1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! Optimizer implementation for `SUBSCRIBE` statements.
use std::marker::PhantomData;
use std::sync::Arc;
use std::time::{Duration, Instant};
use differential_dataflow::lattice::Lattice;
use mz_adapter_types::connection::ConnectionId;
use mz_compute_types::plan::Plan;
use mz_compute_types::sinks::{ComputeSinkConnection, ComputeSinkDesc, SubscribeSinkConnection};
use mz_compute_types::ComputeInstanceId;
use mz_ore::collections::CollectionExt;
use mz_ore::soft_assert_or_log;
use mz_repr::{GlobalId, RelationDesc, Timestamp};
use mz_sql::optimizer_metrics::OptimizerMetrics;
use mz_sql::plan::SubscribeFrom;
use mz_transform::dataflow::DataflowMetainfo;
use mz_transform::normalize_lets::normalize_lets;
use mz_transform::typecheck::{empty_context, SharedContext as TypecheckContext};
use mz_transform::TransformCtx;
use timely::progress::Antichain;
use crate::optimize::dataflows::{
dataflow_import_id_bundle, prep_relation_expr, prep_scalar_expr, ComputeInstanceSnapshot,
DataflowBuilder, ExprPrepStyle,
};
use crate::optimize::{
optimize_mir_local, trace_plan, LirDataflowDescription, MirDataflowDescription, Optimize,
OptimizeMode, OptimizerCatalog, OptimizerConfig, OptimizerError,
};
use crate::CollectionIdBundle;
pub struct Optimizer {
/// A typechecking context to use throughout the optimizer pipeline.
typecheck_ctx: TypecheckContext,
/// A snapshot of the catalog state.
catalog: Arc<dyn OptimizerCatalog>,
/// A snapshot of the cluster that will run the dataflows.
compute_instance: ComputeInstanceSnapshot,
/// A transient GlobalId to be used for the exported sink.
sink_id: GlobalId,
/// A transient GlobalId to be used when constructing a dataflow for
/// `SUBSCRIBE FROM <SELECT>` variants.
view_id: GlobalId,
/// The id of the session connection in which the optimizer will run.
conn_id: Option<ConnectionId>,
/// Should the plan produce an initial snapshot?
with_snapshot: bool,
/// Sink timestamp.
up_to: Option<Timestamp>,
/// A human-readable name exposed internally (useful for debugging).
debug_name: String,
/// Optimizer config.
config: OptimizerConfig,
/// Optimizer metrics.
metrics: OptimizerMetrics,
/// The time spent performing optimization so far.
duration: Duration,
}
// A bogey `Debug` implementation that hides fields. This is needed to make the
// `event!` call in `sequence_peek_stage` not emit a lot of data.
//
// For now, we skip almost all fields, but we might revisit that bit if it turns
// out that we really need those for debugging purposes.
impl std::fmt::Debug for Optimizer {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("Optimizer")
.field("config", &self.config)
.finish_non_exhaustive()
}
}
impl Optimizer {
pub fn new(
catalog: Arc<dyn OptimizerCatalog>,
compute_instance: ComputeInstanceSnapshot,
view_id: GlobalId,
sink_id: GlobalId,
conn_id: Option<ConnectionId>,
with_snapshot: bool,
up_to: Option<Timestamp>,
debug_name: String,
config: OptimizerConfig,
metrics: OptimizerMetrics,
) -> Self {
Self {
typecheck_ctx: empty_context(),
catalog,
compute_instance,
view_id,
sink_id,
conn_id,
with_snapshot,
up_to,
debug_name,
config,
metrics,
duration: Default::default(),
}
}
pub fn cluster_id(&self) -> ComputeInstanceId {
self.compute_instance.instance_id()
}
pub fn up_to(&self) -> Option<Timestamp> {
self.up_to.clone()
}
}
/// The (sealed intermediate) result after:
///
/// 1. embedding a [`SubscribeFrom`] plan into a [`MirDataflowDescription`],
/// 2. transitively inlining referenced views, and
/// 3. jointly optimizing the `MIR` plans in the [`MirDataflowDescription`].
