1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
//! A dataflow subgraph
//!
//! Timely dataflow graphs can be nested hierarchically, where some region of
//! graph is grouped, and presents upwards as an operator. This grouping needs
//! some care, to make sure that the presented operator reflects the behavior
//! of the grouped operators.
use std::rc::Rc;
use std::cell::RefCell;
use std::collections::BinaryHeap;
use std::cmp::Reverse;
use crate::logging::TimelyLogger as Logger;
use crate::logging::TimelyProgressLogger as ProgressLogger;
use crate::scheduling::Schedule;
use crate::scheduling::activate::Activations;
use crate::progress::frontier::{Antichain, MutableAntichain, MutableAntichainFilter};
use crate::progress::{Timestamp, Operate, operate::SharedProgress};
use crate::progress::{Location, Port, Source, Target};
use crate::progress::ChangeBatch;
use crate::progress::broadcast::Progcaster;
use crate::progress::reachability;
use crate::progress::timestamp::Refines;
use crate::worker::ProgressMode;
// IMPORTANT : by convention, a child identifier of zero is used to indicate inputs and outputs of
// the Subgraph itself. An identifier greater than zero corresponds to an actual child, which can
// be found at position (id - 1) in the `children` field of the Subgraph.
/// A builder for interactively initializing a `Subgraph`.
///
/// This collects all the information necessary to get a `Subgraph` up and
/// running, and is important largely through its `build` method which
/// actually creates a `Subgraph`.
pub struct SubgraphBuilder<TOuter, TInner>
where
TOuter: Timestamp,
TInner: Timestamp,
{
/// The name of this subgraph.
pub name: String,
/// A sequence of integers uniquely identifying the subgraph.
pub path: Rc<[usize]>,
/// The index assigned to the subgraph by its parent.
index: usize,
// handles to the children of the scope. index i corresponds to entry i-1, unless things change.
children: Vec<PerOperatorState<TInner>>,
child_count: usize,
edge_stash: Vec<(Source, Target)>,
// shared state written to by the datapath, counting records entering this subgraph instance.
input_messages: Vec<Rc<RefCell<ChangeBatch<TInner>>>>,
// expressed capabilities, used to filter changes against.
output_capabilities: Vec<MutableAntichain<TOuter>>,
/// Logging handle
logging: Option<Logger>,
/// Progress logging handle
progress_logging: Option<ProgressLogger>,
}
impl<TOuter, TInner> SubgraphBuilder<TOuter, TInner>
where
TOuter: Timestamp,
TInner: Timestamp+Refines<TOuter>,
{
/// Allocates a new input to the subgraph and returns the target to that input in the outer graph.
pub fn new_input(&mut self, shared_counts: Rc<RefCell<ChangeBatch<TInner>>>) -> Target {
self.input_messages.push(shared_counts);
Target::new(self.index, self.input_messages.len() - 1)
}
/// Allocates a new output from the subgraph and returns the source of that output in the outer graph.
pub fn new_output(&mut self) -> Source {
self.output_capabilities.push(MutableAntichain::new());
Source::new(self.index, self.output_capabilities.len() - 1)
}
/// Introduces a dependence from the source to the target.
///
/// This method does not effect data movement, but rather reveals to the progress tracking infrastructure
/// that messages produced by `source` should be expected to be consumed at `target`.
pub fn connect(&mut self, source: Source, target: Target) {
self.edge_stash.push((source, target));
}
/// Creates a `SubgraphBuilder` from a path of indexes from the dataflow root to the subgraph,
/// terminating with the local index of the new subgraph itself.
pub fn new_from(
path: Rc<[usize]>,
logging: Option<Logger>,
progress_logging: Option<ProgressLogger>,
name: &str,
)
-> SubgraphBuilder<TOuter, TInner>
{
// Put an empty placeholder for "outer scope" representative.
let children = vec![PerOperatorState::empty(0, 0)];
let index = path[path.len() - 1];
SubgraphBuilder {
name: name.to_owned(),
path,
index,
children,
child_count: 1,
edge_stash: Vec::new(),
input_messages: Vec::new(),
output_capabilities: Vec::new(),
logging,
progress_logging,
}
}
/// Allocates a new child identifier, for later use.
pub fn allocate_child_id(&mut self) -> usize {
self.child_count += 1;
self.child_count - 1
}
/// Adds a new child to the subgraph.
