Skip to main content

mz_expr/
linear.rs

1// Copyright Materialize, Inc. and contributors. All rights reserved.
2//
3// Use of this software is governed by the Business Source License
4// included in the LICENSE file.
5//
6// As of the Change Date specified in that file, in accordance with
7// the Business Source License, use of this software will be governed
8// by the Apache License, Version 2.0.
9use std::collections::{BTreeMap, BTreeSet};
10use std::fmt::Display;
11
12use mz_repr::{Datum, Row};
13use serde::{Deserialize, Serialize};
14
15use crate::visit::Visit;
16use crate::{MirRelationExpr, MirScalarExpr};
17
18/// A compound operator that can be applied row-by-row.
19///
20/// This operator integrates the map, filter, and project operators.
21/// It applies a sequences of map expressions, which are allowed to
22/// refer to previous expressions, interleaved with predicates which
23/// must be satisfied for an output to be produced. If all predicates
24/// evaluate to `Datum::True` the data at the identified columns are
25/// collected and produced as output in a packed `Row`.
26///
27/// This operator is a "builder" and its contents may contain expressions
28/// that are not yet executable. For example, it may contain temporal
29/// expressions in `self.expressions`, even though this is not something
30/// we can directly evaluate. The plan creation methods will defensively
31/// ensure that the right thing happens.
32#[derive(
33    Clone,
34    Debug,
35    Eq,
36    PartialEq,
37    Serialize,
38    Deserialize,
39    Hash,
40    Ord,
41    PartialOrd
42)]
43pub struct MapFilterProject {
44    /// A sequence of expressions that should be appended to the row.
45    ///
46    /// Many of these expressions may not be produced in the output,
47    /// and may only be present as common subexpressions.
48    pub expressions: Vec<MirScalarExpr>,
49    /// Expressions that must evaluate to `Datum::True` for the output
50    /// row to be produced.
51    ///
52    /// Each entry is prepended with a column identifier indicating
53    /// the column *before* which the predicate should first be applied.
54    /// Most commonly this would be one plus the largest column identifier
55    /// in the predicate's support, but it could be larger to implement
56    /// guarded evaluation of predicates.
57    ///
58    /// This list should be sorted by the first field.
59    pub predicates: Vec<(usize, MirScalarExpr)>,
60    /// A sequence of column identifiers whose data form the output row.
61    pub projection: Vec<usize>,
62    /// The expected number of input columns.
63    ///
64    /// This is needed to ensure correct identification of newly formed
65    /// columns in the output.
66    pub input_arity: usize,
67}
68
69impl Display for MapFilterProject {
70    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
71        writeln!(f, "MapFilterProject(")?;
72        writeln!(f, "  expressions:")?;
73        self.expressions
74            .iter()
75            .enumerate()
76            .try_for_each(|(i, e)| writeln!(f, "    #{} <- {},", i + self.input_arity, e))?;
77        writeln!(f, "  predicates:")?;
78        self.predicates
79            .iter()
80            .try_for_each(|(before, p)| writeln!(f, "    <before: {}> {},", before, p))?;
81        writeln!(f, "  projection: {:?}", self.projection)?;
82        writeln!(f, "  input_arity: {}", self.input_arity)?;
83        writeln!(f, ")")
84    }
85}
86
87impl MapFilterProject {
88    /// Create a no-op operator for an input of a supplied arity.
89    pub fn new(input_arity: usize) -> Self {
90        Self {
91            expressions: Vec::new(),
92            predicates: Vec::new(),
93            projection: (0..input_arity).collect(),
94            input_arity,
95        }
96    }
97
98    /// Given two mfps, return an mfp that applies one
99    /// followed by the other.
100    /// Note that the arguments are in the opposite order
101    /// from how function composition is usually written in mathematics.
102    pub fn compose(before: Self, after: Self) -> Self {
103        let (m, f, p) = after.into_map_filter_project();
104        before.map(m).filter(f).project(p)
105    }
106
107    /// True if the operator describes the identity transformation.
108    pub fn is_identity(&self) -> bool {
109        self.expressions.is_empty()
110            && self.predicates.is_empty()
111            && self.projection.len() == self.input_arity
112            && self.projection.iter().enumerate().all(|(i, p)| i == *p)
113    }
114
115    /// Retain only the indicated columns in the presented order.
116    pub fn project<I>(mut self, columns: I) -> Self
117    where
118        I: IntoIterator<Item = usize> + std::fmt::Debug,
119    {
120        self.projection = columns.into_iter().map(|c| self.projection[c]).collect();
121        self
122    }
123
124    /// Retain only rows satisfying these predicates.
125    ///
126    /// This method introduces predicates as eagerly as they can be evaluated,
127    /// which may not be desired for predicates that may cause exceptions.
128    /// If fine manipulation is required, the predicates can be added manually.
129    pub fn filter<I>(mut self, predicates: I) -> Self
130    where
131        I: IntoIterator<Item = MirScalarExpr>,
132    {
133        for mut predicate in predicates {
134            // Correct column references.
135            predicate.permute(&self.projection[..]);
136
137            // Validate column references.
138            assert!(
139                predicate
140                    .support()
141                    .into_iter()
142                    .all(|c| c < self.input_arity + self.expressions.len())
143            );
144
145            // Insert predicate as eagerly as it can be evaluated:
146            // just after the largest column in its support is formed.
147            let max_support = predicate
148                .support()
149                .into_iter()
150                .max()
151                .map(|c| c + 1)
152                .unwrap_or(0);
153            self.predicates.push((max_support, predicate))
154        }
155        // Stable sort predicates by position at which they take effect.
156        // We put literal errors at the end as a stop-gap to avoid erroring
157        // before we are able to evaluate any predicates that might prevent it.
158        self.predicates
159            .sort_by_key(|(position, predicate)| (predicate.is_literal_err(), *position));
160        self
161    }
162
163    /// Append the result of evaluating expressions to each row.
164    pub fn map<I>(mut self, expressions: I) -> Self
165    where
166        I: IntoIterator<Item = MirScalarExpr>,
167    {
168        for mut expression in expressions {
169            // Correct column references.
170            expression.permute(&self.projection[..]);
171
172            // Validate column references.
173            assert!(
174                expression
175                    .support()
176                    .into_iter()
177                    .all(|c| c < self.input_arity + self.expressions.len())
178            );
179
180            // Introduce expression and produce as output.
181            self.expressions.push(expression);
182            self.projection
183                .push(self.input_arity + self.expressions.len() - 1);
184        }
185
186        self
187    }
188
189    /// Like [`MapFilterProject::as_map_filter_project`], but consumes `self` rather than cloning.
190    pub fn into_map_filter_project(self) -> (Vec<MirScalarExpr>, Vec<MirScalarExpr>, Vec<usize>) {
191        let predicates = self
192            .predicates
193            .into_iter()
194            .map(|(_pos, predicate)| predicate)
195            .collect();
196        (self.expressions, predicates, self.projection)
197    }
198
199    /// As the arguments to `Map`, `Filter`, and `Project` operators.
200    ///
201    /// In principle, this operator can be implemented as a sequence of
202    /// more elemental operators, likely less efficiently.
203    pub fn as_map_filter_project(&self) -> (Vec<MirScalarExpr>, Vec<MirScalarExpr>, Vec<usize>) {
204        self.clone().into_map_filter_project()
205    }
206
207    /// Determines if a scalar expression must be equal to a literal datum.
208    pub fn literal_constraint(&self, expr: &MirScalarExpr) -> Option<Datum<'_>> {
209        for (_pos, predicate) in self.predicates.iter() {
210            if let MirScalarExpr::CallBinary {
211                func: crate::BinaryFunc::Eq(_),
212                expr1,
213                expr2,
214            } = predicate
215            {
216                if let Some(Ok(datum1)) = expr1.as_literal() {
217                    if &**expr2 == expr {
218                        return Some(datum1);
219                    }
220                }
221                if let Some(Ok(datum2)) = expr2.as_literal() {
222                    if &**expr1 == expr {
223                        return Some(datum2);
224                    }
225                }
226            }
227        }
228        None
229    }
230
231    /// Determines if a sequence of scalar expressions must be equal to a literal row.
232    ///
233    /// This method returns `None` on an empty `exprs`, which might be surprising, but
234    /// seems to line up with its callers' expectations of that being a non-constraint.
235    /// The caller knows if `exprs` is empty, and can modify their behavior appropriately.
236    /// if they would rather have a literal empty row.
237    pub fn literal_constraints(&self, exprs: &[MirScalarExpr]) -> Option<Row> {
238        if exprs.is_empty() {
239            return None;
240        }
241        let mut row = Row::default();
242        let mut packer = row.packer();
243        for expr in exprs {
244            if let Some(literal) = self.literal_constraint(expr) {
245                packer.push(literal);
246            } else {
247                return None;
248            }
249        }
250        Some(row)
251    }
252
253    /// Extracts any MapFilterProject at the root of the expression.
254    ///
255    /// The expression will be modified to extract any maps, filters, and
256    /// projections, which will be returned as `Self`. If there are no maps,
257    /// filters, or projections the method will return an identity operator.
258    ///
259    /// The extracted expressions may contain temporal predicates, and one
260    /// should be careful to apply them blindly.
261    pub fn extract_from_expression(expr: &MirRelationExpr) -> (Self, &MirRelationExpr) {
262        // TODO: This could become iterative rather than recursive if
263        // we were able to fuse MFP operators from below, rather than
264        // from above.
265        match expr {
266            MirRelationExpr::Map { input, scalars } => {
267                let (mfp, expr) = Self::extract_from_expression(input);
268                (mfp.map(scalars.iter().cloned()), expr)
269            }
270            MirRelationExpr::Filter { input, predicates } => {
271                let (mfp, expr) = Self::extract_from_expression(input);
272                (mfp.filter(predicates.iter().cloned()), expr)
273            }
274            MirRelationExpr::Project { input, outputs } => {
275                let (mfp, expr) = Self::extract_from_expression(input);
276                (mfp.project(outputs.iter().cloned()), expr)
277            }
278            // TODO: The recursion is quadratic in the number of Map/Filter/Project operators due to
279            // this call to `arity()`.
280            x => (Self::new(x.arity()), x),
281        }
282    }
283
284    /// Extracts an error-free MapFilterProject at the root of the expression.
285    ///
286    /// The expression will be modified to extract maps, filters, and projects
287    /// from the root of the expression, which will be returned as `Self`. The
288    /// extraction will halt if a Map or Filter containing a literal error is
289    /// reached. Otherwise, the method will return an identity operator.
