
        client: &PersistClient,
        node_id: NodeId,
        shard_id: ShardId,
    ) -> Result<Self, MaelstromError> {
        let cads_token = node_id
            .0
            .trim_start_matches('n')
            .parse::<u64>()
            .expect("maelstrom node_id should be n followed by an integer");

        let (mut write, mut read) = client
            .open(
                shard_id,
                Arc::new(MaelstromKeySchema),
                Arc::new(MaelstromValSchema),
                Diagnostics::from_purpose("maelstrom long-lived"),
                true,
            )
            .await?;
        // Use the CONTROLLER_CRITICAL_SINCE id for all nodes so we get coverage
        // of contending traffic.
        let since = client
            .open_critical_since(
                shard_id,
                PersistClient::CONTROLLER_CRITICAL_SINCE,
                Diagnostics::from_purpose("maelstrom since"),
            )
            .await?;
        let read_ts = Self::maybe_init_shard(&mut write).await?;

        let mut long_lived_updates = Vec::new();
        let as_of = since.since().clone();
        let mut updates = read
            .snapshot_and_fetch(as_of.clone())
            .await
            .expect("as_of unexpectedly unavailable");
        long_lived_updates.append(&mut updates);
        let long_lived_listen = read
            .listen(as_of.clone())
            .await
            .expect("as_of unexpectedly unavailable");

        Ok(Transactor {
            client: client.clone(),
            cads_token,
            shard_id,
            since,
            write,
            read_ts,
            long_lived_updates,
            long_lived_listen,
        })
    }

    /// Initializes the shard, if it hasn't been already, and returns the read
    /// timestamp.
    async fn maybe_init_shard(
        write: &mut WriteHandle<MaelstromKey, MaelstromVal, u64, i64>,
    ) -> Result<u64, MaelstromError> {
        debug!("Transactor::maybe_init");
        const EMPTY_UPDATES: &[((MaelstromKey, MaelstromVal), u64, i64)] = &[];
        let ts_min = u64::minimum();
        let initial_upper = Antichain::from_elem(ts_min);
        let new_upper = Antichain::from_elem(ts_min + 1);
        let cas_res = write
            .compare_and_append(EMPTY_UPDATES, initial_upper.clone(), new_upper.clone())
            .await;
        let read_ts = match cas_res? {
            Ok(()) => 0,
            Err(mismatch) => Self::extract_ts(&mismatch.current)? - 1,
        };
        Ok(read_ts)
    }

    pub async fn transact(
        &mut self,
        req_ops: &[ReqTxnOp],
    ) -> Result<Vec<ResTxnOp>, MaelstromError> {
        loop {
            trace!("transact req={:?}", req_ops);
            let state = self.read().await?;
            debug!("transact req={:?} state={:?}", req_ops, state);
            let (writes, res_ops) = Self::eval_txn(&state, req_ops);

            // NB: We do the CaS even if writes is empty, so that read-only txns
            // are also linearizable.
            let write_ts = self.read_ts + 1;
            let updates = writes
                .into_iter()
                .map(|(k, v, diff)| ((k, v), write_ts, diff));
            let expected_upper = Antichain::from_elem(write_ts);
            let new_upper = Antichain::from_elem(write_ts + 1);
            let cas_res = self
                .write
                .compare_and_append(updates, expected_upper.clone(), new_upper)
                .await?;
            match cas_res {
                Ok(()) => {
                    self.read_ts = write_ts;
                    self.advance_since().await?;
                    return Ok(res_ops);
                }
                // We lost the CaS race, try again.
                Err(mismatch) => {
                    info!(
                        "transact lost the CaS race, retrying: {:?} vs {:?}",
                        mismatch.expected, mismatch.current
                    );
                    self.read_ts = Self::extract_ts(&mismatch.current)? - 1;
                    continue;
                }
            }
        }
    }

    async fn read_short_lived(
        &mut self,
    ) -> Result<
        (
            Vec<(
                (Result<MaelstromKey, String>, Result<MaelstromVal, String>),
                u64,
                i64,
            )>,
            Antichain<u64>,
        ),
        MaelstromError,
    > {
        loop {
            // We're reading as of read_ts, but we can split the read between the
            // snapshot and listen at any ts in `[since_ts, read_ts]`. Intentionally
            // pick one that uses a combination of both to get coverage.
            let as_of = Antichain::from_elem(self.read_ts);
            let since_ts = Self::extract_ts(self.since.since())?;
            assert!(self.read_ts >= since_ts, "{} vs {}", self.read_ts, since_ts);
            let snap_ts = since_ts + (self.read_ts - since_ts) / 2;
            let snap_as_of = Antichain::from_elem(snap_ts);