pub fn add_child(&mut self, child: Box<dyn Operate<TInner>>, index: usize, identifier: usize) {
if let Some(l) = &mut self.logging {
let mut child_path = Vec::with_capacity(self.path.len() + 1);
child_path.extend_from_slice(&self.path[..]);
child_path.push(index);
l.log(crate::logging::OperatesEvent {
id: identifier,
addr: child_path,
name: child.name().to_owned(),
});
}
self.children.push(PerOperatorState::new(child, index, identifier, self.logging.clone()))
}
/// Now that initialization is complete, actually build a subgraph.
pub fn build<A: crate::worker::AsWorker>(mut self, worker: &mut A) -> Subgraph<TOuter, TInner> {
// at this point, the subgraph is frozen. we should initialize any internal state which
// may have been determined after construction (e.g. the numbers of inputs and outputs).
// we also need to determine what to return as a summary and initial capabilities, which
// will depend on child summaries and capabilities, as well as edges in the subgraph.
// perhaps first check that the children are sanely identified
self.children.sort_by(|x,y| x.index.cmp(&y.index));
assert!(self.children.iter().enumerate().all(|(i,x)| i == x.index));
let inputs = self.input_messages.len();
let outputs = self.output_capabilities.len();
// Create empty child zero representative.
self.children[0] = PerOperatorState::empty(outputs, inputs);
let mut builder = reachability::Builder::new();
// Child 0 has `inputs` outputs and `outputs` inputs, not yet connected.
let summary = (0..outputs).map(|_| (0..inputs).map(|_| Antichain::new()).collect()).collect();
builder.add_node(0, outputs, inputs, summary);
for (index, child) in self.children.iter().enumerate().skip(1) {
builder.add_node(index, child.inputs, child.outputs, child.internal_summary.clone());
}
for (source, target) in self.edge_stash {
self.children[source.node].edges[source.port].push(target);
builder.add_edge(source, target);
}
// The `None` argument is optional logging infrastructure.
let path = self.path.clone();
let reachability_logging =
worker.log_register()
.get::<reachability::logging::TrackerEvent>("timely/reachability")
.map(|logger| reachability::logging::TrackerLogger::new(path, logger));
let (tracker, scope_summary) = builder.build(reachability_logging);
let progcaster = Progcaster::new(worker, self.path.clone(), self.logging.clone(), self.progress_logging.clone());
let mut incomplete = vec![true; self.children.len()];
incomplete[0] = false;
let incomplete_count = incomplete.len() - 1;
let activations = worker.activations();
activations.borrow_mut().activate(&self.path[..]);
Subgraph {
name: self.name,
path: self.path,
inputs,
outputs,
incomplete,
incomplete_count,
activations,
temp_active: BinaryHeap::new(),
maybe_shutdown: Vec::new(),
children: self.children,
input_messages: self.input_messages,
output_capabilities: self.output_capabilities,
local_pointstamp: ChangeBatch::new(),
final_pointstamp: ChangeBatch::new(),
progcaster,
pointstamp_tracker: tracker,
shared_progress: Rc::new(RefCell::new(SharedProgress::new(inputs, outputs))),
scope_summary,
progress_mode: worker.config().progress_mode,
}
}
}
/// A dataflow subgraph.
///
/// The subgraph type contains the infrastructure required to describe the topology of and track
/// progress within a dataflow subgraph.
pub struct Subgraph<TOuter, TInner>
where
TOuter: Timestamp,
TInner: Timestamp+Refines<TOuter>,
{
name: String, // an informative name.
/// Path of identifiers from the root.
pub path: Rc<[usize]>,
inputs: usize, // number of inputs.
outputs: usize, // number of outputs.
// handles to the children of the scope. index i corresponds to entry i-1, unless things change.
children: Vec<PerOperatorState<TInner>>,
incomplete: Vec<bool>, // the incompletion status of each child.
incomplete_count: usize, // the number of incomplete children.
// shared activations (including children).
activations: Rc<RefCell<Activations>>,
temp_active: BinaryHeap<Reverse<usize>>,
maybe_shutdown: Vec<usize>,
// shared state written to by the datapath, counting records entering this subgraph instance.
input_messages: Vec<Rc<RefCell<ChangeBatch<TInner>>>>,
// expressed capabilities, used to filter changes against.
output_capabilities: Vec<MutableAntichain<TOuter>>,
// pointstamp messages to exchange. ultimately destined for `messages` or `internal`.
local_pointstamp: ChangeBatch<(Location, TInner)>,
final_pointstamp: ChangeBatch<(Location, TInner)>,
// Graph structure and pointstamp tracker.