290    ///
291    /// This method is meant to be used during optimization, where it is
292    /// necessary to avoid moving around maps and filters with errors.
293    pub fn extract_non_errors_from_expr(expr: &MirRelationExpr) -> (Self, &MirRelationExpr) {
294        match expr {
295            MirRelationExpr::Map { input, scalars }
296                if scalars.iter().all(|s| !s.is_literal_err()) =>
297            {
298                let (mfp, expr) = Self::extract_non_errors_from_expr(input);
299                (mfp.map(scalars.iter().cloned()), expr)
300            }
301            MirRelationExpr::Filter { input, predicates }
302                if predicates.iter().all(|p| !p.is_literal_err()) =>
303            {
304                let (mfp, expr) = Self::extract_non_errors_from_expr(input);
305                (mfp.filter(predicates.iter().cloned()), expr)
306            }
307            MirRelationExpr::Project { input, outputs } => {
308                let (mfp, expr) = Self::extract_non_errors_from_expr(input);
309                (mfp.project(outputs.iter().cloned()), expr)
310            }
311            x => (Self::new(x.arity()), x),
312        }
313    }
314
315    /// Extracts an error-free MapFilterProject at the root of the expression.
316    ///
317    /// Differs from [MapFilterProject::extract_non_errors_from_expr] by taking and returning a
318    /// mutable reference.
319    pub fn extract_non_errors_from_expr_ref_mut(
320        expr: &mut MirRelationExpr,
321    ) -> (Self, &mut MirRelationExpr) {
322        // This is essentially the same code as `extract_non_errors_from_expr`, except the seemingly
323        // superfluous outer if, which works around a borrow-checker issue:
324        // https://github.com/rust-lang/rust/issues/54663
325        if matches!(
326            expr,
327            MirRelationExpr::Map { input: _, scalars }
328                if scalars.iter().all(|s| !s.is_literal_err())
329        ) || matches!(
330            expr,
331            MirRelationExpr::Filter { input: _, predicates }
332                if predicates.iter().all(|p| !p.is_literal_err())
333        ) || matches!(expr, MirRelationExpr::Project { .. })
334        {
335            match expr {
336                MirRelationExpr::Map { input, scalars }
337                    if scalars.iter().all(|s| !s.is_literal_err()) =>
338                {
339                    let (mfp, expr) = Self::extract_non_errors_from_expr_ref_mut(input);
340                    (mfp.map(scalars.iter().cloned()), expr)
341                }
342                MirRelationExpr::Filter { input, predicates }
343                    if predicates.iter().all(|p| !p.is_literal_err()) =>
344                {
345                    let (mfp, expr) = Self::extract_non_errors_from_expr_ref_mut(input);
346                    (mfp.filter(predicates.iter().cloned()), expr)
347                }
348                MirRelationExpr::Project { input, outputs } => {
349                    let (mfp, expr) = Self::extract_non_errors_from_expr_ref_mut(input);
350                    (mfp.project(outputs.iter().cloned()), expr)
351                }
352                _ => unreachable!(),
353            }
354        } else {
355            (Self::new(expr.arity()), expr)
356        }
357    }
358
359    /// Removes an error-free MapFilterProject from the root of the expression.
360    ///
361    /// The expression will be modified to extract maps, filters, and projects
362    /// from the root of the expression, which will be returned as `Self`. The
363    /// extraction will halt if a Map or Filter containing a literal error is
364    /// reached. Otherwise, the method will return an
365    /// identity operator, and the expression will remain unchanged.
366    ///
367    /// This method is meant to be used during optimization, where it is
368    /// necessary to avoid moving around maps and filters with errors.
369    pub fn extract_non_errors_from_expr_mut(expr: &mut MirRelationExpr) -> Self {
370        match expr {
371            MirRelationExpr::Map { input, scalars }
372                if scalars.iter().all(|s| !s.is_literal_err()) =>
373            {
374                let mfp =
375                    Self::extract_non_errors_from_expr_mut(input).map(scalars.iter().cloned());
376                *expr = input.take_dangerous();
377                mfp
378            }
379            MirRelationExpr::Filter { input, predicates }
380                if predicates.iter().all(|p| !p.is_literal_err()) =>
381            {
382                let mfp = Self::extract_non_errors_from_expr_mut(input)
383                    .filter(predicates.iter().cloned());
384                *expr = input.take_dangerous();
385                mfp
386            }
387            MirRelationExpr::Project { input, outputs } => {
388                let mfp =
389                    Self::extract_non_errors_from_expr_mut(input).project(outputs.iter().cloned());
390                *expr = input.take_dangerous();
391                mfp
392            }
393            x => Self::new(x.arity()),
394        }
395    }
396
397    /// Extracts temporal predicates into their own `Self`.
398    ///
399    /// Expressions that are used by the temporal predicates are exposed by `self.projection`,
400    /// though there could be justification for extracting them as well if they are otherwise
401    /// unused.
402    ///
403    /// This separation is valuable when the execution cannot be fused into one operator.
404    pub fn extract_temporal(&mut self) -> Self {
405        // Optimize the expression, as it is only post-optimization that we can be certain
406        // that temporal expressions are restricted to filters. We could relax this in the
407        // future to be only `inline_expressions` and `remove_undemanded`, but optimization
408        // seems to be the best fit at the moment.
409        self.optimize();
410
411        // Assert that we no longer have temporal expressions to evaluate. This should only
412        // occur if the optimization above results with temporal expressions yielded in the
413        // output, which is out of spec for how the type is meant to be used.
414        assert!(!self.expressions.iter().any(|e| e.contains_temporal()));
415
416        // Extract temporal predicates from `self.predicates`.
417        let mut temporal_predicates = Vec::new();
418        self.predicates.retain(|(_position, predicate)| {
419            if predicate.contains_temporal() {
420                temporal_predicates.push(predicate.clone());
421                false
422            } else {
423                true
424            }
425        });
426
427        // Determine extended input columns used by temporal filters.
428        let mut support = BTreeSet::new();
429        for predicate in temporal_predicates.iter() {
430            support.extend(predicate.support());
431        }
432
433        // Discover the locations of these columns after `self.projection`.
434        let old_projection_len = self.projection.len();
435        let mut new_location = BTreeMap::new();
436        for original in support.iter() {
437            if let Some(position) = self.projection.iter().position(|x| x == original) {
438                new_location.insert(*original, position);
439            } else {
440                new_location.insert(*original, self.projection.len());
441                self.projection.push(*original);
442            }
443        }
444        // Permute references in extracted predicates to their new locations.
445        for predicate in temporal_predicates.iter_mut() {
446            predicate.permute_map(&new_location);
447        }
448
449        // Form a new `Self` containing the temporal predicates to return.
450        Self::new(self.projection.len())
451            .filter(temporal_predicates)
452            .project(0..old_projection_len)
453    }
454
455    /// Extracts common expressions from multiple `Self` into a result `Self`.
456    ///
457    /// The argument `mfps` are mutated so that each are functionaly equivalent to their
458    /// corresponding input, when composed atop the resulting `Self`.
459    ///
460    /// The `extract_exprs` argument is temporary, as we roll out the `extract_common_mfp_expressions` flag.
461    pub fn extract_common(mfps: &mut [&mut Self]) -> Self {
462        match mfps.len() {
463            0 => {
464                panic!("Cannot call method on empty arguments");
465            }
466            1 => {
467                let output_arity = mfps[0].projection.len();
468                std::mem::replace(mfps[0], MapFilterProject::new(output_arity))
469            }
470            _ => {
471                // More generally, we convert each mfp to ANF, at which point we can
472                // repeatedly extract atomic expressions that depend only on input
473                // columns, migrate them to an input mfp, and repeat until no such
474                // expressions exist. At this point, we can also migrate predicates
475                // and then determine and push down projections.
476
477                // Prepare a return `Self`.
478                let mut result_mfp = MapFilterProject::new(mfps[0].input_arity);
479
480                // We convert each mfp to ANF, using `memoize_expressions`.
481                for mfp in mfps.iter_mut() {
482                    mfp.memoize_expressions();
483                }
484
485                // We repeatedly extract common expressions, until none remain.
486                let mut done = false;
487                while !done {
488                    // We use references to determine common expressions, and must
489                    // introduce a scope here to drop the borrows before mutation.
490                    let common = {
491                        // The input arity may increase as we iterate, so recapture.
492                        let input_arity = result_mfp.projection.len();
493                        let mut prev: BTreeSet<_> = mfps[0]
494                            .expressions
495                            .iter()
496                            .filter(|e| e.support().iter().max() < Some(&input_arity))
497                            .collect();
498                        let mut next = BTreeSet::default();
499                        for mfp in mfps[1..].iter() {
500                            for expr in mfp.expressions.iter() {
501                                if prev.contains(expr) {
502                                    next.insert(expr);
503                                }
504                            }
505                            std::mem::swap(&mut prev, &mut next);
506                            next.clear();
507                        }
508                        prev.into_iter().cloned().collect::<Vec<_>>()
509                    };
510                    // Without new common expressions, we should terminate the loop.
511                    done = common.is_empty();
512
513                    // Migrate each expression in `common` to `result_mfp`.
514                    for expr in common.into_iter() {
515                        // Update each mfp by removing expr and updating column references.
516                        for mfp in mfps.iter_mut() {
517                            // With `expr` next in `result_mfp`, it is as if we are rotating it to
518                            // be the first expression in `mfp`, and then removing it from `mfp` and
519                            // increasing the input arity of `mfp`.
520                            let arity = result_mfp.projection.len();
521                            let found = mfp.expressions.iter().position(|e| e == &expr).unwrap();
522                            let index = arity + found;
523                            // Column references change due to the rotation from `index` to `arity`.
524                            let action = |c: &mut usize| {
525                                if arity <= *c && *c < index {
526                                    *c += 1;
527                                } else if *c == index {
528                                    *c = arity;
529                                }
530                            };
531                            // Rotate `expr` from `found` to first, and then snip.
532                            // Short circuit by simply removing and incrementing the input arity.
533                            mfp.input_arity += 1;
534                            mfp.expressions.remove(found);
535                            // Update column references in expressions, predicates, and projections.
536                            for e in mfp.expressions.iter_mut() {
537                                e.visit_columns(action);
538                            }
539                            for (o, e) in mfp.predicates.iter_mut() {
540                                e.visit_columns(action);
541                                // Max out the offset for the predicate; optimization will correct.
