1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! Conversion from Avro schemas to Materialize `RelationDesc`s.
//!
//! A few notes for posterity on how this conversion happens are in order.
//!
//! If the schema is an Avro record, we flatten it to its fields, which become the columns
//! of the relation.
//!
//! Each individual field is then converted to its SQL equivalent. For most types, this
//! conversion is the obvious one. The only non-trivial counterexample is Avro unions.
//!
//! Since Avro types are not nullable by default, the typical way normal (i.e., nullable)
//! SQL fields are represented in Avro is by a union of the underlying type with the
//! singleton type { Null }; in Avro schema notation, this is `["null", "TheType"]`.
//! We shall call union types following this pattern _Nullability-Pattern Unions_.
//! We shall call all other union types (e.g. `["MyType1", "MyType2"]` or `["null", "MyType1", "MyType2"]`) _Essential Unions_.
//! Since there is an obvious way to represent Nullability-Pattern Unions, but not Essential Unions, in the SQL type system,
//! we must handle Essential Unions with a bit of a hack (at least until Materialize supports union or sum types, which may be never).
//!
//! When an Essential Union appears as one of the fields of a record, we expand
//! it to _n_ columns in SQL, where _n_ is the number of non-null variants in the union. These
//! columns will be given names created by pasting their index at the end of the overall name
//! of the field. For example, if an Essential Union in a field named `"Foo"` has schema `[int, bool]`, it will expand to the columns `"Foo1": bool, "Foo2": int`. There is an implicit constraint upheld be the source pipeline that only one such column will be non-`null` at a time
//!
//! When an Essential Union appears _elsewhere_ than as one of the fields of a record,
//! there is nothing we can do, because we expect to be able to turn it into exactly one
//! SQL type, not a series of them. Thus, in these cases, we just bail. For example, it's
//! not possible to ingest an array or map whose element type is an Essential Union.
use std::collections::btree_map::Entry;
use std::collections::{BTreeMap, BTreeSet};
use std::fmt;
use std::str::FromStr;
use std::sync::Arc;
use anyhow::{anyhow, bail, Context};
use mz_avro::error::Error as AvroError;
use mz_avro::schema::{resolve_schemas, Schema, SchemaNode, SchemaPiece, SchemaPieceOrNamed};
use mz_ore::cast::CastFrom;
use mz_ore::collections::CollectionExt;
use mz_ore::future::OreFutureExt;
use mz_ore::retry::Retry;
use mz_repr::adt::numeric::{NumericMaxScale, NUMERIC_DATUM_MAX_PRECISION};
use mz_repr::adt::timestamp::TimestampPrecision;
use mz_repr::{ColumnName, ColumnType, RelationDesc, ScalarType};
use tracing::warn;
use crate::avro::is_null;
pub fn parse_schema(schema: &str) -> anyhow::Result<Schema> {
let schema = serde_json::from_str(schema)?;
Ok(Schema::parse(&schema)?)
}
/// Converts an Apache Avro schema into a list of column names and types.
// TODO(petrosagg): find a way to make this a TryFrom impl somewhere
pub fn schema_to_relationdesc(schema: Schema) -> Result<RelationDesc, anyhow::Error> {
// TODO(petrosagg): call directly into validate_schema_2 and do the Record flattening once
// we're in RelationDesc land
Ok(RelationDesc::from_names_and_types(validate_schema_1(
schema.top_node(),
)?))
}
/// Convert an Avro schema to a series of columns and names, flattening the top-level record,
/// if the top node is indeed a record.
fn validate_schema_1(schema: SchemaNode) -> anyhow::Result<Vec<(ColumnName, ColumnType)>> {
let mut columns = vec![];
let mut seen_avro_nodes = Default::default();
match schema.inner {
SchemaPiece::Record { fields, .. } => {
for f in fields {
columns.extend(get_named_columns(
&mut seen_avro_nodes,
schema.step(&f.schema),
Some(&f.name),
)?);
}
}
_ => {
columns.extend(get_named_columns(&mut seen_avro_nodes, schema, None)?);
}
}
Ok(columns)
}
/// Get the series of (one or more) SQL columns corresponding to an Avro union.
