1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.

//! Conversion from Avro schemas to Materialize `RelationDesc`s.
//!
//! A few notes for posterity on how this conversion happens are in order.
//!
//! If the schema is an Avro record, we flatten it to its fields, which become the columns
//! of the relation.
//!
//! Each individual field is then converted to its SQL equivalent. For most types, this
//! conversion is the obvious one. The only non-trivial counterexample is Avro unions.
//!
//! Since Avro types are not nullable by default, the typical way normal (i.e., nullable)
//! SQL fields are represented in Avro is by a union of the underlying type with the
//! singleton type { Null }; in Avro schema notation, this is `["null", "TheType"]`.
//! We shall call union types following this pattern _Nullability-Pattern Unions_.
//! We shall call all other union types (e.g. `["MyType1", "MyType2"]` or `["null", "MyType1", "MyType2"]`) _Essential Unions_.
//! Since there is an obvious way to represent Nullability-Pattern Unions, but not Essential Unions, in the SQL type system,
//! we must handle Essential Unions with a bit of a hack (at least until Materialize supports union or sum types, which may be never).
//!
//! When an Essential Union appears as one of the fields of a record, we expand
//! it to _n_ columns in SQL, where _n_ is the number of non-null variants in the union. These
//! columns will be given names created by pasting their index at the end of the overall name
//! of the field. For example, if an Essential Union in a field named `"Foo"` has schema `[int, bool]`, it will expand to the columns `"Foo1": bool, "Foo2": int`. There is an implicit constraint upheld be the source pipeline that only one such column will be non-`null` at a time
//!
//! When an Essential Union appears _elsewhere_ than as one of the fields of a record,
//! there is nothing we can do, because we expect to be able to turn it into exactly one
//! SQL type, not a series of them. Thus, in these cases, we just bail. For example, it's
//! not possible to ingest an array or map whose element type is an Essential Union.

use std::collections::btree_map::Entry;
use std::collections::{BTreeMap, BTreeSet};
use std::fmt;
use std::str::FromStr;
use std::sync::Arc;

use anyhow::{anyhow, bail, Context};
use mz_avro::error::Error as AvroError;
use mz_avro::schema::{resolve_schemas, Schema, SchemaNode, SchemaPiece, SchemaPieceOrNamed};
use mz_ore::cast::CastFrom;
use mz_ore::collections::CollectionExt;
use mz_ore::future::OreFutureExt;
use mz_ore::retry::Retry;
use mz_repr::adt::numeric::{NumericMaxScale, NUMERIC_DATUM_MAX_PRECISION};
use mz_repr::adt::timestamp::TimestampPrecision;
use mz_repr::{ColumnName, ColumnType, RelationDesc, ScalarType};
use tracing::warn;

use crate::avro::is_null;

pub fn parse_schema(schema: &str) -> anyhow::Result<Schema> {
    let schema = serde_json::from_str(schema)?;
    Ok(Schema::parse(&schema)?)
}

/// Converts an Apache Avro schema into a list of column names and types.
// TODO(petrosagg): find a way to make this a TryFrom impl somewhere
pub fn schema_to_relationdesc(schema: Schema) -> Result<RelationDesc, anyhow::Error> {
    // TODO(petrosagg): call directly into validate_schema_2 and do the Record flattening once
    // we're in RelationDesc land
    Ok(RelationDesc::from_names_and_types(validate_schema_1(
        schema.top_node(),
    )?))
}

/// Convert an Avro schema to a series of columns and names, flattening the top-level record,
/// if the top node is indeed a record.
fn validate_schema_1(schema: SchemaNode) -> anyhow::Result<Vec<(ColumnName, ColumnType)>> {
    let mut columns = vec![];
    let mut seen_avro_nodes = Default::default();
    match schema.inner {
        SchemaPiece::Record { fields, .. } => {
            for f in fields {
                columns.extend(get_named_columns(
                    &mut seen_avro_nodes,
                    schema.step(&f.schema),
                    Some(&f.name),
                )?);
            }
        }
        _ => {
            columns.extend(get_named_columns(&mut seen_avro_nodes, schema, None)?);
        }
    }
    Ok(columns)
}