542                                *o = mfp.input_arity + mfp.expressions.len();
543                            }
544                            for c in mfp.projection.iter_mut() {
545                                action(c);
546                            }
547                        }
548                        // Install the expression and update
549                        result_mfp.expressions.push(expr);
550                        result_mfp.projection.push(result_mfp.projection.len());
551                    }
552                }
553                // As before, but easier: predicates in common to all mfps.
554                let common_preds: Vec<MirScalarExpr> = {
555                    let input_arity = result_mfp.projection.len();
556                    let mut prev: BTreeSet<_> = mfps[0]
557                        .predicates
558                        .iter()
559                        .map(|(_, e)| e)
560                        .filter(|e| e.support().iter().max() < Some(&input_arity))
561                        .collect();
562                    let mut next = BTreeSet::default();
563                    for mfp in mfps[1..].iter() {
564                        for (_, expr) in mfp.predicates.iter() {
565                            if prev.contains(expr) {
566                                next.insert(expr);
567                            }
568                        }
569                        std::mem::swap(&mut prev, &mut next);
570                        next.clear();
571                    }
572                    // Expressions in common, that we will append to `result_mfp.expressions`.
573                    prev.into_iter().cloned().collect::<Vec<_>>()
574                };
575                for mfp in mfps.iter_mut() {
576                    mfp.predicates.retain(|(_, p)| !common_preds.contains(p));
577                    mfp.optimize();
578                }
579                result_mfp.predicates.extend(
580                    common_preds
581                        .into_iter()
582                        .map(|e| (result_mfp.projection.len(), e)),
583                );
584
585                // Then, look for unused columns and project them away.
586                let mut common_demand = BTreeSet::new();
587                for mfp in mfps.iter() {
588                    common_demand.extend(mfp.demand());
589                }
590                // columns in `common_demand` must be retained, but others
591                // may be discarded.
592                let common_demand = (0..result_mfp.projection.len())
593                    .filter(|x| common_demand.contains(x))
594                    .collect::<Vec<_>>();
595                let remap = common_demand
596                    .iter()
597                    .cloned()
598                    .enumerate()
599                    .map(|(new, old)| (old, new))
600                    .collect::<BTreeMap<_, _>>();
601                for mfp in mfps.iter_mut() {
602                    mfp.permute_fn(|c| remap[&c], common_demand.len());
603                }
604                result_mfp = result_mfp.project(common_demand);
605
606                // Return the resulting MFP.
607                result_mfp.optimize();
608                result_mfp
609            }
610        }
611    }
612
613    /// Returns `self`, and leaves behind an identity operator that acts on its output.
614    pub fn take(&mut self) -> Self {
615        let mut identity = Self::new(self.projection.len());
616        std::mem::swap(self, &mut identity);
617        identity
618    }
619
620    /// Convert the `MapFilterProject` into a staged evaluation plan.
621    ///
622    /// The main behavior is extract temporal predicates, which cannot be evaluated
623    /// using the standard machinery.
624    pub fn into_plan(self) -> Result<plan::MfpPlan, String> {
625        plan::MfpPlan::create_from(self)
626    }
627}
628
629impl MapFilterProject {
630    /// Partitions `self` into two instances, one of which can be eagerly applied.
631    ///
632    /// The `available` argument indicates which input columns are available (keys)
633    /// and in which positions (values). This information may allow some maps and
634    /// filters to execute. The `input_arity` argument reports the total number of
635    /// input columns (which may include some not present in `available`)
636    ///
637    /// This method partitions `self` in two parts, `(before, after)`, where `before`
638    /// can be applied on columns present as keys in `available`, and `after` must
639    /// await the introduction of the other input columns.
640    ///
641    /// The `before` instance will *append* any columns that can be determined from
642    /// `available` but will project away any of these columns that are not needed by
643    /// `after`. Importantly, this means that `before` will leave intact *all* input
644    /// columns including those not referenced in `available`.
645    ///
646    /// The `after` instance will presume all input columns are available, followed
647    /// by the appended columns of the `before` instance. It may be that some input
648    /// columns can be projected away in `before` if `after` does not need them, but
649    /// we leave that as something the caller can apply if needed (it is otherwise
650    /// complicated to negotiate which input columns `before` should retain).
651    ///
652    /// To correctly reconstruct `self` from `before` and `after`, one must introduce
653    /// additional input columns, permute all input columns to their locations as
654    /// expected by `self`, follow this by new columns appended by `before`, and
655    /// remove all other columns that may be present.
656    ///
657    /// # Example
658    ///
659    /// ```rust
660    /// use mz_expr::{BinaryFunc, MapFilterProject, MirScalarExpr, func};
661    ///
662    /// // imagine an action on columns (a, b, c, d).
663    /// let original = MapFilterProject::new(4).map(vec![
664    ///    MirScalarExpr::column(0).call_binary(MirScalarExpr::column(1), func::AddInt64),
665    ///    MirScalarExpr::column(2).call_binary(MirScalarExpr::column(4), func::AddInt64),
666    ///    MirScalarExpr::column(3).call_binary(MirScalarExpr::column(5), func::AddInt64),
667    /// ]).project(vec![6]);
668    ///
669    /// // Imagine we start with columns (b, x, a, y, c).
670    /// //
671    /// // The `partition` method requires a map from *expected* input columns to *actual*
672    /// // input columns. In the example above, the columns a, b, and c exist, and are at
673    /// // locations 2, 0, and 4 respectively. We must construct a map to this effect.
674    /// let mut available_columns = std::collections::BTreeMap::new();
675    /// available_columns.insert(0, 2);
676    /// available_columns.insert(1, 0);
677    /// available_columns.insert(2, 4);
678    /// // Partition `original` using the available columns and current input arity.
679    /// // This informs `partition` which columns are available, where they can be found,
680    /// // and how many columns are not relevant but should be preserved.
681    /// let (before, after) = original.partition(available_columns, 5);
682    ///
683    /// // `before` sees all five input columns, and should append `a + b + c`.
684    /// assert_eq!(before, MapFilterProject::new(5).map(vec![
685    ///    MirScalarExpr::column(2).call_binary(MirScalarExpr::column(0), func::AddInt64),
686    ///    MirScalarExpr::column(4).call_binary(MirScalarExpr::column(5), func::AddInt64),
687    /// ]).project(vec![0, 1, 2, 3, 4, 6]));
688    ///
689    /// // `after` expects to see `(a, b, c, d, a + b + c)`.
690    /// assert_eq!(after, MapFilterProject::new(5).map(vec![
691    ///    MirScalarExpr::column(3).call_binary(MirScalarExpr::column(4), func::AddInt64)
692    /// ]).project(vec![5]));
693    ///
694    /// // To reconstruct `self`, we must introduce the columns that are not present,
695    /// // and present them in the order intended by `self`. In this example, we must
696    /// // introduce column d and permute the columns so that they begin (a, b, c, d).
697    /// // The columns x and y must be projected away, and any columns introduced by
698    /// // `begin` must be retained in their current order.
699    ///
700    /// // The `after` instance expects to be provided with all inputs, but it
701    /// // may not need all inputs. The `demand()` and `permute()` methods can
702    /// // optimize the representation.
703    /// ```
704    pub fn partition(self, available: BTreeMap<usize, usize>, input_arity: usize) -> (Self, Self) {
705        // Map expressions, filter predicates, and projections for `before` and `after`.
706        let mut before_expr = Vec::new();
707        let mut before_pred = Vec::new();
708        let mut before_proj = Vec::new();
709        let mut after_expr = Vec::new();
710        let mut after_pred = Vec::new();
711        let mut after_proj = Vec::new();
712
713        // Track which output columns must be preserved in the output of `before`.
714        let mut demanded = BTreeSet::new();
715        demanded.extend(0..self.input_arity);
716        demanded.extend(self.projection.iter());
717
718        // Determine which map expressions can be computed from the available subset.
719        // Some expressions may depend on other expressions, but by evaluating them
720        // in forward order we should accurately determine the available expressions.
721        let mut available_expr = vec![false; self.input_arity];
722        // Initialize available columns from `available`, which is then not used again.
723        for index in available.keys() {
724            available_expr[*index] = true;
725        }
726        for expr in self.expressions.into_iter() {
727            // We treat an expression as available if its supporting columns are available,
728            // and if it is not a literal (we want to avoid pushing down literals). This
729            // choice is ad-hoc, but the intent is that we partition the operators so
730            // that we can reduce the row representation size and total computation.
731            // Pushing down literals harms the former and does nothing for the latter.
732            // In the future, we'll want to have a harder think about this trade-off, as
733            // we are certainly making sub-optimal decisions by pushing down all available
734            // work.
735            // TODO(mcsherry): establish better principles about what work to push down.
736            let is_available =
737                expr.support().into_iter().all(|i| available_expr[i]) && !expr.is_literal();
738            if is_available {
739                before_expr.push(expr);
740            } else {
741                demanded.extend(expr.support());
742                after_expr.push(expr);
743            }
744            available_expr.push(is_available);
745        }
746
747        // Determine which predicates can be computed from the available subset.
748        for (_when, pred) in self.predicates.into_iter() {
749            let is_available = pred.support().into_iter().all(|i| available_expr[i]);
750            if is_available {
751                before_pred.push(pred);
752            } else {
753                demanded.extend(pred.support());
754                after_pred.push(pred);
755            }
756        }
757
758        // Map from prior output location to location in un-projected `before`.
759        // This map is used to correct references in `before` but it should be
760        // adjusted to reflect `before`s projection prior to use in `after`.
761        let mut before_map = available;
762        // Input columns include any additional undescribed columns that may
763        // not be captured by the `available` argument, so we must independently
764        // track the current number of columns (vs relying on `before_map.len()`).
765        let mut input_columns = input_arity;
766        for index in self.input_arity..available_expr.len() {
767            if available_expr[index] {
768                before_map.insert(index, input_columns);
769                input_columns += 1;
770            }
771        }
772
773        // Permute the column references in `before` expressions and predicates.
774        for expr in before_expr.iter_mut() {
775            expr.permute_map(&before_map);
776        }
777        for pred in before_pred.iter_mut() {
778            pred.permute_map(&before_map);
779        }
780
781        // Demand information determines `before`s output projection.
782        // Specifically, we produce all input columns in the output, as well as
783        // any columns that are available and demanded.