            // Intentionally create this from scratch so we get a brand new copy of
            // state and exercise some more code paths.
            let mut read = self
                .client
                .open_leased_reader(
                    self.shard_id,
                    Arc::new(MaelstromKeySchema),
                    Arc::new(MaelstromValSchema),
                    Diagnostics::from_purpose("maelstrom short-lived"),
                    true,
                )
                .await
                .expect("codecs should match");

            let updates_res = read.snapshot_and_fetch(snap_as_of.clone()).await;
            let mut updates = match updates_res {
                Ok(x) => x,
                Err(since) => {
                    let recent_upper = self.write.fetch_recent_upper().await;
                    // Because we artificially share the same CriticalReaderId
                    // between nodes, it doesn't quite act like a capability.
                    // Prod doesn't have this issue, because a new one will
                    // fence out old ones, but it's done here to stress edge
                    // cases.
                    //
                    // If we did succeed in this read, we'd anyway just find out
                    // from compare_and_append that our read_ts was out of date,
                    // so proceed by fetching a new one and trying again. We
                    // also re-register the since to get an updated since value
                    // for the snap_ts calculation above.
                    info!(
                        "snapshot cannot serve requested as_of {} since is {:?}, fetching a new read_ts and trying again",
                        snap_ts,
                        since.0.as_option()
                    );
                    self.read_ts = Self::extract_ts(recent_upper)? - 1;
                    self.since = self
                        .client
                        .open_critical_since(
                            self.shard_id,
                            PersistClient::CONTROLLER_CRITICAL_SINCE,
                            Diagnostics::from_purpose("maelstrom since"),
                        )
                        .await?;
                    continue;
                }
            };

            let listen_res = read.listen(snap_as_of).await;
            let listen = match listen_res {
                Ok(x) => x,
                Err(since) => {
                    let recent_upper = self.write.fetch_recent_upper().await;
                    // Because we artificially share the same CriticalReaderId
                    // between nodes, it doesn't quite act like a capability.
                    // Prod doesn't have this issue, because a new one will
                    // fence out old ones, but it's done here to stress edge
                    // cases.
                    //
                    // If we did succeed in this read, we'd anyway just find out
                    // from compare_and_append that our read_ts was out of date,
                    // so proceed by fetching a new one and trying again. We
                    // also re-register the since to get an updated since value
                    // for the snap_ts calculation above.
                    info!(
                        "listen cannot serve requested as_of {} since is {:?}, fetching a new read_ts and trying again",
                        snap_ts,
                        since.0.as_option(),
                    );
                    self.read_ts = Self::extract_ts(recent_upper)? - 1;
                    self.since = self
                        .client
                        .open_critical_since(
                            self.shard_id,
                            PersistClient::CONTROLLER_CRITICAL_SINCE,
                            Diagnostics::from_purpose("maelstrom since"),
                        )
                        .await?;
                    continue;
                }
            };

            trace!(
                "read updates from snapshot as_of {}: {:?}",
                snap_ts,
                updates
            );
            let listen_updates = Self::listen_through(listen, &as_of).await?;
            trace!(
                "read updates from listener as_of {} through {}: {:?}",
                snap_ts,
                self.read_ts,
                listen_updates
            );
            updates.extend(listen_updates);

            // Compute the contents of the collection as of `as_of`.
            for (_, t, _) in updates.iter_mut() {
                t.advance_by(as_of.borrow());
            }
            consolidate_updates(&mut updates);
            return Ok((updates, as_of));
        }
    }

    async fn read(&mut self) -> Result<BTreeMap<MaelstromKey, MaelstromVal>, MaelstromError> {
        let (updates, as_of) = self.read_short_lived().await?;

        let long_lived = self.read_long_lived(&as_of).await;
        assert_eq!(&updates, &long_lived);

