1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
//! Handles to an operator's input and output streams.
//!
//! These handles are used by the generic operator interfaces to allow user closures to interact as
//! the operator would with its input and output streams.
use std::rc::Rc;
use std::cell::RefCell;
use crate::progress::Antichain;
use crate::progress::Timestamp;
use crate::progress::ChangeBatch;
use crate::progress::frontier::MutableAntichain;
use crate::dataflow::channels::pullers::Counter as PullCounter;
use crate::dataflow::channels::pushers::Counter as PushCounter;
use crate::dataflow::channels::pushers::buffer::{Buffer, Session};
use crate::dataflow::channels::Message;
use crate::communication::{Push, Pull};
use crate::{Container, Data};
use crate::container::{ContainerBuilder, CapacityContainerBuilder};
use crate::logging::TimelyLogger as Logger;
use crate::dataflow::operators::InputCapability;
use crate::dataflow::operators::capability::CapabilityTrait;
/// Handle to an operator's input stream.
pub struct InputHandleCore<T: Timestamp, C: Container, P: Pull<Message<T, C>>> {
pull_counter: PullCounter<T, C, P>,
internal: Rc<RefCell<Vec<Rc<RefCell<ChangeBatch<T>>>>>>,
/// Timestamp summaries from this input to each output.
///
/// Each timestamp received through this input may only produce output timestamps
/// greater or equal to the input timestamp subjected to at least one of these summaries.
summaries: Rc<RefCell<Vec<Antichain<T::Summary>>>>,
logging: Option<Logger>,
}
/// Handle to an operator's input stream, specialized to vectors.
pub type InputHandle<T, D, P> = InputHandleCore<T, Vec<D>, P>;
/// Handle to an operator's input stream and frontier.
pub struct FrontieredInputHandleCore<'a, T: Timestamp, C: Container+'a, P: Pull<Message<T, C>>+'a> {
/// The underlying input handle.
pub handle: &'a mut InputHandleCore<T, C, P>,
/// The frontier as reported by timely progress tracking.
pub frontier: &'a MutableAntichain<T>,
}
/// Handle to an operator's input stream and frontier, specialized to vectors.
pub type FrontieredInputHandle<'a, T, D, P> = FrontieredInputHandleCore<'a, T, Vec<D>, P>;
impl<T: Timestamp, C: Container, P: Pull<Message<T, C>>> InputHandleCore<T, C, P> {
/// Reads the next input buffer (at some timestamp `t`) and a corresponding capability for `t`.
/// The timestamp `t` of the input buffer can be retrieved by invoking `.time()` on the capability.
/// Returns `None` when there's no more data available.
#[inline]
pub fn next(&mut self) -> Option<(InputCapability<T>, &mut C)> {
let internal = &self.internal;
let summaries = &self.summaries;
self.pull_counter.next_guarded().map(|(guard, bundle)| {
(InputCapability::new(internal.clone(), summaries.clone(), guard), &mut bundle.data)
})
}
/// Repeatedly calls `logic` till exhaustion of the available input data.
/// `logic` receives a capability and an input buffer.
///
/// # Examples
/// ```
/// use timely::dataflow::operators::ToStream;
/// use timely::dataflow::operators::generic::Operator;
/// use timely::dataflow::channels::pact::Pipeline;
///
/// timely::example(|scope| {
/// (0..10).to_stream(scope)
/// .unary(Pipeline, "example", |_cap, _info| |input, output| {
/// input.for_each(|cap, data| {
/// output.session(&cap).give_container(data);
/// });
/// });
/// });
/// ```
#[inline]
pub fn for_each<F: FnMut(InputCapability<T>, &mut C)>(&mut self, mut logic: F) {
let mut logging = self.logging.take();
while let Some((cap, data)) = self.next() {
logging.as_mut().map(|l| l.log(crate::logging::GuardedMessageEvent { is_start: true }));
logic(cap, data);
logging.as_mut().map(|l| l.log(crate::logging::GuardedMessageEvent { is_start: false }));
}
self.logging = logging;
}
}
impl<'a, T: Timestamp, C: Container, P: Pull<Message<T, C>>+'a> FrontieredInputHandleCore<'a, T, C, P> {
/// Allocate a new frontiered input handle.
pub fn new(handle: &'a mut InputHandleCore<T, C, P>, frontier: &'a MutableAntichain<T>) -> Self {
FrontieredInputHandleCore {
handle,
frontier,
}
}
/// Reads the next input buffer (at some timestamp `t`) and a corresponding capability for `t`.
/// The timestamp `t` of the input buffer can be retrieved by invoking `.time()` on the capability.
/// Returns `None` when there's no more data available.
#[inline]
pub fn next(&mut self) -> Option<(InputCapability<T>, &mut C)> {
self.handle.next()
}
/// Repeatedly calls `logic` till exhaustion of the available input data.
/// `logic` receives a capability and an input buffer.
///
/// # Examples
/// ```
/// use timely::dataflow::operators::ToStream;
/// use timely::dataflow::operators::generic::Operator;
/// use timely::dataflow::channels::pact::Pipeline;
///
/// timely::example(|scope| {
/// (0..10).to_stream(scope)
/// .unary(Pipeline, "example", |_cap,_info| |input, output| {
/// input.for_each(|cap, data| {
/// output.session(&cap).give_container(data);
/// });
/// });
/// });
/// ```
#[inline]
pub fn for_each<F: FnMut(InputCapability<T>, &mut C)>(&mut self, logic: F) {
self.handle.for_each(logic)
}
/// Inspect the frontier associated with this input.
#[inline]
pub fn frontier(&self) -> &'a MutableAntichain<T> {
self.frontier
}
}
pub fn _access_pull_counter<T: Timestamp, C: Container, P: Pull<Message<T, C>>>(input: &mut InputHandleCore<T, C, P>) -> &mut PullCounter<T, C, P> {
&mut input.pull_counter
}
/// Constructs an input handle.