784        before_proj.extend(0..input_arity);
785        for index in self.input_arity..available_expr.len() {
786            // If an intermediate result is both available and demanded,
787            // we should produce it as output.
788            if available_expr[index] && demanded.contains(&index) {
789                // Use the new location of `index`.
790                before_proj.push(before_map[&index]);
791            }
792        }
793
794        // Map from prior output locations to location in post-`before` columns.
795        // This map is used to correct references in `after`.
796        // The presumption is that `after` will be presented with all input columns,
797        // followed by the output columns introduced by `before` in order.
798        let mut after_map = BTreeMap::new();
799        for index in 0..self.input_arity {
800            after_map.insert(index, index);
801        }
802        for index in self.input_arity..available_expr.len() {
803            // If an intermediate result is both available and demanded,
804            // it was produced as output.
805            if available_expr[index] && demanded.contains(&index) {
806                // We expect to find the output as far after `self.input_arity` as
807                // it was produced after `input_arity` in the output of `before`.
808                let location = self.input_arity
809                    + (before_proj
810                        .iter()
811                        .position(|x| x == &before_map[&index])
812                        .unwrap()
813                        - input_arity);
814                after_map.insert(index, location);
815            }
816        }
817        // We must now re-map the remaining non-demanded expressions, which are
818        // contiguous rather than potentially interspersed.
819        for index in self.input_arity..available_expr.len() {
820            if !available_expr[index] {
821                after_map.insert(index, after_map.len());
822            }
823        }
824
825        // Permute the column references in `after` expressions and predicates.
826        for expr in after_expr.iter_mut() {
827            expr.permute_map(&after_map);
828        }
829        for pred in after_pred.iter_mut() {
830            pred.permute_map(&after_map);
831        }
832        // Populate `after` projection with the new locations of `self.projection`.
833        for index in self.projection {
834            after_proj.push(after_map[&index]);
835        }
836
837        // Form and return the before and after MapFilterProject instances.
838        let before = Self::new(input_arity)
839            .map(before_expr)
840            .filter(before_pred)
841            .project(before_proj.clone());
842        let after = Self::new(self.input_arity + (before_proj.len() - input_arity))
843            .map(after_expr)
844            .filter(after_pred)
845            .project(after_proj);
846        (before, after)
847    }
848
849    /// Lists input columns whose values are used in outputs.
850    ///
851    /// It is entirely appropriate to determine the demand of an instance
852    /// and then both apply a projection to the subject of the instance and
853    /// `self.permute` this instance.
854    pub fn demand(&self) -> BTreeSet<usize> {
855        let mut demanded = BTreeSet::new();
856        for (_index, pred) in self.predicates.iter() {
857            demanded.extend(pred.support());
858        }
859        demanded.extend(self.projection.iter().cloned());
860        for index in (0..self.expressions.len()).rev() {
861            if demanded.contains(&(self.input_arity + index)) {
862                demanded.extend(self.expressions[index].support());
863            }
864        }
865        demanded.retain(|col| col < &self.input_arity);
866        demanded
867    }
868
869    /// Update input column references, due to an input projection or permutation.
870    ///
871    /// The `shuffle` argument remaps expected column identifiers to new locations,
872    /// with the expectation that `shuffle` describes all input columns, and so the
873    /// intermediate results will be able to start at position `shuffle.len()`.
874    ///
875    /// The supplied `shuffle` might not list columns that are not "demanded" by the
876    /// instance, and so we should ensure that `self` is optimized to not reference
877    /// columns that are not demanded.
878    pub fn permute_fn<F>(&mut self, remap: F, new_input_arity: usize)
879    where
880        F: Fn(usize) -> usize,
881    {
882        let (mut map, mut filter, mut project) = self.as_map_filter_project();
883        let map_len = map.len();
884        let action = |col: &mut usize| {
885            if self.input_arity <= *col && *col < self.input_arity + map_len {
886                *col = new_input_arity + (*col - self.input_arity);
887            } else {
888                *col = remap(*col);
889            }
890        };
891        for expr in map.iter_mut() {
892            expr.visit_columns(action);
893        }
894        for pred in filter.iter_mut() {
895            pred.visit_columns(action);
896        }
897        for proj in project.iter_mut() {
898            action(proj);
899            assert!(*proj < new_input_arity + map.len());
900        }
901        *self = Self::new(new_input_arity)
902            .map(map)
903            .filter(filter)
904            .project(project)
905    }
906}
907
908// Optimization routines.
909impl MapFilterProject {
910    /// Optimize the internal expression evaluation order.
911    ///
912    /// This method performs several optimizations that are meant to streamline
913    /// the execution of the `MapFilterProject` instance, but not to alter its
914    /// semantics. This includes extracting expressions that are used multiple
915    /// times, inlining those that are not, and removing expressions that are
916    /// unreferenced.
917    ///
918    /// This method will inline all temporal expressions, and remove any columns
919    /// that are not demanded by the output, which should transform any temporal
920    /// filters to a state where the temporal expressions exist only in the list
921    /// of predicates.
922    ///
923    /// # Example
924    ///
925    /// This example demonstrates how the re-use of one expression, converting
926    /// column 1 from a string to an integer, can be extracted and the results
927    /// shared among the two uses. This example is used for each of the steps
928    /// along the optimization path.
929    ///
930    /// ```rust
931    /// use mz_expr::{func, MapFilterProject, MirScalarExpr, UnaryFunc, BinaryFunc};
932    /// // Demonstrate extraction of common expressions (here: parsing strings).
933    /// let mut map_filter_project = MapFilterProject::new(5)
934    ///     .map(vec![
935    ///         MirScalarExpr::column(0).call_unary(func::CastStringToInt64).call_binary(MirScalarExpr::column(1).call_unary(func::CastStringToInt64), func::AddInt64),
936    ///         MirScalarExpr::column(1).call_unary(func::CastStringToInt64).call_binary(MirScalarExpr::column(2).call_unary(func::CastStringToInt64), func::AddInt64),
937    ///     ])
938    ///     .project(vec![3,4,5,6]);
939    ///
940    /// let mut expected_optimized = MapFilterProject::new(5)
941    ///     .map(vec![
942    ///         MirScalarExpr::column(1).call_unary(func::CastStringToInt64),
943    ///         MirScalarExpr::column(0).call_unary(func::CastStringToInt64).call_binary(MirScalarExpr::column(5), func::AddInt64),
944    ///         MirScalarExpr::column(5).call_binary(MirScalarExpr::column(2).call_unary(func::CastStringToInt64), func::AddInt64),
945    ///     ])
946    ///     .project(vec![3,4,6,7]);
947    ///
948    /// // Optimize the expression.
949    /// map_filter_project.optimize();
950    ///
951    /// assert_eq!(
952    ///     map_filter_project,
953    ///     expected_optimized,
954    /// );
955    /// ```
956    pub fn optimize(&mut self) {
957        // Track sizes and iterate as long as they decrease.
958        let mut prev_size = None;
959        let mut self_size = usize::max_value();
960        // Continue as long as strict improvements occur.
961        while prev_size.map(|p| self_size < p).unwrap_or(true) {
962            // Lock in current size.
963            prev_size = Some(self_size);
964
965            // We have an annoying pattern of mapping literals that already exist as columns (by filters).
966            // Try to identify this pattern, of a map that introduces an expression equated to a prior column,
967            // and then replace the mapped expression by a column reference.
968            //
969            // We think this is due to `LiteralLifting`, and we might investigate removing the introduciton in
970            // the first place. The tell-tale that we see when we fix is a diff that look likes
971            //
972            // - Project (#0, #2)
973            // -   Filter (#1 = 1)
974            // -     Map (1)
975            // -       Get l0
976            // + Filter (#1 = 1)
977            // +   Get l0
978            //
979            for (index, expr) in self.expressions.iter_mut().enumerate() {
980                // If `expr` matches a filter equating it to a column < index + input_arity, rewrite it
981                for (_, predicate) in self.predicates.iter() {
982                    if let MirScalarExpr::CallBinary {
983                        func: crate::BinaryFunc::Eq(_),
984                        expr1,
985                        expr2,
986                    } = predicate
987                    {
988                        if let MirScalarExpr::Column(c, name) = &**expr1 {
989                            if *c < index + self.input_arity && &**expr2 == expr {
990                                *expr = MirScalarExpr::Column(*c, name.clone());
991                            }
992                        }
993                        if let MirScalarExpr::Column(c, name) = &**expr2 {
994                            if *c < index + self.input_arity && &**expr1 == expr {
995                                *expr = MirScalarExpr::Column(*c, name.clone());
996                            }
997                        }
998                    }
999                }
1000            }
1001
1002            // Optimization memoizes individual `ScalarExpr` expressions that
1003            // are sure to be evaluated, canonicalizes references to the first
1004            // occurrence of each, inlines expressions that have a reference
1005            // count of one, and then removes any expressions that are not
1006            // referenced.
1007            self.memoize_expressions();
1008            self.predicates.sort();
1009            self.predicates.dedup();
1010            self.inline_expressions();
1011            self.remove_undemanded();
1012
1013            // Re-build `self` from parts to restore evaluation order invariants.
1014            let (map, filter, project) = self.as_map_filter_project();
1015            *self = Self::new(self.input_arity)
1016                .map(map)
1017                .filter(filter)
1018                .project(project);
1019
1020            self_size = self.size();
1021        }
1022    }
1023
1024    /// Total expression sizes across all expressions.
1025    pub fn size(&self) -> usize {
1026        self.expressions.iter().map(|e| e.size()).sum::<usize>()
1027            + self.predicates.iter().map(|(_, e)| e.size()).sum::<usize>()
1028    }
1029
1030    /// Place each certainly evaluated expression in its own column.
1031    ///
1032    /// This method places each non-trivial, certainly evaluated expression
1033    /// in its own column, and deduplicates them so that all references to
1034    /// the same expression reference the same column.
1035    ///
1036    /// This transformation is restricted to expressions we are certain will
1037    /// be evaluated, which does not include expressions in `if` statements.
1038    ///
1039    /// # Example
1040    ///
1041    /// This example demonstrates how memoization notices `MirScalarExpr`s
1042    /// that are used multiple times, and ensures that each are extracted
1043    /// into columns and then referenced by column. This pass does not try
1044    /// to minimize the occurrences of column references, which will happen
1045    /// in inlining.
1046    ///
1047    /// ```rust
1048    /// use mz_expr::{func, MapFilterProject, MirScalarExpr, UnaryFunc, BinaryFunc};
1049    /// // Demonstrate extraction of common expressions (here: parsing strings).