// pointstamp_builder: reachability::Builder<TInner>,
pointstamp_tracker: reachability::Tracker<TInner>,
// channel / whatever used to communicate pointstamp updates to peers.
progcaster: Progcaster<TInner>,
shared_progress: Rc<RefCell<SharedProgress<TOuter>>>,
scope_summary: Vec<Vec<Antichain<TInner::Summary>>>,
progress_mode: ProgressMode,
}
impl<TOuter, TInner> Schedule for Subgraph<TOuter, TInner>
where
TOuter: Timestamp,
TInner: Timestamp+Refines<TOuter>,
{
fn name(&self) -> &str { &self.name }
fn path(&self) -> &[usize] { &self.path }
fn schedule(&mut self) -> bool {
// This method performs several actions related to progress tracking
// and child operator scheduling. The actions have been broken apart
// into atomic actions that should be able to be safely executed in
// isolation, by a potentially clueless user (yours truly).
self.accept_frontier(); // Accept supplied frontier changes.
self.harvest_inputs(); // Count records entering the scope.
// Receive post-exchange progress updates.
self.progcaster.recv(&mut self.final_pointstamp);
// Commit and propagate final pointstamps.
self.propagate_pointstamps();
{ // Enqueue active children; scoped to let borrow drop.
let temp_active = &mut self.temp_active;
self.activations
.borrow_mut()
.for_extensions(&self.path[..], |index| temp_active.push(Reverse(index)));
}
// Schedule child operators.
//
// We should be able to schedule arbitrary subsets of children, as
// long as we eventually schedule all children that need to do work.
let mut previous = 0;
while let Some(Reverse(index)) = self.temp_active.pop() {
// De-duplicate, and don't revisit.
if index > previous {
// TODO: This is a moment where a scheduling decision happens.
self.activate_child(index);
previous = index;
}
}
// Transmit produced progress updates.
self.send_progress();
// If child scopes surface more final pointstamp updates we must re-execute.
if !self.final_pointstamp.is_empty() {
self.activations.borrow_mut().activate(&self.path[..]);
}
// A subgraph is incomplete if any child is incomplete, or there are outstanding messages.
let incomplete = self.incomplete_count > 0;
let tracking = self.pointstamp_tracker.tracking_anything();
incomplete || tracking
}
}
impl<TOuter, TInner> Subgraph<TOuter, TInner>
where
TOuter: Timestamp,
TInner: Timestamp+Refines<TOuter>,
{
/// Schedules a child operator and collects progress statements.
///
/// The return value indicates that the child task cannot yet shut down.
fn activate_child(&mut self, child_index: usize) -> bool {
let child = &mut self.children[child_index];
let incomplete = child.schedule();
if incomplete != self.incomplete[child_index] {
if incomplete { self.incomplete_count += 1; }
else { self.incomplete_count -= 1; }
self.incomplete[child_index] = incomplete;
}
if !incomplete {
// Consider shutting down the child, if neither capabilities nor input frontier.
let child_state = self.pointstamp_tracker.node_state(child_index);
let frontiers_empty = child_state.targets.iter().all(|x| x.implications.is_empty());
let no_capabilities = child_state.sources.iter().all(|x| x.pointstamps.is_empty());
if frontiers_empty && no_capabilities {
child.shut_down();
}
}
else {
// In debug mode, check that the progress statements do not violate invariants.
#[cfg(debug_assertions)] {
child.validate_progress(self.pointstamp_tracker.node_state(child_index));
}
}
// Extract progress statements into either pre- or post-exchange buffers.
if child.local {
child.extract_progress(&mut self.local_pointstamp, &mut self.temp_active);
}
else {
child.extract_progress(&mut self.final_pointstamp, &mut self.temp_active);
}
incomplete
}
/// Move frontier changes from parent into progress statements.
fn accept_frontier(&mut self) {
for (port, changes) in self.shared_progress.borrow_mut().frontiers.iter_mut().enumerate() {
let source = Source::new(0, port);
for (time, value) in changes.drain() {
self.pointstamp_tracker.update_source(
source,
TInner::to_inner(time),
value
);
}
}
}
/// Collects counts of records entering the scope.