/// See module comments for details.
fn get_union_columns<'a>(
seen_avro_nodes: &mut BTreeSet<usize>,
schema: SchemaNode<'a>,
base_name: Option<&str>,
) -> anyhow::Result<Vec<(ColumnName, ColumnType)>> {
let us = match schema.inner {
SchemaPiece::Union(us) => us,
_ => panic!("This function should only be called on unions."),
};
let mut columns = vec![];
let vs = us.variants();
if vs.is_empty() || (vs.len() == 1 && is_null(&vs[0])) {
bail!(anyhow!("Empty or null-only unions are not supported"));
} else {
for (i, v) in vs.iter().filter(|v| !is_null(v)).enumerate() {
let named_idx = match v {
SchemaPieceOrNamed::Named(idx) => Some(*idx),
_ => None,
};
if let Some(named_idx) = named_idx {
if !seen_avro_nodes.insert(named_idx) {
bail!(
"Recursive types are not supported: {}",
v.get_human_name(schema.root)
);
}
}
let node = schema.step(v);
if let SchemaPiece::Union(_) = node.inner {
unreachable!("Internal error: directly nested avro union!");
}
let name = if vs.len() == 1 || (vs.len() == 2 && vs.iter().any(is_null)) {
// There is only one non-null variant in the
// union, so we can use the field name directly.
base_name
.map(|n| n.to_owned())
.or_else(|| {
v.get_piece_and_name(schema.root)
.1
.map(|full_name| full_name.base_name().to_owned())
})
.unwrap_or_else(|| "?column?".into())
} else {
// There are multiple non-null variants in the
// union, so we need to invent field names for
// each variant.
base_name
.map(|n| format!("{}{}", n, i + 1))
.or_else(|| {
v.get_piece_and_name(schema.root)
.1
.map(|full_name| full_name.base_name().to_owned())
})
.unwrap_or_else(|| "?column?".into())
};
// If there is more than one variant in the union,
// the column's output type is nullable, as this
// column will be null whenever it is uninhabited.
let ty = validate_schema_2(seen_avro_nodes, node)?;
columns.push((name.into(), ty.nullable(vs.len() > 1)));
if let Some(named_idx) = named_idx {
seen_avro_nodes.remove(&named_idx);
}
}
}
Ok(columns)
}
fn get_named_columns<'a>(
seen_avro_nodes: &mut BTreeSet<usize>,
schema: SchemaNode<'a>,
base_name: Option<&str>,
) -> anyhow::Result<Vec<(ColumnName, ColumnType)>> {
if let SchemaPiece::Union(_) = schema.inner {
get_union_columns(seen_avro_nodes, schema, base_name)
} else {
let scalar_type = validate_schema_2(seen_avro_nodes, schema)?;
Ok(vec![(
// TODO(benesch): we should do better than this when there's no base
// name, e.g., invent a name based on the type.
base_name.unwrap_or("?column?").into(),
scalar_type.nullable(false),
)])
}
}
/// Get the single column corresponding to a schema node.
/// It is an error if this node should correspond to more than one column
/// (because it is an Essential Union in the sense described in the module docs).
fn validate_schema_2(
seen_avro_nodes: &mut BTreeSet<usize>,
schema: SchemaNode,
) -> anyhow::Result<ScalarType> {
Ok(match schema.inner {
SchemaPiece::Union(_) => {
let columns = get_union_columns(seen_avro_nodes, schema, None)?;
if columns.len() != 1 {
bail!("Union of more than one non-null type not valid here");
}
let (_column_name, column_type) = columns.into_element();
// It's okay to lose the nullability information here, as it's not relevant to
// any higher layer. This will either be included in an array or map type,
// where all values are nullable. It can't be included as a top-level column
// or as a record type, where nullability is actually tracked, because in
// those cases we will have already gone through the `Union` code path in
// `get_named_columns`.