/// Get the series of (one or more) SQL columns corresponding to an Avro union.
/// See module comments for details.
fn get_union_columns<'a>(
    seen_avro_nodes: &mut BTreeSet<usize>,
    schema: SchemaNode<'a>,
    base_name: Option<&str>,
) -> anyhow::Result<Vec<(ColumnName, ColumnType)>> {
    let us = match schema.inner {
        SchemaPiece::Union(us) => us,
        _ => panic!("This function should only be called on unions."),
    };
    let mut columns = vec![];
    let vs = us.variants();
    if vs.is_empty() || (vs.len() == 1 && is_null(&vs[0])) {
        bail!(anyhow!("Empty or null-only unions are not supported"));
    } else {
        for (i, v) in vs.iter().filter(|v| !is_null(v)).enumerate() {
            let named_idx = match v {
                SchemaPieceOrNamed::Named(idx) => Some(*idx),
                _ => None,
            };
            if let Some(named_idx) = named_idx {
                if !seen_avro_nodes.insert(named_idx) {
                    bail!(
                        "Recursive types are not supported: {}",
                        v.get_human_name(schema.root)
                    );
                }
            }
            let node = schema.step(v);
            if let SchemaPiece::Union(_) = node.inner {
                unreachable!("Internal error: directly nested avro union!");
            }

            let name = if vs.len() == 1 || (vs.len() == 2 && vs.iter().any(is_null)) {
                // There is only one non-null variant in the
                // union, so we can use the field name directly.
                base_name
                    .map(|n| n.to_owned())
                    .or_else(|| {
                        v.get_piece_and_name(schema.root)
                            .1
                            .map(|full_name| full_name.base_name().to_owned())
                    })
                    .unwrap_or_else(|| "?column?".into())
            } else {
                // There are multiple non-null variants in the
                // union, so we need to invent field names for
                // each variant.
                base_name
                    .map(|n| format!("{}{}", n, i + 1))
                    .or_else(|| {
                        v.get_piece_and_name(schema.root)
                            .1
                            .map(|full_name| full_name.base_name().to_owned())
                    })
                    .unwrap_or_else(|| "?column?".into())
            };

            // If there is more than one variant in the union,
            // the column's output type is nullable, as this
            // column will be null whenever it is uninhabited.
            let ty = validate_schema_2(seen_avro_nodes, node)?;
            columns.push((name.into(), ty.nullable(vs.len() > 1)));
            if let Some(named_idx) = named_idx {
                seen_avro_nodes.remove(&named_idx);
            }
        }
    }
    Ok(columns)
}

fn get_named_columns<'a>(
    seen_avro_nodes: &mut BTreeSet<usize>,
    schema: SchemaNode<'a>,
    base_name: Option<&str>,
) -> anyhow::Result<Vec<(ColumnName, ColumnType)>> {
    if let SchemaPiece::Union(_) = schema.inner {
        get_union_columns(seen_avro_nodes, schema, base_name)
    } else {
        let scalar_type = validate_schema_2(seen_avro_nodes, schema)?;
        Ok(vec![(
            // TODO(benesch): we should do better than this when there's no base
            // name, e.g., invent a name based on the type.
            base_name.unwrap_or("?column?").into(),
            scalar_type.nullable(false),
        )])
    }
}

/// Get the single column corresponding to a schema node.
/// It is an error if this node should correspond to more than one column
/// (because it is an Essential Union in the sense described in the module docs).
fn validate_schema_2(
    seen_avro_nodes: &mut BTreeSet<usize>,
    schema: SchemaNode,
) -> anyhow::Result<ScalarType> {
    Ok(match schema.inner {
        SchemaPiece::Union(_) => {
            let columns = get_union_columns(seen_avro_nodes, schema, None)?;
            if columns.len() != 1 {
                bail!("Union of more than one non-null type not valid here");
            }
            let (_column_name, column_type) = columns.into_element();
            // It's okay to lose the nullability information here, as it's not relevant to
            // any higher layer. This will either be included in an array or map type,
            // where all values are nullable. It can't be included as a top-level column
            // or as a record type, where nullability is actually tracked, because in
            // those cases we will have already gone through the `Union` code path in
            // `get_named_columns`.
            column_type.scalar_type
        }
        SchemaPiece::Null => bail!("null outside of union types is not supported"),
        SchemaPiece::Boolean => ScalarType::Bool,
        SchemaPiece::Int => ScalarType::Int32,
        SchemaPiece::Long => ScalarType::Int64,
        SchemaPiece::Float => ScalarType::Float32,
        SchemaPiece::Double => ScalarType::Float64,
        SchemaPiece::Date => ScalarType::Date,
        SchemaPiece::TimestampMilli => ScalarType::Timestamp {
            precision: Some(TimestampPrecision::try_from(3).unwrap()),
        },
        SchemaPiece::TimestampMicro => ScalarType::Timestamp {
            precision: Some(TimestampPrecision::try_from(6).unwrap()),
        },
        SchemaPiece::Decimal {
            precision, scale, ..
        } => {
            if *precision > usize::cast_from(NUMERIC_DATUM_MAX_PRECISION) {
                bail!(
                    "decimals with precision greater than {} are not supported",
                    NUMERIC_DATUM_MAX_PRECISION
                )
            }
            ScalarType::Numeric {
                max_scale: Some(NumericMaxScale::try_from(*scale)?),
            }
        }
        SchemaPiece::Bytes | SchemaPiece::Fixed { .. } => ScalarType::Bytes,
        SchemaPiece::String | SchemaPiece::Enum { .. } => ScalarType::String,