#[derive(Clone, Debug)]
pub struct GlobalMirPlan<T: Clone> {
df_desc: MirDataflowDescription,
df_meta: DataflowMetainfo,
phantom: PhantomData<T>,
}
impl<T: Clone> GlobalMirPlan<T> {
/// Computes the [`CollectionIdBundle`] of the wrapped dataflow.
pub fn id_bundle(&self, compute_instance_id: ComputeInstanceId) -> CollectionIdBundle {
dataflow_import_id_bundle(&self.df_desc, compute_instance_id)
}
}
/// The (final) result after MIR ⇒ LIR lowering and optimizing the resulting
/// `DataflowDescription` with `LIR` plans.
#[derive(Clone, Debug)]
pub struct GlobalLirPlan {
df_desc: LirDataflowDescription,
df_meta: DataflowMetainfo,
}
impl GlobalLirPlan {
pub fn sink_id(&self) -> GlobalId {
let sink_exports = &self.df_desc.sink_exports;
let sink_id = sink_exports.keys().next().expect("valid sink");
*sink_id
}
pub fn as_of(&self) -> Option<Timestamp> {
self.df_desc.as_of.clone().map(|as_of| as_of.into_element())
}
pub fn sink_desc(&self) -> &ComputeSinkDesc {
let sink_exports = &self.df_desc.sink_exports;
let sink_desc = sink_exports.values().next().expect("valid sink");
sink_desc
}
}
/// Marker type for [`GlobalMirPlan`] structs representing an optimization
/// result without a resolved timestamp.
#[derive(Clone, Debug)]
pub struct Unresolved;
/// Marker type for [`GlobalMirPlan`] structs representing an optimization
/// result with a resolved timestamp.
///
/// The actual timestamp value is set in the [`MirDataflowDescription`] of the
/// surrounding [`GlobalMirPlan`] when we call `resolve()`.
#[derive(Clone, Debug)]
pub struct Resolved;
impl Optimize<SubscribeFrom> for Optimizer {
type To = GlobalMirPlan<Unresolved>;
fn optimize(&mut self, plan: SubscribeFrom) -> Result<Self::To, OptimizerError> {
let time = Instant::now();
let mut df_builder = {
let compute = self.compute_instance.clone();
DataflowBuilder::new(&*self.catalog, compute).with_config(&self.config)
};
let mut df_desc = MirDataflowDescription::new(self.debug_name.clone());
let mut df_meta = DataflowMetainfo::default();
match plan {
SubscribeFrom::Id(from_id) => {
let from = self.catalog.get_entry(&from_id);
let from_desc = from
.desc(
&self
.catalog
.resolve_full_name(from.name(), self.conn_id.as_ref()),
)
.expect("subscribes can only be run on items with descs")
.into_owned();
df_builder.import_into_dataflow(&from_id, &mut df_desc, &self.config.features)?;
df_builder.maybe_reoptimize_imported_views(&mut df_desc, &self.config)?;
// Make SinkDesc
let sink_description = ComputeSinkDesc {
from: from_id,
from_desc,
connection: ComputeSinkConnection::Subscribe(SubscribeSinkConnection::default()),
with_snapshot: self.with_snapshot,
up_to: self.up_to.map(Antichain::from_elem).unwrap_or_default(),
// No `FORCE NOT NULL` for subscribes
non_null_assertions: vec![],
// No `REFRESH` for subscribes
refresh_schedule: None,
};
df_desc.export_sink(self.sink_id, sink_description);
}
SubscribeFrom::Query { expr, desc } => {
// TODO: Change the `expr` type to be `HirRelationExpr` and run
// HIR ⇒ MIR lowering and decorrelation here. This would allow
// us implement something like `EXPLAIN RAW PLAN FOR SUBSCRIBE.`
//
// let expr = expr.lower(&self.config)?;
// MIR ⇒ MIR optimization (local)
let mut transform_ctx = TransformCtx::local(
&self.config.features,
&self.typecheck_ctx,
&mut df_meta,
Some(&self.metrics),
);
let expr = optimize_mir_local(expr, &mut transform_ctx)?;
df_builder.import_view_into_dataflow(
&self.view_id,
&expr,
&mut df_desc,
&self.config.features,
)?;
df_builder.maybe_reoptimize_imported_views(&mut df_desc, &self.config)?;
// Make SinkDesc
let sink_description = ComputeSinkDesc {
from: self.view_id,
from_desc: RelationDesc::new(expr.typ(), desc.iter_names()),
connection: ComputeSinkConnection::Subscribe(SubscribeSinkConnection::default()),
with_snapshot: self.with_snapshot,
up_to: self.up_to.map(Antichain::from_elem).unwrap_or_default(),
// No `FORCE NOT NULL` for subscribes
non_null_assertions: vec![],
// No `REFRESH` for subscribes
refresh_schedule: None,
};
df_desc.export_sink(self.sink_id, sink_description);
}
};
// Prepare expressions in the assembled dataflow.