///
/// This method moves message counts from the output of child zero to the inputs to
/// attached operators. This is a bit of a hack, because normally one finds capabilities
/// at an operator output, rather than message counts. These counts are used only at
/// mark [XXX] where they are reported upwards to the parent scope.
fn harvest_inputs(&mut self) {
for input in 0 .. self.inputs {
let source = Location::new_source(0, input);
let mut borrowed = self.input_messages[input].borrow_mut();
for (time, delta) in borrowed.drain() {
for target in &self.children[0].edges[input] {
self.local_pointstamp.update((Location::from(*target), time.clone()), delta);
}
self.local_pointstamp.update((source, time), -delta);
}
}
}
/// Commits pointstamps in `self.final_pointstamp`.
///
/// This method performs several steps that for reasons of correctness must
/// be performed atomically, before control is returned. These are:
///
/// 1. Changes to child zero's outputs are reported as consumed messages.
/// 2. Changes to child zero's inputs are reported as produced messages.
/// 3. Frontiers for child zero's inputs are reported as internal capabilities.
///
/// Perhaps importantly, the frontiers for child zero are determined *without*
/// the messages that are produced for child zero inputs, as we only want to
/// report retained internal capabilities, and not now-external messages.
///
/// In the course of propagating progress changes, we also propagate progress
/// changes for all of the managed child operators.
fn propagate_pointstamps(&mut self) {
// Process exchanged pointstamps. Handle child 0 statements carefully.
for ((location, timestamp), delta) in self.final_pointstamp.drain() {
// Child 0 corresponds to the parent scope and has special handling.
if location.node == 0 {
match location.port {
// [XXX] Report child 0's capabilities as consumed messages.
// Note the re-negation of delta, to make counts positive.
Port::Source(scope_input) => {
self.shared_progress
.borrow_mut()
.consumeds[scope_input]
.update(timestamp.to_outer(), -delta);
},
// [YYY] Report child 0's input messages as produced messages.
// Do not otherwise record, as we will not see subtractions,
// and we do not want to present their implications upward.
Port::Target(scope_output) => {
self.shared_progress
.borrow_mut()
.produceds[scope_output]
.update(timestamp.to_outer(), delta);
},
}
}
else {
self.pointstamp_tracker.update(location, timestamp, delta);
}
}
// Propagate implications of progress changes.
self.pointstamp_tracker.propagate_all();
// Drain propagated information into shared progress structure.
for ((location, time), diff) in self.pointstamp_tracker.pushed().drain() {
self.maybe_shutdown.push(location.node);
// Targets are actionable, sources are not.
if let crate::progress::Port::Target(port) = location.port {
if self.children[location.node].notify {
self.temp_active.push(Reverse(location.node));
}
// TODO: This logic could also be guarded by `.notify`, but
// we want to be a bit careful to make sure all related logic
// agrees with this (e.g. initialization, operator logic, etc.)
self.children[location.node]
.shared_progress
.borrow_mut()
.frontiers[port]
.update(time, diff);
}
}
// Consider scheduling each recipient of progress information to shut down.
self.maybe_shutdown.sort();
self.maybe_shutdown.dedup();
for child_index in self.maybe_shutdown.drain(..) {
let child_state = self.pointstamp_tracker.node_state(child_index);
let frontiers_empty = child_state.targets.iter().all(|x| x.implications.is_empty());
let no_capabilities = child_state.sources.iter().all(|x| x.pointstamps.is_empty());
if frontiers_empty && no_capabilities {
self.temp_active.push(Reverse(child_index));
}
}
// Extract child zero frontier changes and report as internal capability changes.
for (output, internal) in self.shared_progress.borrow_mut().internals.iter_mut().enumerate() {
self.pointstamp_tracker
.pushed_output()[output]
.drain()
.map(|(time, diff)| (time.to_outer(), diff))
.filter_through(&mut self.output_capabilities[output])
.for_each(|(time, diff)| internal.update(time, diff));
}
}
/// Sends local progress updates to all workers.
///
/// This method does not guarantee that all of `self.local_pointstamps` are
/// sent, but that no blocking pointstamps remain
fn send_progress(&mut self) {
// If we are requested to eagerly send progress updates, or if there are
// updates visible in the scope-wide frontier, we must send all updates.
let must_send = self.progress_mode == ProgressMode::Eager || {
let tracker = &mut self.pointstamp_tracker;
self.local_pointstamp
.iter()
.any(|((location, time), diff)|
// Must publish scope-wide visible subtractions.