1050    /// let mut map_filter_project = MapFilterProject::new(5)
1051    ///     .map(vec![
1052    ///         MirScalarExpr::column(0).call_unary(func::CastStringToInt64).call_binary(MirScalarExpr::column(1).call_unary(func::CastStringToInt64), func::AddInt64),
1053    ///         MirScalarExpr::column(1).call_unary(func::CastStringToInt64).call_binary(MirScalarExpr::column(2).call_unary(func::CastStringToInt64), func::AddInt64),
1054    ///     ])
1055    ///     .project(vec![3,4,5,6]);
1056    ///
1057    /// let mut expected_optimized = MapFilterProject::new(5)
1058    ///     .map(vec![
1059    ///         MirScalarExpr::column(0).call_unary(func::CastStringToInt64),
1060    ///         MirScalarExpr::column(1).call_unary(func::CastStringToInt64),
1061    ///         MirScalarExpr::column(5).call_binary(MirScalarExpr::column(6), func::AddInt64),
1062    ///         MirScalarExpr::column(7),
1063    ///         MirScalarExpr::column(2).call_unary(func::CastStringToInt64),
1064    ///         MirScalarExpr::column(6).call_binary(MirScalarExpr::column(9), func::AddInt64),
1065    ///         MirScalarExpr::column(10),
1066    ///     ])
1067    ///     .project(vec![3,4,8,11]);
1068    ///
1069    /// // Memoize expressions, ensuring uniqueness of each `MirScalarExpr`.
1070    /// map_filter_project.memoize_expressions();
1071    ///
1072    /// assert_eq!(
1073    ///     map_filter_project,
1074    ///     expected_optimized,
1075    /// );
1076    /// ```
1077    ///
1078    /// Expressions may not be memoized if they are not certain to be evaluated,
1079    /// for example if they occur in conditional branches of a `MirScalarExpr::If`.
1080    ///
1081    /// ```rust
1082    /// use mz_expr::{func, MapFilterProject, MirScalarExpr, UnaryFunc, BinaryFunc};
1083    /// // Demonstrate extraction of unconditionally evaluated expressions, as well as
1084    /// // the non-extraction of common expressions guarded by conditions.
1085    /// let mut map_filter_project = MapFilterProject::new(2)
1086    ///     .map(vec![
1087    ///         MirScalarExpr::If {
1088    ///             cond: Box::new(MirScalarExpr::column(0).call_binary(MirScalarExpr::column(1), func::Lt)),
1089    ///             then: Box::new(MirScalarExpr::column(0).call_binary(MirScalarExpr::column(1), func::DivInt64)),
1090    ///             els:  Box::new(MirScalarExpr::column(1).call_binary(MirScalarExpr::column(0), func::DivInt64)),
1091    ///         },
1092    ///         MirScalarExpr::If {
1093    ///             cond: Box::new(MirScalarExpr::column(0).call_binary(MirScalarExpr::column(1), func::Lt)),
1094    ///             then: Box::new(MirScalarExpr::column(1).call_binary(MirScalarExpr::column(0), func::DivInt64)),
1095    ///             els:  Box::new(MirScalarExpr::column(0).call_binary(MirScalarExpr::column(1), func::DivInt64)),
1096    ///         },
1097    ///     ]);
1098    ///
1099    /// let mut expected_optimized = MapFilterProject::new(2)
1100    ///     .map(vec![
1101    ///         MirScalarExpr::column(0).call_binary(MirScalarExpr::column(1), func::Lt),
1102    ///         MirScalarExpr::If {
1103    ///             cond: Box::new(MirScalarExpr::column(2)),
1104    ///             then: Box::new(MirScalarExpr::column(0).call_binary(MirScalarExpr::column(1), func::DivInt64)),
1105    ///             els:  Box::new(MirScalarExpr::column(1).call_binary(MirScalarExpr::column(0), func::DivInt64)),
1106    ///         },
1107    ///         MirScalarExpr::column(3),
1108    ///         MirScalarExpr::If {
1109    ///             cond: Box::new(MirScalarExpr::column(2)),
1110    ///             then: Box::new(MirScalarExpr::column(1).call_binary(MirScalarExpr::column(0), func::DivInt64)),
1111    ///             els:  Box::new(MirScalarExpr::column(0).call_binary(MirScalarExpr::column(1), func::DivInt64)),
1112    ///         },
1113    ///         MirScalarExpr::column(5),
1114    ///     ])
1115    ///     .project(vec![0,1,4,6]);
1116    ///
1117    /// // Memoize expressions, ensuring uniqueness of each `MirScalarExpr`.
1118    /// map_filter_project.memoize_expressions();
1119    ///
1120    /// assert_eq!(
1121    ///     map_filter_project,
1122    ///     expected_optimized,
1123    /// );
1124    /// ```
1125    pub fn memoize_expressions(&mut self) {
1126        // Record the mapping from starting column references to new column
1127        // references.
1128        let mut remaps = BTreeMap::new();
1129        for index in 0..self.input_arity {
1130            remaps.insert(index, index);
1131        }
1132        let mut new_expressions = Vec::new();
1133
1134        // We follow the same order as for evaluation, to ensure that all
1135        // column references exist in time for their evaluation. We could
1136        // prioritize predicates, but we would need to be careful to chase
1137        // down column references to expressions and memoize those as well.
1138        let mut expression = 0;
1139        for (support, predicate) in self.predicates.iter_mut() {
1140            while self.input_arity + expression < *support {
1141                self.expressions[expression].permute_map(&remaps);
1142                memoize_expr(
1143                    &mut self.expressions[expression],
1144                    &mut new_expressions,
1145                    self.input_arity,
1146                );
1147                remaps.insert(
1148                    self.input_arity + expression,
1149                    self.input_arity + new_expressions.len(),
1150                );
1151                new_expressions.push(self.expressions[expression].clone());
1152                expression += 1;
1153            }
1154            predicate.permute_map(&remaps);
1155            memoize_expr(predicate, &mut new_expressions, self.input_arity);
1156        }
1157        while expression < self.expressions.len() {
1158            self.expressions[expression].permute_map(&remaps);
1159            memoize_expr(
1160                &mut self.expressions[expression],
1161                &mut new_expressions,
1162                self.input_arity,
1163            );
1164            remaps.insert(
1165                self.input_arity + expression,
1166                self.input_arity + new_expressions.len(),
1167            );
1168            new_expressions.push(self.expressions[expression].clone());
1169            expression += 1;
1170        }
1171
1172        self.expressions = new_expressions;
1173        for proj in self.projection.iter_mut() {
1174            *proj = remaps[proj];
1175        }
1176
1177        // Restore predicate order invariants.
1178        for (pos, pred) in self.predicates.iter_mut() {
1179            *pos = pred.support().into_iter().max().map(|x| x + 1).unwrap_or(0);
1180        }
1181    }
1182
1183    /// This method inlines expressions with a single use.
1184    ///
1185    /// This method only inlines expressions; it does not delete expressions
1186    /// that are no longer referenced. The `remove_undemanded()` method does
1187    /// that, and should likely be used after this method.
1188    ///
1189    /// Inlining replaces column references when the referred-to item is either
1190    /// another column reference, or the only referrer of its referent. This
1191    /// is most common after memoization has atomized all expressions to seek
1192    /// out re-use: inlining re-assembles expressions that were not helpfully
1193    /// shared with other expressions.
1194    ///
1195    /// # Example
1196    ///
1197    /// In this example, we see that with only a single reference to columns
1198    /// 0 and 2, their parsing can each be inlined. Similarly, column references
1199    /// can be cleaned up among expressions, and in the final projection.
1200    ///
1201    /// Also notice the remaining expressions, which can be cleaned up in a later
1202    /// pass (the `remove_undemanded` method).
1203    ///
1204    /// ```rust
1205    /// use mz_expr::{func, MapFilterProject, MirScalarExpr, UnaryFunc, BinaryFunc};
1206    /// // Use the output from first `memoize_expression` example.
1207    /// let mut map_filter_project = MapFilterProject::new(5)
1208    ///     .map(vec![
1209    ///         MirScalarExpr::column(0).call_unary(func::CastStringToInt64),
1210    ///         MirScalarExpr::column(1).call_unary(func::CastStringToInt64),
1211    ///         MirScalarExpr::column(5).call_binary(MirScalarExpr::column(6), func::AddInt64),
1212    ///         MirScalarExpr::column(7),
1213    ///         MirScalarExpr::column(2).call_unary(func::CastStringToInt64),
1214    ///         MirScalarExpr::column(6).call_binary(MirScalarExpr::column(9), func::AddInt64),
1215    ///         MirScalarExpr::column(10),
1216    ///     ])
1217    ///     .project(vec![3,4,8,11]);
1218    ///
1219    /// let mut expected_optimized = MapFilterProject::new(5)
1220    ///     .map(vec![
1221    ///         MirScalarExpr::column(0).call_unary(func::CastStringToInt64),
1222    ///         MirScalarExpr::column(1).call_unary(func::CastStringToInt64),
1223    ///         MirScalarExpr::column(0).call_unary(func::CastStringToInt64).call_binary(MirScalarExpr::column(6), func::AddInt64),
1224    ///         MirScalarExpr::column(0).call_unary(func::CastStringToInt64).call_binary(MirScalarExpr::column(6), func::AddInt64),
1225    ///         MirScalarExpr::column(2).call_unary(func::CastStringToInt64),
1226    ///         MirScalarExpr::column(6).call_binary(MirScalarExpr::column(2).call_unary(func::CastStringToInt64), func::AddInt64),
1227    ///         MirScalarExpr::column(6).call_binary(MirScalarExpr::column(2).call_unary(func::CastStringToInt64), func::AddInt64),
1228    ///     ])
1229    ///     .project(vec![3,4,8,11]);
1230    ///
1231    /// // Inline expressions that are referenced only once.
1232    /// map_filter_project.inline_expressions();
1233    ///
1234    /// assert_eq!(
1235    ///     map_filter_project,
1236    ///     expected_optimized,
1237    /// );
1238    /// ```
1239    pub fn inline_expressions(&mut self) {
1240        // Local copy of input_arity to avoid borrowing `self` in closures.
1241        let input_arity = self.input_arity;
1242        // Reference counts track the number of places that a reference occurs.