column_type.scalar_type
}
SchemaPiece::Null => bail!("null outside of union types is not supported"),
SchemaPiece::Boolean => ScalarType::Bool,
SchemaPiece::Int => ScalarType::Int32,
SchemaPiece::Long => ScalarType::Int64,
SchemaPiece::Float => ScalarType::Float32,
SchemaPiece::Double => ScalarType::Float64,
SchemaPiece::Date => ScalarType::Date,
SchemaPiece::TimestampMilli => ScalarType::Timestamp {
precision: Some(TimestampPrecision::try_from(3).unwrap()),
},
SchemaPiece::TimestampMicro => ScalarType::Timestamp {
precision: Some(TimestampPrecision::try_from(6).unwrap()),
},
SchemaPiece::Decimal {
precision, scale, ..
} => {
if *precision > usize::cast_from(NUMERIC_DATUM_MAX_PRECISION) {
bail!(
"decimals with precision greater than {} are not supported",
NUMERIC_DATUM_MAX_PRECISION
)
}
ScalarType::Numeric {
max_scale: Some(NumericMaxScale::try_from(*scale)?),
}
}
SchemaPiece::Bytes | SchemaPiece::Fixed { .. } => ScalarType::Bytes,
SchemaPiece::String | SchemaPiece::Enum { .. } => ScalarType::String,
SchemaPiece::Json => ScalarType::Jsonb,
SchemaPiece::Uuid => ScalarType::Uuid,
SchemaPiece::Record { fields, .. } => {
let mut columns = vec![];
for f in fields {
let named_idx = match &f.schema {
SchemaPieceOrNamed::Named(idx) => Some(*idx),
_ => None,
};
if let Some(named_idx) = named_idx {
if !seen_avro_nodes.insert(named_idx) {
bail!(
"Recursive types are not supported: {}",
f.schema.get_human_name(schema.root)
);
}
}
let next_node = schema.step(&f.schema);
columns.extend(
get_named_columns(seen_avro_nodes, next_node, Some(&f.name))?.into_iter(),
);
if let Some(named_idx) = named_idx {
seen_avro_nodes.remove(&named_idx);
}
}
ScalarType::Record {
fields: columns.into(),
custom_id: None,
}
}
SchemaPiece::Array(inner) => {
let named_idx = match inner.as_ref() {
SchemaPieceOrNamed::Named(idx) => Some(*idx),
_ => None,
};
if let Some(named_idx) = named_idx {
if !seen_avro_nodes.insert(named_idx) {
bail!(
"Recursive types are not supported: {}",
inner.get_human_name(schema.root)
);
}
}
let next_node = schema.step(inner);
let ret = ScalarType::List {
element_type: Box::new(validate_schema_2(seen_avro_nodes, next_node)?),
custom_id: None,
};
if let Some(named_idx) = named_idx {
seen_avro_nodes.remove(&named_idx);
}
ret
}
SchemaPiece::Map(inner) => ScalarType::Map {
value_type: Box::new(validate_schema_2(seen_avro_nodes, schema.step(inner))?),
custom_id: None,
},
_ => bail!("Unsupported type in schema: {:?}", schema.inner),
})
}
pub struct ConfluentAvroResolver {
reader_schema: Schema,
writer_schemas: Option<SchemaCache>,
confluent_wire_format: bool,
}
impl ConfluentAvroResolver {
pub fn new(
reader_schema: &str,
ccsr_client: Option<mz_ccsr::Client>,
confluent_wire_format: bool,
) -> anyhow::Result<Self> {
let reader_schema = parse_schema(reader_schema)?;
let writer_schemas = ccsr_client.map(SchemaCache::new).transpose()?;
Ok(Self {
reader_schema,
writer_schemas,
confluent_wire_format,
})
}
pub async fn resolve<'a, 'b>(
&'a mut self,
mut bytes: &'b [u8],
) -> anyhow::Result<anyhow::Result<(&'b [u8], &'a Schema, Option<i32>)>> {
let (resolved_schema, schema_id) = match &mut self.writer_schemas {
Some(cache) => {
debug_assert!(
self.confluent_wire_format,
"We should have set 'confluent_wire_format' everywhere \
that can lead to this branch"
);
// XXX(guswynn): use destructuring assignments when they are stable
let (schema_id, adjusted_bytes) = match crate::confluent::extract_avro_header(bytes)
{
Ok(ok) => ok,
Err(err) => return Ok(Err(err)),
};
bytes = adjusted_bytes;
let result = cache
.get(schema_id, &self.reader_schema)
// The outer Result describes transient errors so use ? here to propagate
.await?