tracker.is_global(*location, time) && *diff < 0
)
};
if must_send {
self.progcaster.send(&mut self.local_pointstamp);
}
}
}
impl<TOuter, TInner> Operate<TOuter> for Subgraph<TOuter, TInner>
where
TOuter: Timestamp,
TInner: Timestamp+Refines<TOuter>,
{
fn local(&self) -> bool { false }
fn inputs(&self) -> usize { self.inputs }
fn outputs(&self) -> usize { self.outputs }
// produces connectivity summaries from inputs to outputs, and reports initial internal
// capabilities on each of the outputs (projecting capabilities from contained scopes).
fn get_internal_summary(&mut self) -> (Vec<Vec<Antichain<TOuter::Summary>>>, Rc<RefCell<SharedProgress<TOuter>>>) {
// double-check that child 0 (the outside world) is correctly shaped.
assert_eq!(self.children[0].outputs, self.inputs());
assert_eq!(self.children[0].inputs, self.outputs());
// Note that we need to have `self.inputs()` elements in the summary
// with each element containing `self.outputs()` antichains regardless
// of how long `self.scope_summary` is
let mut internal_summary = vec![vec![Antichain::new(); self.outputs()]; self.inputs()];
for (input_idx, input) in self.scope_summary.iter().enumerate() {
for (output_idx, output) in input.iter().enumerate() {
let antichain = &mut internal_summary[input_idx][output_idx];
antichain.reserve(output.elements().len());
antichain.extend(output.elements().iter().cloned().map(TInner::summarize));
}
}
debug_assert_eq!(
internal_summary.len(),
self.inputs(),
"the internal summary should have as many elements as there are inputs",
);
debug_assert!(
internal_summary.iter().all(|summary| summary.len() == self.outputs()),
"each element of the internal summary should have as many elements as there are outputs",
);
// Each child has expressed initial capabilities (their `shared_progress.internals`).
// We introduce these into the progress tracker to determine the scope's initial
// internal capabilities.
for child in self.children.iter_mut() {
child.extract_progress(&mut self.final_pointstamp, &mut self.temp_active);
}
self.propagate_pointstamps(); // Propagate expressed capabilities to output frontiers.
// Return summaries and shared progress information.
(internal_summary, self.shared_progress.clone())
}
fn set_external_summary(&mut self) {
self.accept_frontier();
self.propagate_pointstamps(); // ensure propagation of input frontiers.
self.children
.iter_mut()
.flat_map(|child| child.operator.as_mut())
.for_each(|op| op.set_external_summary());
}
}
struct PerOperatorState<T: Timestamp> {
name: String, // name of the operator
index: usize, // index of the operator within its parent scope
id: usize, // worker-unique identifier
local: bool, // indicates whether the operator will exchange data or not
notify: bool,
inputs: usize, // number of inputs to the operator
outputs: usize, // number of outputs from the operator
operator: Option<Box<dyn Operate<T>>>,
edges: Vec<Vec<Target>>, // edges from the outputs of the operator
shared_progress: Rc<RefCell<SharedProgress<T>>>,
internal_summary: Vec<Vec<Antichain<T::Summary>>>, // cached result from get_internal_summary.
logging: Option<Logger>,
}
impl<T: Timestamp> PerOperatorState<T> {
fn empty(inputs: usize, outputs: usize) -> PerOperatorState<T> {
PerOperatorState {
name: "External".to_owned(),
operator: None,
index: 0,
id: usize::MAX,
local: false,
notify: true,
inputs,
outputs,
edges: vec![Vec::new(); outputs],
logging: None,
shared_progress: Rc::new(RefCell::new(SharedProgress::new(inputs,outputs))),
internal_summary: Vec::new(),
}
}
pub fn new(
mut scope: Box<dyn Operate<T>>,
index: usize,
identifier: usize,
logging: Option<Logger>
) -> PerOperatorState<T>
{
let local = scope.local();
let inputs = scope.inputs();
let outputs = scope.outputs();
let notify = scope.notify_me();
let (internal_summary, shared_progress) = scope.get_internal_summary();
assert_eq!(
internal_summary.len(),
inputs,
"operator summary has {} inputs when {} were expected",
internal_summary.len(),
inputs,
);
assert!(
!internal_summary.iter().any(|x| x.len() != outputs),
"operator summary had too few outputs",
);
PerOperatorState {
name: scope.name().to_owned(),
operator: Some(scope),
index,
id: identifier,
local,
notify,
inputs,
outputs,
edges: vec![vec![]; outputs],
logging,
shared_progress,
internal_summary,
}
}
pub fn schedule(&mut self) -> bool {
if let Some(ref mut operator) = self.operator {
// Perhaps log information about the start of the schedule call.
if let Some(l) = self.logging.as_mut() {
// FIXME: There is no contract that the operator must consume frontier changes.