1243        let mut reference_count = vec![0; input_arity + self.expressions.len()];
1244        // Increment reference counts for each use
1245        for expr in self.expressions.iter() {
1246            expr.visit_pre(|e| {
1247                if let MirScalarExpr::Column(i, _name) = e {
1248                    reference_count[*i] += 1;
1249                }
1250            });
1251        }
1252        for (_, pred) in self.predicates.iter() {
1253            pred.visit_pre(|e| {
1254                if let MirScalarExpr::Column(i, _name) = e {
1255                    reference_count[*i] += 1;
1256                }
1257            });
1258        }
1259        for proj in self.projection.iter() {
1260            reference_count[*proj] += 1;
1261        }
1262
1263        // Determine which expressions should be inlined because they reference temporal expressions.
1264        let mut is_temporal = vec![false; input_arity];
1265        for expr in self.expressions.iter() {
1266            // An express may contain a temporal expression, or reference a column containing such.
1267            is_temporal.push(
1268                expr.contains_temporal() || expr.support().into_iter().any(|col| is_temporal[col]),
1269            );
1270        }
1271
1272        // Inline only those columns that 1. are expressions not inputs, and
1273        // 2a. are column references or literals or 2b. have a refcount of 1,
1274        // or 2c. reference temporal expressions (which cannot be evaluated).
1275        let mut should_inline = vec![false; reference_count.len()];
1276        for i in (input_arity..reference_count.len()).rev() {
1277            if let MirScalarExpr::Column(c, _) = self.expressions[i - input_arity] {
1278                should_inline[i] = true;
1279                // The reference count of the referenced column should be
1280                // incremented with the number of references
1281                // `self.expressions[i - input_arity]` has.
1282                // Subtract 1 because `self.expressions[i - input_arity]` is
1283                // itself a reference.
1284                reference_count[c] += reference_count[i] - 1;
1285            } else {
1286                should_inline[i] = reference_count[i] == 1 || is_temporal[i];
1287            }
1288        }
1289        // Inline expressions per `should_inline`.
1290        self.perform_inlining(should_inline);
1291        // We can only inline column references in `self.projection`, but we should.
1292        for proj in self.projection.iter_mut() {
1293            if *proj >= self.input_arity {
1294                if let MirScalarExpr::Column(i, _) = self.expressions[*proj - self.input_arity] {
1295                    // TODO(mgree) !!! propagate name information to projection
1296                    *proj = i;
1297                }
1298            }
1299        }
1300    }
1301
1302    /// Inlines those expressions that are indicated by should_inline.
1303    /// See `inline_expressions` for usage.
1304    pub fn perform_inlining(&mut self, should_inline: Vec<bool>) {
1305        for index in 0..self.expressions.len() {
1306            let (prior, expr) = self.expressions.split_at_mut(index);
1307            #[allow(deprecated)]
1308            expr[0].visit_mut_post_nolimit(&mut |e| {
1309                if let MirScalarExpr::Column(i, _name) = e {
1310                    if should_inline[*i] {
1311                        *e = prior[*i - self.input_arity].clone();
1312                    }
1313                }
1314            });
1315        }
1316        for (_index, pred) in self.predicates.iter_mut() {
1317            let expressions = &self.expressions;
1318            #[allow(deprecated)]
1319            pred.visit_mut_post_nolimit(&mut |e| {
1320                if let MirScalarExpr::Column(i, _name) = e {
1321                    if should_inline[*i] {
1322                        *e = expressions[*i - self.input_arity].clone();
1323                    }
1324                }
1325            });
1326        }
1327    }
1328
1329    /// Removes unused expressions from `self.expressions`.
1330    ///
1331    /// Expressions are "used" if they are relied upon by any output columns
1332    /// or any predicates, even transitively. Any expressions that are not
1333    /// relied upon in this way can be discarded.
1334    ///
1335    /// # Example
1336    ///
1337    /// ```rust
1338    /// use mz_expr::{func, MapFilterProject, MirScalarExpr, UnaryFunc, BinaryFunc};
1339    /// // Use the output from `inline_expression` example.
1340    /// let mut map_filter_project = MapFilterProject::new(5)
1341    ///     .map(vec![
1342    ///         MirScalarExpr::column(0).call_unary(func::CastStringToInt64),
1343    ///         MirScalarExpr::column(1).call_unary(func::CastStringToInt64),
1344    ///         MirScalarExpr::column(0).call_unary(func::CastStringToInt64).call_binary(MirScalarExpr::column(6), func::AddInt64),
1345    ///         MirScalarExpr::column(0).call_unary(func::CastStringToInt64).call_binary(MirScalarExpr::column(6), func::AddInt64),
1346    ///         MirScalarExpr::column(2).call_unary(func::CastStringToInt64),
1347    ///         MirScalarExpr::column(6).call_binary(MirScalarExpr::column(2).call_unary(func::CastStringToInt64), func::AddInt64),
1348    ///         MirScalarExpr::column(6).call_binary(MirScalarExpr::column(2).call_unary(func::CastStringToInt64), func::AddInt64),
1349    ///     ])
1350    ///     .project(vec![3,4,8,11]);
1351    ///
1352    /// let mut expected_optimized = MapFilterProject::new(5)
1353    ///     .map(vec![
1354    ///         MirScalarExpr::column(1).call_unary(func::CastStringToInt64),
1355    ///         MirScalarExpr::column(0).call_unary(func::CastStringToInt64).call_binary(MirScalarExpr::column(5), func::AddInt64),
1356    ///         MirScalarExpr::column(5).call_binary(MirScalarExpr::column(2).call_unary(func::CastStringToInt64), func::AddInt64),
1357    ///     ])
1358    ///     .project(vec![3,4,6,7]);
1359    ///
1360    /// // Remove undemanded expressions, streamlining the work done..
1361    /// map_filter_project.remove_undemanded();
1362    ///
1363    /// assert_eq!(
1364    ///     map_filter_project,
1365    ///     expected_optimized,
1366    /// );
1367    /// ```
1368    pub fn remove_undemanded(&mut self) {
1369        // Determine the demanded expressions to remove irrelevant ones.
1370        let mut demand = BTreeSet::new();
1371        for (_index, pred) in self.predicates.iter() {
1372            demand.extend(pred.support());
1373        }
1374        // Start from the output columns as presumed demanded.
1375        // If this is not the case, the caller should project some away.
1376        demand.extend(self.projection.iter().cloned());
1377        // Proceed in *reverse* order, as expressions may depend on other
1378        // expressions that precede them.
1379        for index in (0..self.expressions.len()).rev() {
1380            if demand.contains(&(self.input_arity + index)) {
1381                demand.extend(self.expressions[index].support());
1382            }
1383        }
1384
1385        // Maintain a map from initial column identifiers to locations
1386        // once we have removed undemanded expressions.
1387        let mut remap = BTreeMap::new();
1388        // This map only needs to map elements of `demand` to a new location,
1389        // but the logic is easier if we include all input columns (as the
1390        // new position is then determined by the size of the map).
1391        for index in 0..self.input_arity {
1392            remap.insert(index, index);
1393        }
1394        // Retain demanded expressions, and record their new locations.
1395        let mut new_expressions = Vec::new();
1396        for (index, expr) in self.expressions.drain(..).enumerate() {
1397            if demand.contains(&(index + self.input_arity)) {
1398                remap.insert(index + self.input_arity, remap.len());
1399                new_expressions.push(expr);
1400            }
1401        }
1402        self.expressions = new_expressions;
1403
1404        // Update column identifiers; rebuild `Self` to re-establish any invariants.
1405        // We mirror `self.permute(&remap)` but we specifically want to remap columns
1406        // that are produced by `self.expressions` after the input columns.
1407        let (expressions, predicates, projection) = self.as_map_filter_project();
1408        *self = Self::new(self.input_arity)
1409            .map(expressions.into_iter().map(|mut e| {
1410                e.permute_map(&remap);
1411                e
1412            }))
1413            .filter(predicates.into_iter().map(|mut p| {
1414                p.permute_map(&remap);
1415                p
1416            }))
1417            .project(projection.into_iter().map(|c| remap[&c]));
1418    }
1419}
1420
1421// TODO: move this elsewhere?
1422/// Recursively memoize parts of `expr`, storing those parts in `memoized_parts`.
1423///
1424/// A part of `expr` that is memoized is replaced by a reference to column
1425/// `(input_arity + pos)`, where `pos` is the position of the memoized part in
1426/// `memoized_parts`, and `input_arity` is the arity of the input that `expr`
1427/// refers to.
1428pub fn memoize_expr(
1429    expr: &mut MirScalarExpr,
1430    memoized_parts: &mut Vec<MirScalarExpr>,
1431    input_arity: usize,
1432) {
1433    #[allow(deprecated)]
1434    expr.visit_mut_pre_post_nolimit(
1435        &mut |e| {
1436            // We should not eagerly memoize `if` branches that might not be taken.
1437            // TODO: Memoize expressions in the intersection of `then` and `els`.
1438            if let MirScalarExpr::If { cond, .. } = e {
1439                return Some(vec![cond]);
1440            }
1441
1442            // We should not eagerly memoize `COALESCE` expressions after the first,
1443            // as they are only meant to be evaluated if the preceding expressions
1444            // evaluate to NULL. We could memoize any preceding by expressions that
1445            // are certain not to error.
1446            if let MirScalarExpr::CallVariadic {
1447                func: crate::VariadicFunc::Coalesce,
1448                exprs,
1449            } = e
1450            {
1451                return Some(exprs.iter_mut().take(1).collect());
1452            }
1453
1454            // We should not deconstruct temporal filters, because `MfpPlan::create_from` expects
1455            // those to be in a specific form. However, we _should_ attend to the expression that is
1456            // on the opposite side of mz_now(), because it might be a complex expression in itself,
1457            // and is ok to deconstruct.
1458            if let Some((_func, other_side)) = e.as_mut_temporal_filter().ok() {
1459                return Some(vec![other_side]);
1460            }
1461
1462            None
1463        },
1464        &mut |e| {
1465            match e {
1466                MirScalarExpr::Literal(_, _) => {
1467                    // Literals do not need to be memoized.
1468                }
1469                MirScalarExpr::Column(col, _) => {
1470                    // Column references do not need to be memoized, but may need to be
1471                    // updated if they reference a column reference themselves.
1472                    if *col > input_arity {
1473                        if let MirScalarExpr::Column(col2, _) = memoized_parts[*col - input_arity] {
1474                            // We do _not_ propagate column names, since mis-associating names and column
1475                            // references will be very confusing (and possibly bug-inducing).