        Self::extract_state_map(self.read_ts, updates)
    }

    async fn listen_through(
        mut listen: Listen<MaelstromKey, MaelstromVal, u64, i64>,
        frontier: &Antichain<u64>,
    ) -> Result<
        Vec<(
            (Result<MaelstromKey, String>, Result<MaelstromVal, String>),
            u64,
            i64,
        )>,
        ExternalError,
    > {
        let mut ret = Vec::new();
        loop {
            for event in listen.fetch_next().await {
                match event {
                    ListenEvent::Progress(x) => {
                        // NB: Unlike the snapshot as_of, a listener frontier is
                        // not inclusive, so we have to wait until it's > our
                        // as_of to be sure we have everything.
                        if PartialOrder::less_than(frontier, &x) {
                            return Ok(ret);
                        }
                    }
                    ListenEvent::Updates(x) => {
                        // We want the collection at as_of, so skip anything
                        // past that.
                        ret.extend(x.into_iter().filter(|(_, ts, _)| !frontier.less_than(ts)));
                    }
                }
            }
        }
    }

    async fn read_long_lived(
        &mut self,
        as_of: &Antichain<u64>,
    ) -> Vec<(
        (Result<MaelstromKey, String>, Result<MaelstromVal, String>),
        u64,
        i64,
    )> {
        while PartialOrder::less_equal(self.long_lived_listen.frontier(), as_of) {
            for event in self.long_lived_listen.fetch_next().await {
                match event {
                    ListenEvent::Updates(mut updates) => {
                        self.long_lived_updates.append(&mut updates)
                    }
                    ListenEvent::Progress(_) => {} // No-op.
                }
            }
        }
        for (_, t, _) in self.long_lived_updates.iter_mut() {
            t.advance_by(as_of.borrow());
        }
        consolidate_updates(&mut self.long_lived_updates);

        // If as_of is less_than the frontier, we may have ended up with updates
        // that we didn't want yet. We can't remove them from
        // `self.long_lived_updates` because the long lived listener will only
        // emit them once and we'll want them later. If performance was
        // important, we could sort them to the end and return a subset, but
        // it's not, so do the easy thing and copy the Vec.
        self.long_lived_updates
            .iter()
            .filter(|(_, t, _)| !as_of.less_than(t))
            .cloned()
            .collect()
    }

    fn extract_state_map(
        read_ts: u64,
        updates: Vec<(
            (Result<MaelstromKey, String>, Result<MaelstromVal, String>),
            u64,
            i64,
        )>,
    ) -> Result<BTreeMap<MaelstromKey, MaelstromVal>, MaelstromError> {
        let mut ret = BTreeMap::new();
        for ((k, v), _, d) in updates {
            if d != 1 {
                return Err(MaelstromError {
                    code: ErrorCode::Crash,
                    text: format!("invalid read at time {}", read_ts),
                });
            }
            let k = k.map_err(|err| MaelstromError {
                code: ErrorCode::Crash,
                text: format!("invalid key {}", err),
            })?;
            let v = v.map_err(|err| MaelstromError {
                code: ErrorCode::Crash,
                text: format!("invalid val {}", err),
            })?;
            if ret.contains_key(&k) {
                return Err(MaelstromError {
                    code: ErrorCode::Crash,
                    text: format!("unexpected duplicate key {:?}", k),
                });
            }
            ret.insert(k, v);
        }
        Ok(ret)
    }

    fn eval_txn(
        state: &BTreeMap<MaelstromKey, MaelstromVal>,
        req_ops: &[ReqTxnOp],
    ) -> (Vec<(MaelstromKey, MaelstromVal, i64)>, Vec<ResTxnOp>) {
        let mut res_ops = Vec::new();
        let mut updates = Vec::new();
        let mut txn_state = BTreeMap::new();

        for req_op in req_ops.iter() {
            match req_op {
                ReqTxnOp::Read { key } => {
                    let current = txn_state
                        .get(&MaelstromKey(*key))
                        .or_else(|| state.get(&MaelstromKey(*key)));
                    let val = current.cloned().unwrap_or_default().0;
                    res_ops.push(ResTxnOp::Read { key: *key, val })
                }
                ReqTxnOp::Append { key, val } => {
                    let current = txn_state
                        .get(&MaelstromKey(*key))
                        .or_else(|| state.get(&MaelstromKey(*key)));
                    let mut vals = match current {
                        Some(val) => {
                            // Retract the value we're about to overwrite.
                            updates.push((MaelstromKey(*key), val.clone(), -1));
                            val.clone()
                        }
                        None => MaelstromVal::default(),
                    };
                    vals.0.push(*val);
                    txn_state.insert(MaelstromKey(*key), vals.clone());
                    updates.push((MaelstromKey(*key), vals, 1));
                    res_ops.push(ResTxnOp::Append {
                        key: key.clone(),
                        val: *val,
                    })
                }
            }
        }