let style = ExprPrepStyle::Index;
df_desc.visit_children(
|r| prep_relation_expr(r, style),
|s| prep_scalar_expr(s, style),
)?;
// Construct TransformCtx for global optimization.
let mut transform_ctx = TransformCtx::global(
&df_builder,
&mz_transform::EmptyStatisticsOracle, // TODO: wire proper stats
&self.config.features,
&self.typecheck_ctx,
&mut df_meta,
Some(&self.metrics),
);
// Run global optimization.
mz_transform::optimize_dataflow(&mut df_desc, &mut transform_ctx, false)?;
if self.config.mode == OptimizeMode::Explain {
// Collect the list of indexes used by the dataflow at this point.
trace_plan!(at: "global", &df_meta.used_indexes(&df_desc));
}
self.duration += time.elapsed();
// Return the (sealed) plan at the end of this optimization step.
Ok(GlobalMirPlan {
df_desc,
df_meta,
phantom: PhantomData::<Unresolved>,
})
}
}
impl GlobalMirPlan<Unresolved> {
/// Produces the [`GlobalMirPlan`] with [`Resolved`] timestamp.
///
/// We need to resolve timestamps before the `GlobalMirPlan ⇒ GlobalLirPlan`
/// optimization stage in order to profit from possible single-time
/// optimizations in the `Plan::finalize_dataflow` call.
pub fn resolve(mut self, as_of: Antichain<Timestamp>) -> GlobalMirPlan<Resolved> {
// A dataflow description for a `SUBSCRIBE` statement should not have
// index exports.
soft_assert_or_log!(
self.df_desc.index_exports.is_empty(),
"unexpectedly setting until for a DataflowDescription with an index",
);
// Set the `as_of` timestamp for the dataflow.
self.df_desc.set_as_of(as_of);
// The only outputs of the dataflow are sinks, so we might be able to
// turn off the computation early, if they all have non-trivial
// `up_to`s.
self.df_desc.until = Antichain::from_elem(Timestamp::MIN);
for (_, sink) in &self.df_desc.sink_exports {
self.df_desc.until.join_assign(&sink.up_to);
}
GlobalMirPlan {
df_desc: self.df_desc,
df_meta: self.df_meta,
phantom: PhantomData::<Resolved>,
}
}
}
impl Optimize<GlobalMirPlan<Resolved>> for Optimizer {
type To = GlobalLirPlan;
fn optimize(&mut self, plan: GlobalMirPlan<Resolved>) -> Result<Self::To, OptimizerError> {
let time = Instant::now();
let GlobalMirPlan {
mut df_desc,
df_meta,
phantom: _,
} = plan;
// Ensure all expressions are normalized before finalizing.
for build in df_desc.objects_to_build.iter_mut() {
normalize_lets(&mut build.plan.0, &self.config.features)?
}
// Finalize the dataflow. This includes:
// - MIR ⇒ LIR lowering
// - LIR ⇒ LIR transforms
let df_desc = Plan::finalize_dataflow(df_desc, &self.config.features)?;
self.duration += time.elapsed();
self.metrics
.observe_e2e_optimization_time("subscribe", self.duration);
// Return the plan at the end of this `optimize` step.
Ok(GlobalLirPlan { df_desc, df_meta })
}
}
impl GlobalLirPlan {
/// Unwraps the parts of the final result of the optimization pipeline.
pub fn unapply(self) -> (LirDataflowDescription, DataflowMetainfo) {
(self.df_desc, self.df_meta)
}
}