1476                            *col = col2;
1477                        }
1478                    }
1479                }
1480                _ => {
1481                    // TODO: OOO (Optimizer Optimization Opportunity):
1482                    // we are quadratic in expression size because of this .iter().position
1483                    if let Some(position) = memoized_parts.iter().position(|e2| e2 == e) {
1484                        // Any complex expression that already exists as a prior column can
1485                        // be replaced by a reference to that column.
1486                        *e = MirScalarExpr::column(input_arity + position);
1487                    } else {
1488                        // A complex expression that does not exist should be memoized, and
1489                        // replaced by a reference to the column.
1490                        memoized_parts.push(std::mem::replace(
1491                            e,
1492                            MirScalarExpr::column(input_arity + memoized_parts.len()),
1493                        ));
1494                    }
1495                }
1496            }
1497        },
1498    )
1499}
1500
1501pub mod util {
1502    use std::collections::BTreeMap;
1503
1504    use crate::MirScalarExpr;
1505
1506    #[allow(dead_code)]
1507    /// A triple of actions that map from rows to (key, val) pairs and back again.
1508    struct KeyValRowMapping {
1509        /// Expressions to apply to a row to produce key datums.
1510        to_key: Vec<MirScalarExpr>,
1511        /// Columns to project from a row to produce residual value datums.
1512        to_val: Vec<usize>,
1513        /// Columns to project from the concatenation of key and value to reconstruct the row.
1514        to_row: Vec<usize>,
1515    }
1516
1517    /// Derive supporting logic to support transforming rows to (key, val) pairs,
1518    /// and back again.
1519    ///
1520    /// We are given as input a list of key expressions and an input arity, and the
1521    /// requirement the produced key should be the application of the key expressions.
1522    /// To produce the `val` output, we will identify those input columns not found in
1523    /// the key expressions, and name all other columns.
1524    /// To reconstitute the original row, we identify the sequence of columns from the
1525    /// concatenation of key and val which would reconstruct the original row.
1526    ///
1527    /// The output is a pair of column sequences, the first used to reconstruct a row
1528    /// from the concatenation of key and value, and the second to identify the columns
1529    /// of a row that should become the value associated with its key.
1530    ///
1531    /// The permutations and thinning expressions generated here will be tracked in
1532    /// `dataflow::plan::AvailableCollections`; see the
1533    /// documentation there for more details.
1534    pub fn permutation_for_arrangement(
1535        key: &[MirScalarExpr],
1536        unthinned_arity: usize,
1537    ) -> (Vec<usize>, Vec<usize>) {
1538        let columns_in_key: BTreeMap<_, _> = key
1539            .iter()
1540            .enumerate()
1541            .filter_map(|(i, key_col)| key_col.as_column().map(|c| (c, i)))
1542            .collect();
1543        let mut input_cursor = key.len();
1544        let permutation = (0..unthinned_arity)
1545            .map(|c| {
1546                if let Some(c) = columns_in_key.get(&c) {
1547                    // Column is in key (and thus gone from the value
1548                    // of the thinned representation)
1549                    *c
1550                } else {
1551                    // Column remains in value of the thinned representation
1552                    input_cursor += 1;
1553                    input_cursor - 1
1554                }
1555            })
1556            .collect();
1557        let thinning = (0..unthinned_arity)
1558            .filter(|c| !columns_in_key.contains_key(c))
1559            .collect();
1560        (permutation, thinning)
1561    }
1562
1563    /// Given the permutations (see [`permutation_for_arrangement`] and
1564    /// (`dataflow::plan::AvailableCollections`) corresponding to two
1565    /// collections with the same key arity,
1566    /// computes the permutation for the result of joining them.
1567    pub fn join_permutations(
1568        key_arity: usize,
1569        stream_permutation: Vec<usize>,
1570        thinned_stream_arity: usize,
1571        lookup_permutation: Vec<usize>,
1572    ) -> BTreeMap<usize, usize> {
1573        let stream_arity = stream_permutation.len();
1574        let lookup_arity = lookup_permutation.len();
1575
1576        (0..stream_arity + lookup_arity)
1577            .map(|i| {
1578                let location = if i < stream_arity {
1579                    stream_permutation[i]
1580                } else {
1581                    let location_in_lookup = lookup_permutation[i - stream_arity];
1582                    if location_in_lookup < key_arity {
1583                        location_in_lookup
1584                    } else {
1585                        location_in_lookup + thinned_stream_arity
1586                    }
1587                };
1588                (i, location)
1589            })
1590            .collect()
1591    }
1592}
1593
1594pub mod plan {
1595    use std::iter;
1596
1597    use mz_repr::{Datum, Diff, Row, RowArena};
1598    use serde::{Deserialize, Serialize};
1599
1600    use crate::{BinaryFunc, EvalError, MapFilterProject, MirScalarExpr, UnaryFunc, func};
1601
1602    /// A wrapper type which indicates it is safe to simply evaluate all expressions.
1603    #[derive(Clone, Debug, Serialize, Deserialize, Eq, PartialEq, Ord, PartialOrd)]
1604    pub struct SafeMfpPlan {
1605        pub(crate) mfp: MapFilterProject,
1606    }
1607
1608    impl SafeMfpPlan {
1609        /// Remaps references to input columns according to `remap`.
1610        ///
1611        /// Leaves other column references, e.g. to newly mapped columns, unchanged.
1612        pub fn permute_fn<F>(&mut self, remap: F, new_arity: usize)
1613        where
1614            F: Fn(usize) -> usize,
1615        {
1616            self.mfp.permute_fn(remap, new_arity);
1617        }
1618        /// Evaluates the linear operator on a supplied list of datums.
1619        ///
1620        /// The arguments are the initial datums associated with the row,
1621        /// and an appropriately lifetimed arena for temporary allocations
1622        /// needed by scalar evaluation.
1623        ///
1624        /// An `Ok` result will either be `None` if any predicate did not
1625        /// evaluate to `Datum::True`, or the values of the columns listed
1626        /// by `self.projection` if all predicates passed. If an error
1627        /// occurs in the evaluation it is returned as an `Err` variant.
1628        /// As the evaluation exits early with failed predicates, it may
1629        /// miss some errors that would occur later in evaluation.
1630        ///
1631        /// The `row` is not cleared first, but emptied if the function
1632        /// returns `Ok(Some(row)).
1633        #[inline(always)]
1634        pub fn evaluate_into<'a, 'row>(
1635            &'a self,
1636            datums: &mut Vec<Datum<'a>>,
1637            arena: &'a RowArena,
1638            row_buf: &'row mut Row,
1639        ) -> Result<Option<&'row Row>, EvalError> {
1640            let passed_predicates = self.evaluate_inner(datums, arena)?;
1641            if !passed_predicates {
1642                Ok(None)
1643            } else {
1644                row_buf
1645                    .packer()
1646                    .extend(self.mfp.projection.iter().map(|c| datums[*c]));
1647                Ok(Some(row_buf))
1648            }
1649        }
1650
1651        /// A version of `evaluate` which produces an iterator over `Datum`
1652        /// as output.
1653        ///
1654        /// This version can be useful when one wants to capture the resulting
1655        /// datums without packing and then unpacking a row.
1656        #[inline(always)]
1657        pub fn evaluate_iter<'b, 'a: 'b>(
1658            &'a self,
1659            datums: &'b mut Vec<Datum<'a>>,
1660            arena: &'a RowArena,
1661        ) -> Result<Option<impl Iterator<Item = Datum<'a>> + 'b>, EvalError> {
1662            let passed_predicates = self.evaluate_inner(datums, arena)?;
1663            if !passed_predicates {
1664                Ok(None)
1665            } else {
1666                Ok(Some(self.mfp.projection.iter().map(move |i| datums[*i])))
1667            }
1668        }
1669
1670        /// Populates `datums` with `self.expressions` and tests `self.predicates`.
1671        ///
1672        /// This does not apply `self.projection`, which is up to the calling method.
1673        pub fn evaluate_inner<'b, 'a: 'b>(
1674            &'a self,
1675            datums: &'b mut Vec<Datum<'a>>,
1676            arena: &'a RowArena,
1677        ) -> Result<bool, EvalError> {
1678            let mut expression = 0;
1679            for (support, predicate) in self.mfp.predicates.iter() {
1680                while self.mfp.input_arity + expression < *support {
1681                    datums.push(self.mfp.expressions[expression].eval(&datums[..], arena)?);
1682                    expression += 1;
1683                }
1684                if predicate.eval(&datums[..], arena)? != Datum::True {
1685                    return Ok(false);
1686                }
1687            }
1688            while expression < self.mfp.expressions.len() {
1689                datums.push(self.mfp.expressions[expression].eval(&datums[..], arena)?);
1690                expression += 1;
1691            }
1692            Ok(true)
1693        }
1694
1695        /// Returns true if evaluation could introduce an error on non-error inputs.
1696        pub fn could_error(&self) -> bool {
1697            self.mfp.predicates.iter().any(|(_pos, e)| e.could_error())
1698                || self.mfp.expressions.iter().any(|e| e.could_error())
1699        }
1700
1701        /// Returns true when `Self` is the identity.
1702        pub fn is_identity(&self) -> bool {
1703            self.mfp.is_identity()
1704        }
1705    }
1706
1707    impl std::ops::Deref for SafeMfpPlan {
1708        type Target = MapFilterProject;
1709        fn deref(&self) -> &Self::Target {
1710            &self.mfp
1711        }
1712    }
1713
1714    /// Predicates partitioned into temporal and non-temporal.
1715    ///
1716    /// Temporal predicates require some recognition to determine their
1717    /// structure, and it is best to do that once and re-use the results.
1718    ///
1719    /// There are restrictions on the temporal predicates we currently support.
1720    /// They must directly constrain `MzNow` from below or above,
1721    /// by expressions that do not themselves contain `MzNow`.
1722    /// Conjunctions of such constraints are also ok.
1723    #[derive(Clone, Debug, PartialEq)]
1724    pub struct MfpPlan {
1725        /// Normal predicates to evaluate on `&[Datum]` and expect `Ok(Datum::True)`.
1726        pub(crate) mfp: SafeMfpPlan,
1727        /// Expressions that when evaluated lower-bound `MzNow`.
1728        pub(crate) lower_bounds: Vec<MirScalarExpr>,
1729        /// Expressions that when evaluated upper-bound `MzNow`.