        debug!(
            "eval_txn\n  req={:?}\n  res={:?}\n  updates={:?}\n  state={:?}\n  txn_state={:?}",
            req_ops, res_ops, updates, state, txn_state
        );
        (updates, res_ops)
    }

    async fn advance_since(&mut self) -> Result<(), MaelstromError> {
        // To keep things interesting, advance the since.
        const SINCE_LAG: u64 = 10;
        let new_since = Antichain::from_elem(self.read_ts.saturating_sub(SINCE_LAG));

        let mut expected_token = self.cads_token;
        loop {
            let res = self
                .since
                .maybe_compare_and_downgrade_since(&expected_token, (&self.cads_token, &new_since))
                .await;
            match res {
                Some(Ok(latest_since)) => {
                    // Success! If we weren't the last one to update since, but
                    // only then, it might have advanced past our read_ts, so
                    // forward read_ts to since_ts.
                    if expected_token != self.cads_token {
                        let since_ts = Self::extract_ts(&latest_since)?;
                        if since_ts > self.read_ts {
                            info!(
                                "since was last updated by {}, forwarding our read_ts from {} to {}",
                                expected_token, self.read_ts, since_ts
                            );
                            self.read_ts = since_ts;
                        }
                    }
                    return Ok(());
                }
                Some(Err(actual_token)) => {
                    debug!(
                        "actual downgrade_since token {} didn't match expected {}, retrying",
                        actual_token, expected_token,
                    );
                    expected_token = actual_token;
                }
                None => {
                    panic!("should not no-op `maybe_compare_and_downgrade_since` during testing");
                }
            }
        }
    }

    fn extract_ts<T: TotalOrder + Copy>(frontier: &Antichain<T>) -> Result<T, MaelstromError> {
        frontier.as_option().copied().ok_or_else(|| MaelstromError {
            code: ErrorCode::Crash,
            text: "shard unexpectedly closed".into(),
        })
    }
}

/// An adaptor to implement [Service] using [Transactor]
#[derive(Debug)]
pub struct TransactorService(pub Arc<Mutex<Transactor>>);

#[async_trait]
impl Service for TransactorService {
    async fn init(args: &Args, handle: &Handle) -> Result<Self, MaelstromError> {
        // Use the Maelstrom services to initialize a new random ShardId (so we
        // can repeatedly run tests against the same Blob and Consensus without
        // conflicting) and communicate it between processes.
        let shard_id = handle.maybe_init_shard_id().await?;

        // Make sure the seed is recomputed each time through the retry
        // closure, so we don't retry the same deterministic timeouts.
        let seed: u64 = SystemTime::now()
            .duration_since(UNIX_EPOCH)
            .unwrap_or_default()
            .subsec_nanos()
            .into();
        // It doesn't particularly matter what we set should_happen to, so we do
        // this to have a convenient single tunable param.
        let should_happen = 1.0 - args.unreliability;
        // For consensus, set should_timeout to `args.unreliability` so that once we split
        // ExternalErrors into determinate vs indeterminate, then
        // `args.unreliability` will also be the fraction of txns that it's
        // not save for Maelstrom to retry (b/c indeterminate error in
        // Consensus CaS).
        let should_timeout = args.unreliability;
        // It doesn't particularly matter what we set should_happen and
        // should_timeout to for blobs, so use the same handle for both.
        let unreliable = UnreliableHandle::new(seed, should_happen, should_timeout);

        let mut config =
            PersistConfig::new_default_configs(&mz_persist_client::BUILD_INFO, SYSTEM_TIME.clone());
        let metrics = Arc::new(Metrics::new(&config, &MetricsRegistry::new()));