/// Declared separately so that it can be kept private when `InputHandle` is re-exported.
pub fn new_input_handle<T: Timestamp, C: Container, P: Pull<Message<T, C>>>(
pull_counter: PullCounter<T, C, P>,
internal: Rc<RefCell<Vec<Rc<RefCell<ChangeBatch<T>>>>>>,
summaries: Rc<RefCell<Vec<Antichain<T::Summary>>>>,
logging: Option<Logger>
) -> InputHandleCore<T, C, P> {
InputHandleCore {
pull_counter,
internal,
summaries,
logging,
}
}
/// An owned instance of an output buffer which ensures certain API use.
///
/// An `OutputWrapper` exists to prevent anyone from using the wrapped buffer in any way other
/// than with an `OutputHandle`, whose methods ensure that capabilities are used and that the
/// pusher is flushed (via the `cease` method) once it is no longer used.
#[derive(Debug)]
pub struct OutputWrapper<T: Timestamp, CB: ContainerBuilder, P: Push<Message<T, CB::Container>>> {
push_buffer: Buffer<T, CB, PushCounter<T, CB::Container, P>>,
internal_buffer: Rc<RefCell<ChangeBatch<T>>>,
}
impl<T: Timestamp, CB: ContainerBuilder, P: Push<Message<T, CB::Container>>> OutputWrapper<T, CB, P> {
/// Creates a new output wrapper from a push buffer.
pub fn new(push_buffer: Buffer<T, CB, PushCounter<T, CB::Container, P>>, internal_buffer: Rc<RefCell<ChangeBatch<T>>>) -> Self {
OutputWrapper {
push_buffer,
internal_buffer,
}
}
/// Borrows the push buffer into a handle, which can be used to send records.
///
/// This method ensures that the only access to the push buffer is through the `OutputHandle`
/// type which ensures the use of capabilities, and which calls `cease` when it is dropped.
pub fn activate(&mut self) -> OutputHandleCore<T, CB, P> {
OutputHandleCore {
push_buffer: &mut self.push_buffer,
internal_buffer: &self.internal_buffer,
}
}
}
/// Handle to an operator's output stream.
pub struct OutputHandleCore<'a, T: Timestamp, CB: ContainerBuilder+'a, P: Push<Message<T, CB::Container>>+'a> {
push_buffer: &'a mut Buffer<T, CB, PushCounter<T, CB::Container, P>>,
internal_buffer: &'a Rc<RefCell<ChangeBatch<T>>>,
}
/// Handle specialized to `Vec`-based container.
pub type OutputHandle<'a, T, D, P> = OutputHandleCore<'a, T, CapacityContainerBuilder<Vec<D>>, P>;
impl<'a, T: Timestamp, CB: ContainerBuilder, P: Push<Message<T, CB::Container>>> OutputHandleCore<'a, T, CB, P> {
/// Obtains a session that can send data at the timestamp associated with capability `cap`.
///
/// In order to send data at a future timestamp, obtain a capability for the new timestamp
/// first, as show in the example.
///
/// # Examples
/// ```
/// use timely::dataflow::operators::ToStream;
/// use timely::dataflow::operators::generic::Operator;
/// use timely::dataflow::channels::pact::Pipeline;
/// use timely::container::CapacityContainerBuilder;
///
/// timely::example(|scope| {
/// (0..10).to_stream(scope)
/// .unary::<CapacityContainerBuilder<_>, _, _, _>(Pipeline, "example", |_cap, _info| |input, output| {
/// input.for_each(|cap, data| {
/// let time = cap.time().clone() + 1;
/// output.session_with_builder(&cap.delayed(&time))
/// .give_container(data);
/// });
/// });
/// });
/// ```
pub fn session_with_builder<'b, CT: CapabilityTrait<T>>(&'b mut self, cap: &'b CT) -> Session<'b, T, CB, PushCounter<T, CB::Container, P>> where 'a: 'b {
assert!(cap.valid_for_output(self.internal_buffer), "Attempted to open output session with invalid capability");
self.push_buffer.session_with_builder(cap.time())
}
/// Flushes all pending data and indicate that no more data immediately follows.
pub fn cease(&mut self) {
self.push_buffer.cease();
}
}
impl<'a, T: Timestamp, C: Container + Data, P: Push<Message<T, C>>> OutputHandleCore<'a, T, CapacityContainerBuilder<C>, P> {
/// Obtains a session that can send data at the timestamp associated with capability `cap`.
///
/// In order to send data at a future timestamp, obtain a capability for the new timestamp
/// first, as show in the example.
///
/// # Examples
/// ```
/// use timely::dataflow::operators::ToStream;
/// use timely::dataflow::operators::generic::Operator;
/// use timely::dataflow::channels::pact::Pipeline;
///
/// timely::example(|scope| {
/// (0..10).to_stream(scope)
/// .unary(Pipeline, "example", |_cap, _info| |input, output| {
/// input.for_each(|cap, data| {
/// let time = cap.time().clone() + 1;
/// output.session(&cap.delayed(&time))
/// .give_container(data);
/// });
/// });
/// });
/// ```
#[inline]
pub fn session<'b, CT: CapabilityTrait<T>>(&'b mut self, cap: &'b CT) -> Session<'b, T, CapacityContainerBuilder<C>, PushCounter<T, C, P>> where 'a: 'b {
self.session_with_builder(cap)
}
}
impl<T: Timestamp, CB: ContainerBuilder, P: Push<Message<T, CB::Container>>> Drop for OutputHandleCore<'_, T, CB, P> {
fn drop(&mut self) {
self.push_buffer.cease();
}
}