1730        pub(crate) upper_bounds: Vec<MirScalarExpr>,
1731    }
1732
1733    impl MfpPlan {
1734        /// Partitions `predicates` into non-temporal, and lower and upper temporal bounds.
1735        ///
1736        /// The first returned list is of predicates that do not contain `mz_now`.
1737        /// The second and third returned lists contain expressions that, once evaluated, lower
1738        /// and upper bound the validity interval of a record, respectively. These second two
1739        /// lists are populated only by binary expressions of the form
1740        /// ```ignore
1741        /// mz_now cmp_op expr
1742        /// ```
1743        /// where `cmp_op` is a comparison operator and `expr` does not contain `mz_now`.
1744        ///
1745        /// If any unsupported expression is found, for example one that uses `mz_now`
1746        /// in an unsupported position, an error is returned.
1747        pub fn create_from(mut mfp: MapFilterProject) -> Result<Self, String> {
1748            let mut lower_bounds = Vec::new();
1749            let mut upper_bounds = Vec::new();
1750
1751            let mut temporal = Vec::new();
1752
1753            // Optimize, to ensure that temporal predicates are move in to `mfp.predicates`.
1754            mfp.optimize();
1755
1756            mfp.predicates.retain(|(_position, predicate)| {
1757                if predicate.contains_temporal() {
1758                    temporal.push(predicate.clone());
1759                    false
1760                } else {
1761                    true
1762                }
1763            });
1764
1765            for mut predicate in temporal.into_iter() {
1766                let (func, expr2) = predicate.as_mut_temporal_filter()?;
1767                let expr2 = expr2.clone();
1768
1769                // LogicalTimestamp <OP> <EXPR2> for several supported operators.
1770                match func {
1771                    BinaryFunc::Eq(_) => {
1772                        lower_bounds.push(expr2.clone());
1773                        upper_bounds.push(
1774                            expr2.call_unary(UnaryFunc::StepMzTimestamp(func::StepMzTimestamp)),
1775                        );
1776                    }
1777                    BinaryFunc::Lt(_) => {
1778                        upper_bounds.push(expr2.clone());
1779                    }
1780                    BinaryFunc::Lte(_) => {
1781                        upper_bounds.push(
1782                            expr2.call_unary(UnaryFunc::StepMzTimestamp(func::StepMzTimestamp)),
1783                        );
1784                    }
1785                    BinaryFunc::Gt(_) => {
1786                        lower_bounds.push(
1787                            expr2.call_unary(UnaryFunc::StepMzTimestamp(func::StepMzTimestamp)),
1788                        );
1789                    }
1790                    BinaryFunc::Gte(_) => {
1791                        lower_bounds.push(expr2.clone());
1792                    }
1793                    _ => {
1794                        return Err(format!("Unsupported binary temporal operation: {:?}", func));
1795                    }
1796                }
1797            }
1798
1799            Ok(Self {
1800                mfp: SafeMfpPlan { mfp },
1801                lower_bounds,
1802                upper_bounds,
1803            })
1804        }
1805
1806        /// Indicates if the planned `MapFilterProject` emits exactly its inputs as outputs.
1807        pub fn is_identity(&self) -> bool {
1808            self.mfp.mfp.is_identity()
1809                && self.lower_bounds.is_empty()
1810                && self.upper_bounds.is_empty()
1811        }
1812
1813        /// Returns `self`, and leaves behind an identity operator that acts on its output.
1814        pub fn take(&mut self) -> Self {
1815            let mut identity = Self {
1816                mfp: SafeMfpPlan {
1817                    mfp: MapFilterProject::new(self.mfp.projection.len()),
1818                },
1819                lower_bounds: Default::default(),
1820                upper_bounds: Default::default(),
1821            };
1822            std::mem::swap(self, &mut identity);
1823            identity
1824        }
1825
1826        /// Attempt to convert self into a non-temporal MapFilterProject plan.
1827        ///
1828        /// If that is not possible, the original instance is returned as an error.
1829        #[allow(clippy::result_large_err)]
1830        pub fn into_nontemporal(self) -> Result<SafeMfpPlan, Self> {
1831            if self.lower_bounds.is_empty() && self.upper_bounds.is_empty() {
1832                Ok(self.mfp)
1833            } else {
1834                Err(self)
1835            }
1836        }
1837
1838        /// Returns an iterator over mutable references to all non-temporal
1839        /// scalar expressions in the plan.
1840        ///
1841        /// The order of iteration is unspecified.
1842        pub fn iter_nontemporal_exprs(&mut self) -> impl Iterator<Item = &mut MirScalarExpr> {
1843            iter::empty()
1844                .chain(self.mfp.mfp.predicates.iter_mut().map(|(_, expr)| expr))
1845                .chain(&mut self.mfp.mfp.expressions)
1846                .chain(&mut self.lower_bounds)
1847                .chain(&mut self.upper_bounds)
1848        }
1849
1850        /// Evaluate the predicates, temporal and non-, and return times and differences for `data`.
1851        ///
1852        /// If `self` contains only non-temporal predicates, the result will either be `(time, diff)`,
1853        /// or an evaluation error. If `self contains temporal predicates, the results can be times
1854        /// that are greater than the input `time`, and may contain negated `diff` values.
1855        ///
1856        /// The `row_builder` is not cleared first, but emptied if the function
1857        /// returns an iterator with any `Ok(_)` element.
1858        pub fn evaluate<'b, 'a: 'b, E: From<EvalError>, V: Fn(&mz_repr::Timestamp) -> bool>(
1859            &'a self,
1860            datums: &'b mut Vec<Datum<'a>>,
1861            arena: &'a RowArena,
1862            time: mz_repr::Timestamp,
1863            diff: Diff,
1864            valid_time: V,
1865            row_builder: &mut Row,
1866        ) -> impl Iterator<
1867            Item = Result<(Row, mz_repr::Timestamp, Diff), (E, mz_repr::Timestamp, Diff)>,
1868        > + use<E, V> {
1869            match self.mfp.evaluate_inner(datums, arena) {
1870                Err(e) => {
1871                    return Some(Err((e.into(), time, diff))).into_iter().chain(None);
1872                }
1873                Ok(true) => {}
1874                Ok(false) => {
1875                    return None.into_iter().chain(None);
1876                }
1877            }
1878
1879            // Lower and upper bounds.
1880            let mut lower_bound = time;
1881            let mut upper_bound = None;
1882
1883            // Track whether we have seen a null in either bound, as this should
1884            // prevent the record from being produced at any time.
1885            let mut null_eval = false;
1886
1887            // Advance our lower bound to be at least the result of any lower bound
1888            // expressions.
1889            for l in self.lower_bounds.iter() {
1890                match l.eval(datums, arena) {
1891                    Err(e) => {
1892                        return Some(Err((e.into(), time, diff)))
1893                            .into_iter()
1894                            .chain(None.into_iter());
1895                    }
1896                    Ok(Datum::MzTimestamp(d)) => {
1897                        lower_bound = lower_bound.max(d);
1898                    }
1899                    Ok(Datum::Null) => {
1900                        null_eval = true;
1901                    }
1902                    x => {
1903                        panic!("Non-mz_timestamp value in temporal predicate: {:?}", x);
1904                    }
1905                }
1906            }
1907
1908            // If the lower bound exceeds our `until` frontier, it should not appear in the output.
1909            if !valid_time(&lower_bound) {
1910                return None.into_iter().chain(None);
1911            }
1912
1913            // If there are any upper bounds, determine the minimum upper bound.
1914            for u in self.upper_bounds.iter() {
1915                // We can cease as soon as the lower and upper bounds match,
1916                // as the update will certainly not be produced in that case.
1917                if upper_bound != Some(lower_bound) {
1918                    match u.eval(datums, arena) {
1919                        Err(e) => {
1920                            return Some(Err((e.into(), time, diff)))
1921                                .into_iter()
1922                                .chain(None.into_iter());
1923                        }
1924                        Ok(Datum::MzTimestamp(d)) => {
1925                            if let Some(upper) = upper_bound {
1926                                upper_bound = Some(upper.min(d));
1927                            } else {
1928                                upper_bound = Some(d);
1929                            };
1930                            // Force the upper bound to be at least the lower
1931                            // bound. The `is_some()` test should always be true
1932                            // due to the above block, but maintain it here in
1933                            // case that changes. It's hopefully optimized away.
1934                            if upper_bound.is_some() && upper_bound < Some(lower_bound) {
1935                                upper_bound = Some(lower_bound);
1936                            }
1937                        }
1938                        Ok(Datum::Null) => {
1939                            null_eval = true;
1940                        }
1941                        x => {
1942                            panic!("Non-mz_timestamp value in temporal predicate: {:?}", x);
1943                        }
1944                    }
1945                }
1946            }
1947
1948            // If the upper bound exceeds our `until` frontier, it should not appear in the output.
1949            if let Some(upper) = &mut upper_bound {
1950                if !valid_time(upper) {
1951                    upper_bound = None;
1952                }
1953            }
1954
1955            // Produce an output only if the upper bound exceeds the lower bound,
1956            // and if we did not encounter a `null` in our evaluation.
1957            if Some(lower_bound) != upper_bound && !null_eval {
1958                row_builder
1959                    .packer()
1960                    .extend(self.mfp.mfp.projection.iter().map(|c| datums[*c]));
1961                let upper_opt =
1962                    upper_bound.map(|upper_bound| Ok((row_builder.clone(), upper_bound, -diff)));
1963                let lower = Some(Ok((row_builder.clone(), lower_bound, diff)));
1964                lower.into_iter().chain(upper_opt)
1965            } else {
1966                None.into_iter().chain(None)
1967            }
1968        }
1969
1970        /// Returns true if evaluation could introduce an error on non-error inputs.
1971        pub fn could_error(&self) -> bool {
1972            self.mfp.could_error()
1973                || self.lower_bounds.iter().any(|e| e.could_error())
1974                || self.upper_bounds.iter().any(|e| e.could_error())
1975        }
1976
1977        /// Indicates that `Self` ignores its input to the extent that it can be evaluated on `&[]`.
1978        ///
1979        /// At the moment, this is only true if it projects away all columns and applies no filters,
1980        /// but it could be extended to plans that produce literals independent of the input.
1981        pub fn ignores_input(&self) -> bool {
1982            self.lower_bounds.is_empty()
1983                && self.upper_bounds.is_empty()
1984                && self.mfp.mfp.projection.is_empty()
1985                && self.mfp.mfp.predicates.is_empty()
1986        }
1987    }
1988}