        // Construct requested Blob.
        let blob = match &args.blob_uri {
            Some(blob_uri) => {
                let cfg = BlobConfig::try_from(
                    blob_uri,
                    Box::new(config.clone()),
                    metrics.s3_blob.clone(),
                    Arc::clone(&config.configs),
                )
                .await
                .expect("blob_uri should be valid");
                loop {
                    match cfg.clone().open().await {
                        Ok(x) => break x,
                        Err(err) => {
                            info!("failed to open blob, trying again: {}", err);
                        }
                    }
                }
            }
            None => MaelstromBlob::new(handle.clone()),
        };
        let blob: Arc<dyn Blob> = Arc::new(UnreliableBlob::new(blob, unreliable.clone()));
        // Normal production persist usage (even including a real SQL txn impl)
        // isn't particularly benefitted by a cache, so we don't have one baked
        // into persist. In contrast, our Maelstrom transaction model
        // intentionally exercises both a new snapshot and new listener on each
        // txn. As a result, without a cache, things would be terribly slow,
        // unreliable would cause more retries than are interesting, and the
        // Lamport diagrams that Maelstrom generates would be noisy.
        let blob = CachingBlob::new(blob);
        // to simplify some downstream logic (+ a bit more stress testing),
        // always downgrade the since of critical handles when asked
        config.critical_downgrade_interval = Duration::from_secs(0);
        // set a live diff scan limit such that we'll explore both the fast and slow paths
        config.set_state_versions_recent_live_diffs_limit(5);
        let consensus = match &args.consensus_uri {
            Some(consensus_uri) => {
                let cfg = ConsensusConfig::try_from(
                    consensus_uri,
                    Box::new(config.clone()),
                    metrics.postgres_consensus.clone(),
                )
                .expect("consensus_uri should be valid");
                loop {
                    match cfg.clone().open().await {
                        Ok(x) => break x,
                        Err(err) => {
                            info!("failed to open consensus, trying again: {}", err);
                        }
                    }
                }
            }
            None => MaelstromConsensus::new(handle.clone()),
        };
        let consensus: Arc<dyn Consensus> =
            Arc::new(UnreliableConsensus::new(consensus, unreliable));

        // Wire up the TransactorService.
        let isolated_runtime = Arc::new(IsolatedRuntime::default());
        let pubsub_sender = PubSubClientConnection::noop().sender;
        let shared_states = Arc::new(StateCache::new(
            &config,
            Arc::clone(&metrics),
            Arc::clone(&pubsub_sender),
        ));
        let client = PersistClient::new(
            config,
            blob,
            consensus,
            metrics,
            isolated_runtime,
            shared_states,
            pubsub_sender,
        )?;
        let transactor = Transactor::new(&client, handle.node_id(), shard_id).await?;
        let service = TransactorService(Arc::new(Mutex::new(transactor)));
        Ok(service)
    }

    async fn eval(&self, handle: Handle, src: NodeId, req: Body) {
        match req {
            Body::ReqTxn { msg_id, txn } => {
                let in_reply_to = msg_id;
                match self.0.lock().await.transact(&txn).await {
                    Ok(txn) => handle.send_res(src, |msg_id| Body::ResTxn {
                        msg_id,
                        in_reply_to,
                        txn,
                    }),
                    Err(MaelstromError { code, text }) => {
                        handle.send_res(src, |msg_id| Body::Error {
                            msg_id: Some(msg_id),
                            in_reply_to,
                            code,
                            text,
                        })
                    }
                }
            }
            req => unimplemented!("unsupported req: {:?}", req),
        }
    }
}

mod codec_impls {
    use arrow::array::{BinaryArray, BinaryBuilder, UInt64Array, UInt64Builder};
    use arrow::datatypes::ToByteSlice;
    use bytes::Bytes;
    use mz_persist_types::codec_impls::{
        SimpleColumnarData, SimpleColumnarDecoder, SimpleColumnarEncoder,
    };
    use mz_persist_types::columnar::Schema2;
    use mz_persist_types::stats::NoneStats;
    use mz_persist_types::Codec;

    use crate::maelstrom::txn_list_append_single::{MaelstromKey, MaelstromVal};

    impl Codec for MaelstromKey {
        type Storage = ();
        type Schema = MaelstromKeySchema;

        fn codec_name() -> String {
            "MaelstromKey".into()
        }

        fn encode<B>(&self, buf: &mut B)
        where
            B: bytes::BufMut,
        {
            let bytes = serde_json::to_vec(&self.0).expect("failed to encode key");
            buf.put(bytes.as_slice());
        }