.with_context(|| format!("failed to resolve Avro schema (id = {})", schema_id));
let schema = match result {
Ok(schema) => schema,
Err(err) => return Ok(Err(err)),
};
(schema, Some(schema_id))
}
// If we haven't been asked to use a schema registry, we have no way
// to discover the writer's schema. That's ok; we'll just use the
// reader's schema and hope it lines up.
None => {
if self.confluent_wire_format {
// validate and just move the bytes buffer ahead
let (_, adjusted_bytes) = match crate::confluent::extract_avro_header(bytes) {
Ok(ok) => ok,
Err(err) => return Ok(Err(err)),
};
bytes = adjusted_bytes;
}
(&self.reader_schema, None)
}
};
Ok(Ok((bytes, resolved_schema, schema_id)))
}
}
impl fmt::Debug for ConfluentAvroResolver {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("ConfluentAvroResolver")
.field("reader_schema", &self.reader_schema)
.field(
"write_schema",
if self.writer_schemas.is_some() {
&"some"
} else {
&"none"
},
)
.finish()
}
}
#[derive(Debug)]
struct SchemaCache {
cache: BTreeMap<i32, Result<Schema, AvroError>>,
ccsr_client: Arc<mz_ccsr::Client>,
}
impl SchemaCache {
fn new(ccsr_client: mz_ccsr::Client) -> Result<SchemaCache, anyhow::Error> {
Ok(SchemaCache {
cache: BTreeMap::new(),
ccsr_client: Arc::new(ccsr_client),
})
}
/// Looks up the writer schema for ID. If the schema is literally identical
/// to the reader schema, as determined by the reader schema fingerprint
/// that this schema cache was initialized with, returns the schema directly.
/// If not, performs schema resolution on the reader and writer and
/// returns the result.
async fn get(
&mut self,
id: i32,
reader_schema: &Schema,
) -> anyhow::Result<anyhow::Result<&Schema>> {
let entry = match self.cache.entry(id) {
Entry::Occupied(o) => o.into_mut(),
Entry::Vacant(v) => {
// An issue with _fetching_ the schema should be returned
// immediately, and not cached, since it might get better on the
// next retry.
let ccsr_client = Arc::clone(&self.ccsr_client);
let response = Retry::default()
// Twice the timeout of the ccsr client so we can attempt 2 requests.
.max_duration(ccsr_client.timeout() * 2)
// Canceling because ultimately it's just non-mutating HTTP requests.
.retry_async_canceling(move |state| {
let ccsr_client = Arc::clone(&ccsr_client);
async move {
let res = ccsr_client.get_schema_by_id(id).await;
match res {
Err(e) => {
if let Some(timeout) = state.next_backoff {
warn!(
"transient failure fetching \
schema id {}: {:?}, retrying in {:?}",
id, e, timeout
);
}
Err(anyhow::Error::from(e))
}
_ => Ok(res?),
}
}
})
.run_in_task(|| format!("fetch_avro_schema:{}", id))
.await?;
// Now, we've gotten some json back, so we want to cache it (regardless of whether it's a valid
// avro schema, it won't change).
//
// However, we can't just cache it directly, since resolving schemas takes significant CPU work,
// which we don't want to repeat for every record. So, parse and resolve it, and cache the
// result (whether schema or error).
let result = Schema::from_str(&response.raw).and_then(|schema| {
// Schema fingerprints don't actually capture whether two schemas are meaningfully
// different, because they strip out logical types. Thus, resolve in all cases.
let resolved = resolve_schemas(&schema, reader_schema)?;
Ok(resolved)
});
v.insert(result)
}
};
Ok(entry.as_ref().map_err(|e| anyhow::Error::new(e.clone())))
}
}