        SchemaPiece::Json => ScalarType::Jsonb,
        SchemaPiece::Uuid => ScalarType::Uuid,
        SchemaPiece::Record { fields, .. } => {
            let mut columns = vec![];
            for f in fields {
                let named_idx = match &f.schema {
                    SchemaPieceOrNamed::Named(idx) => Some(*idx),
                    _ => None,
                };
                if let Some(named_idx) = named_idx {
                    if !seen_avro_nodes.insert(named_idx) {
                        bail!(
                            "Recursive types are not supported: {}",
                            f.schema.get_human_name(schema.root)
                        );
                    }
                }
                let next_node = schema.step(&f.schema);
                columns.extend(
                    get_named_columns(seen_avro_nodes, next_node, Some(&f.name))?.into_iter(),
                );
                if let Some(named_idx) = named_idx {
                    seen_avro_nodes.remove(&named_idx);
                }
            }
            ScalarType::Record {
                fields: columns.into(),
                custom_id: None,
            }
        }
        SchemaPiece::Array(inner) => {
            let named_idx = match inner.as_ref() {
                SchemaPieceOrNamed::Named(idx) => Some(*idx),
                _ => None,
            };
            if let Some(named_idx) = named_idx {
                if !seen_avro_nodes.insert(named_idx) {
                    bail!(
                        "Recursive types are not supported: {}",
                        inner.get_human_name(schema.root)
                    );
                }
            }
            let next_node = schema.step(inner);
            let ret = ScalarType::List {
                element_type: Box::new(validate_schema_2(seen_avro_nodes, next_node)?),
                custom_id: None,
            };
            if let Some(named_idx) = named_idx {
                seen_avro_nodes.remove(&named_idx);
            }
            ret
        }
        SchemaPiece::Map(inner) => ScalarType::Map {
            value_type: Box::new(validate_schema_2(seen_avro_nodes, schema.step(inner))?),
            custom_id: None,
        },

        _ => bail!("Unsupported type in schema: {:?}", schema.inner),
    })
}

pub struct ConfluentAvroResolver {
    reader_schema: Schema,
    writer_schemas: Option<SchemaCache>,
    confluent_wire_format: bool,
}

impl ConfluentAvroResolver {
    pub fn new(
        reader_schema: &str,
        ccsr_client: Option<mz_ccsr::Client>,
        confluent_wire_format: bool,
    ) -> anyhow::Result<Self> {
        let reader_schema = parse_schema(reader_schema)?;
        let writer_schemas = ccsr_client.map(SchemaCache::new).transpose()?;
        Ok(Self {
            reader_schema,
            writer_schemas,
            confluent_wire_format,
        })
    }

    pub async fn resolve<'a, 'b>(
        &'a mut self,
        mut bytes: &'b [u8],
    ) -> anyhow::Result<anyhow::Result<(&'b [u8], &'a Schema, Option<i32>)>> {
        let (resolved_schema, schema_id) = match &mut self.writer_schemas {
            Some(cache) => {
                debug_assert!(
                    self.confluent_wire_format,
                    "We should have set 'confluent_wire_format' everywhere \
                     that can lead to this branch"
                );
                // XXX(guswynn): use destructuring assignments when they are stable
                let (schema_id, adjusted_bytes) = match crate::confluent::extract_avro_header(bytes)
                {
                    Ok(ok) => ok,
                    Err(err) => return Ok(Err(err)),
                };
                bytes = adjusted_bytes;
                let result = cache
                    .get(schema_id, &self.reader_schema)
                    // The outer Result describes transient errors so use ? here to propagate
                    .await?
                    .with_context(|| format!("failed to resolve Avro schema (id = {})", schema_id));
                let schema = match result {
                    Ok(schema) => schema,
                    Err(err) => return Ok(Err(err)),
                };
                (schema, Some(schema_id))
            }