// This report could be spurious.
// TODO: Perhaps fold this in to `ScheduleEvent::start()` as a "reason"?
let frontiers = &mut self.shared_progress.borrow_mut().frontiers[..];
if frontiers.iter_mut().any(|buffer| !buffer.is_empty()) {
l.log(crate::logging::PushProgressEvent { op_id: self.id })
}
l.log(crate::logging::ScheduleEvent::start(self.id));
}
let incomplete = operator.schedule();
// Perhaps log information about the stop of the schedule call.
if let Some(l) = self.logging.as_mut() {
l.log(crate::logging::ScheduleEvent::stop(self.id));
}
incomplete
}
else {
// If the operator is closed and we are reporting progress at it, something has surely gone wrong.
if self.shared_progress.borrow_mut().frontiers.iter_mut().any(|x| !x.is_empty()) {
println!("Operator prematurely shut down: {}", self.name);
println!(" {:?}", self.notify);
println!(" {:?}", self.shared_progress.borrow_mut().frontiers);
panic!();
}
// A closed operator shouldn't keep anything open.
false
}
}
fn shut_down(&mut self) {
if self.operator.is_some() {
if let Some(l) = self.logging.as_mut() {
l.log(crate::logging::ShutdownEvent{ id: self.id });
}
self.operator = None;
}
}
/// Extracts shared progress information and converts to pointstamp changes.
fn extract_progress(&mut self, pointstamps: &mut ChangeBatch<(Location, T)>, temp_active: &mut BinaryHeap<Reverse<usize>>) {
let shared_progress = &mut *self.shared_progress.borrow_mut();
// Migrate consumeds, internals, produceds into progress statements.
for (input, consumed) in shared_progress.consumeds.iter_mut().enumerate() {
let target = Location::new_target(self.index, input);
for (time, delta) in consumed.drain() {
pointstamps.update((target, time), -delta);
}
}
for (output, internal) in shared_progress.internals.iter_mut().enumerate() {
let source = Location::new_source(self.index, output);
for (time, delta) in internal.drain() {
pointstamps.update((source, time.clone()), delta);
}
}
for (output, produced) in shared_progress.produceds.iter_mut().enumerate() {
for (time, delta) in produced.drain() {
for target in &self.edges[output] {
pointstamps.update((Location::from(*target), time.clone()), delta);
temp_active.push(Reverse(target.node));
}
}
}
}
/// Test the validity of `self.shared_progress`.
///
/// The validity of shared progress information depends on both the external frontiers and the
/// internal capabilities, as events can occur that cannot be explained locally otherwise.
#[allow(dead_code)]
fn validate_progress(&mut self, child_state: &reachability::PerOperator<T>) {
let shared_progress = &mut *self.shared_progress.borrow_mut();
// Increments to internal capabilities require a consumed input message, a
for (output, internal) in shared_progress.internals.iter_mut().enumerate() {
for (time, diff) in internal.iter() {
if *diff > 0 {
let consumed = shared_progress.consumeds.iter_mut().any(|x| x.iter().any(|(t,d)| *d > 0 && t.less_equal(time)));
let internal = child_state.sources[output].implications.less_equal(time);
if !consumed && !internal {
println!("Increment at {:?}, not supported by\n\tconsumed: {:?}\n\tinternal: {:?}", time, shared_progress.consumeds, child_state.sources[output].implications);
panic!("Progress error; internal {:?}", self.name);
}
}
}
}
for (output, produced) in shared_progress.produceds.iter_mut().enumerate() {
for (time, diff) in produced.iter() {
if *diff > 0 {
let consumed = shared_progress.consumeds.iter_mut().any(|x| x.iter().any(|(t,d)| *d > 0 && t.less_equal(time)));
let internal = child_state.sources[output].implications.less_equal(time);
if !consumed && !internal {
println!("Increment at {:?}, not supported by\n\tconsumed: {:?}\n\tinternal: {:?}", time, shared_progress.consumeds, child_state.sources[output].implications);
panic!("Progress error; produced {:?}", self.name);
}
}
}
}
}
}
// Explicitly shut down the operator to get logged information.
impl<T: Timestamp> Drop for PerOperatorState<T> {
fn drop(&mut self) {
self.shut_down();
}
}