        fn decode<'a>(buf: &'a [u8], _schema: &MaelstromKeySchema) -> Result<Self, String> {
            Ok(MaelstromKey(
                serde_json::from_slice(buf).map_err(|err| err.to_string())?,
            ))
        }

        fn encode_schema(_schema: &Self::Schema) -> Bytes {
            Bytes::new()
        }

        fn decode_schema(buf: &Bytes) -> Self::Schema {
            assert_eq!(*buf, Bytes::new());
            MaelstromKeySchema
        }
    }

    impl SimpleColumnarData for MaelstromKey {
        type ArrowBuilder = UInt64Builder;
        type ArrowColumn = UInt64Array;

        fn goodbytes(builder: &Self::ArrowBuilder) -> usize {
            builder.values_slice().to_byte_slice().len()
        }

        fn push(&self, builder: &mut Self::ArrowBuilder) {
            builder.append_value(self.0);
        }
        fn push_null(builder: &mut Self::ArrowBuilder) {
            builder.append_null();
        }

        fn read(&mut self, idx: usize, column: &Self::ArrowColumn) {
            *self = MaelstromKey(column.value(idx));
        }
    }

    #[derive(Debug, PartialEq)]
    pub struct MaelstromKeySchema;

    impl Schema2<MaelstromKey> for MaelstromKeySchema {
        type ArrowColumn = UInt64Array;
        type Statistics = NoneStats;

        type Decoder = SimpleColumnarDecoder<MaelstromKey>;
        type Encoder = SimpleColumnarEncoder<MaelstromKey>;

        fn encoder(&self) -> Result<Self::Encoder, anyhow::Error> {
            Ok(SimpleColumnarEncoder::default())
        }

        fn decoder(&self, col: Self::ArrowColumn) -> Result<Self::Decoder, anyhow::Error> {
            Ok(SimpleColumnarDecoder::new(col))
        }
    }

    impl Codec for MaelstromVal {
        type Storage = ();
        type Schema = MaelstromValSchema;

        fn codec_name() -> String {
            "MaelstromVal".into()
        }

        fn encode<B>(&self, buf: &mut B)
        where
            B: bytes::BufMut,
        {
            let bytes = serde_json::to_vec(&self.0).expect("failed to encode val");
            buf.put(bytes.as_slice());
        }

        fn decode<'a>(buf: &'a [u8], _schema: &MaelstromValSchema) -> Result<Self, String> {
            Ok(MaelstromVal(
                serde_json::from_slice(buf).map_err(|err| err.to_string())?,
            ))
        }

        fn encode_schema(_schema: &Self::Schema) -> Bytes {
            Bytes::new()
        }

        fn decode_schema(buf: &Bytes) -> Self::Schema {
            assert_eq!(*buf, Bytes::new());
            MaelstromValSchema
        }
    }

    impl SimpleColumnarData for MaelstromVal {
        type ArrowBuilder = BinaryBuilder;
        type ArrowColumn = BinaryArray;

        fn goodbytes(builder: &Self::ArrowBuilder) -> usize {
            builder.values_slice().to_byte_slice().len()
        }

        fn push(&self, builder: &mut Self::ArrowBuilder) {
            builder.append_value(&self.encode_to_vec());
        }
        fn push_null(builder: &mut Self::ArrowBuilder) {
            builder.append_null()
        }

        fn read(&mut self, idx: usize, column: &Self::ArrowColumn) {
            *self = MaelstromVal::decode(column.value(idx), &MaelstromValSchema)
                .expect("should be valid MaelstromVal");
        }
    }

    #[derive(Debug, PartialEq)]
    pub struct MaelstromValSchema;

    impl Schema2<MaelstromVal> for MaelstromValSchema {
        type ArrowColumn = BinaryArray;
        type Statistics = NoneStats;

        type Decoder = SimpleColumnarDecoder<MaelstromVal>;
        type Encoder = SimpleColumnarEncoder<MaelstromVal>;

        fn encoder(&self) -> Result<Self::Encoder, anyhow::Error> {
            Ok(SimpleColumnarEncoder::default())
        }

        fn decoder(&self, col: Self::ArrowColumn) -> Result<Self::Decoder, anyhow::Error> {
            Ok(SimpleColumnarDecoder::new(col))
        }
    }
}