            // If we haven't been asked to use a schema registry, we have no way
            // to discover the writer's schema. That's ok; we'll just use the
            // reader's schema and hope it lines up.
            None => {
                if self.confluent_wire_format {
                    // validate and just move the bytes buffer ahead
                    let (_, adjusted_bytes) = match crate::confluent::extract_avro_header(bytes) {
                        Ok(ok) => ok,
                        Err(err) => return Ok(Err(err)),
                    };
                    bytes = adjusted_bytes;
                }
                (&self.reader_schema, None)
            }
        };
        Ok(Ok((bytes, resolved_schema, schema_id)))
    }
}

impl fmt::Debug for ConfluentAvroResolver {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("ConfluentAvroResolver")
            .field("reader_schema", &self.reader_schema)
            .field(
                "write_schema",
                if self.writer_schemas.is_some() {
                    &"some"
                } else {
                    &"none"
                },
            )
            .finish()
    }
}

#[derive(Debug)]
struct SchemaCache {
    cache: BTreeMap<i32, Result<Schema, AvroError>>,
    ccsr_client: Arc<mz_ccsr::Client>,
}

impl SchemaCache {
    fn new(ccsr_client: mz_ccsr::Client) -> Result<SchemaCache, anyhow::Error> {
        Ok(SchemaCache {
            cache: BTreeMap::new(),
            ccsr_client: Arc::new(ccsr_client),
        })
    }

    /// Looks up the writer schema for ID. If the schema is literally identical
    /// to the reader schema, as determined by the reader schema fingerprint
    /// that this schema cache was initialized with, returns the schema directly.
    /// If not, performs schema resolution on the reader and writer and
    /// returns the result.
    async fn get(
        &mut self,
        id: i32,
        reader_schema: &Schema,
    ) -> anyhow::Result<anyhow::Result<&Schema>> {
        let entry = match self.cache.entry(id) {
            Entry::Occupied(o) => o.into_mut(),
            Entry::Vacant(v) => {
                // An issue with _fetching_ the schema should be returned
                // immediately, and not cached, since it might get better on the
                // next retry.
                let ccsr_client = Arc::clone(&self.ccsr_client);
                let response = Retry::default()
                    // Twice the timeout of the ccsr client so we can attempt 2 requests.
                    .max_duration(ccsr_client.timeout() * 2)
                    // Canceling because ultimately it's just non-mutating HTTP requests.
                    .retry_async_canceling(move |state| {
                        let ccsr_client = Arc::clone(&ccsr_client);
                        async move {
                            let res = ccsr_client.get_schema_by_id(id).await;
                            match res {
                                Err(e) => {
                                    if let Some(timeout) = state.next_backoff {
                                        warn!(
                                            "transient failure fetching \
                                                schema id {}: {:?}, retrying in {:?}",
                                            id, e, timeout
                                        );
                                    }
                                    Err(anyhow::Error::from(e))
                                }
                                _ => Ok(res?),
                            }
                        }
                    })
                    .run_in_task(|| format!("fetch_avro_schema:{}", id))
                    .await?;
                // Now, we've gotten some json back, so we want to cache it (regardless of whether it's a valid
                // avro schema, it won't change).
                //
                // However, we can't just cache it directly, since resolving schemas takes significant CPU work,
                // which  we don't want to repeat for every record. So, parse and resolve it, and cache the
                // result (whether schema or error).
                let result = Schema::from_str(&response.raw).and_then(|schema| {
                    // Schema fingerprints don't actually capture whether two schemas are meaningfully
                    // different, because they strip out logical types. Thus, resolve in all cases.
                    let resolved = resolve_schemas(&schema, reader_schema)?;
                    Ok(resolved)
                });
                v.insert(result)
            }
        };
        Ok(entry.as_ref().map_err(|e| anyhow::Error::new(e.clone())))
    }
}