1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
//! Reduce the collection to one occurrence of each distinct element.
//!
//! The `distinct_total` and `distinct_total_u` operators are optimizations of the more general
//! `distinct` and `distinct_u` operators for the case in which time is totally ordered.
use timely::order::TotalOrder;
use timely::dataflow::*;
use timely::dataflow::operators::Operator;
use timely::dataflow::channels::pact::Pipeline;
use crate::lattice::Lattice;
use crate::{ExchangeData, Collection};
use crate::difference::{Semigroup, Abelian};
use crate::hashable::Hashable;
use crate::collection::AsCollection;
use crate::operators::arrange::{Arranged, ArrangeBySelf};
use crate::trace::{BatchReader, Cursor, TraceReader};
use crate::trace::cursor::IntoOwned;
/// Extension trait for the `distinct` differential dataflow method.
pub trait ThresholdTotal<G: Scope, K: ExchangeData, R: ExchangeData+Semigroup> where G::Timestamp: TotalOrder+Lattice+Ord {
/// Reduces the collection to one occurrence of each distinct element.
fn threshold_semigroup<R2, F>(&self, thresh: F) -> Collection<G, K, R2>
where
R2: Semigroup+'static,
F: FnMut(&K,&R,Option<&R>)->Option<R2>+'static,
;
/// Reduces the collection to one occurrence of each distinct element.
///
/// # Examples
///
/// ```
/// use differential_dataflow::input::Input;
/// use differential_dataflow::operators::ThresholdTotal;
///
/// ::timely::example(|scope| {
/// // report the number of occurrences of each key
/// scope.new_collection_from(1 .. 10).1
/// .map(|x| x / 3)
/// .threshold_total(|_,c| c % 2);
/// });
/// ```
fn threshold_total<R2: Abelian+'static, F: FnMut(&K,&R)->R2+'static>(&self, mut thresh: F) -> Collection<G, K, R2> {
self.threshold_semigroup(move |key, new, old| {
let mut new = thresh(key, new);
if let Some(old) = old {
let mut add = thresh(key, old);
add.negate();
new.plus_equals(&add);
}
if !new.is_zero() { Some(new) } else { None }
})
}
/// Reduces the collection to one occurrence of each distinct element.
///
/// This reduction only tests whether the weight associated with a record is non-zero, and otherwise
/// ignores its specific value. To take more general actions based on the accumulated weight, consider
/// the `threshold` method.
///
/// # Examples
///
/// ```
/// use differential_dataflow::input::Input;
/// use differential_dataflow::operators::ThresholdTotal;
///
/// ::timely::example(|scope| {
/// // report the number of occurrences of each key
/// scope.new_collection_from(1 .. 10).1
/// .map(|x| x / 3)
/// .distinct_total();
/// });
/// ```
fn distinct_total(&self) -> Collection<G, K, isize> {
self.distinct_total_core()
}
/// Distinct for general integer differences.
///
/// This method allows `distinct` to produce collections whose difference
/// type is something other than an `isize` integer, for example perhaps an
/// `i32`.
fn distinct_total_core<R2: Abelian+From<i8>+'static>(&self) -> Collection<G, K, R2> {
self.threshold_total(|_,_| R2::from(1i8))
}
}
impl<G: Scope, K: ExchangeData+Hashable, R: ExchangeData+Semigroup> ThresholdTotal<G, K, R> for Collection<G, K, R>
where G::Timestamp: TotalOrder+Lattice+Ord {
fn threshold_semigroup<R2, F>(&self, thresh: F) -> Collection<G, K, R2>
where
R2: Semigroup+'static,
F: FnMut(&K,&R,Option<&R>)->Option<R2>+'static,
{
self.arrange_by_self_named("Arrange: ThresholdTotal")
.threshold_semigroup(thresh)
}
}
impl<G, K, T1> ThresholdTotal<G, K, T1::Diff> for Arranged<G, T1>
where
G: Scope<Timestamp=T1::Time>,
T1: for<'a> TraceReader<Key<'a>=&'a K, Val<'a>=&'a ()>+Clone+'static,
for<'a> T1::Diff : Semigroup<T1::DiffGat<'a>>,
K: ExchangeData,
T1::Time: TotalOrder,
T1::Diff: ExchangeData,
{
fn threshold_semigroup<R2, F>(&self, mut thresh: F) -> Collection<G, K, R2>
where
R2: Semigroup+'static,
F: for<'a> FnMut(T1::Key<'a>,&T1::Diff,Option<&T1::Diff>)->Option<R2>+'static,
{
let mut trace = self.trace.clone();
let mut buffer = Vec::new();
self.stream.unary_frontier(Pipeline, "ThresholdTotal", move |_,_| {
// tracks the upper limit of known-complete timestamps.
let mut upper_limit = timely::progress::frontier::Antichain::from_elem(<G::Timestamp as timely::progress::Timestamp>::minimum());
move |input, output| {
input.for_each(|capability, batches| {
batches.swap(&mut buffer);
let mut session = output.session(&capability);
for batch in buffer.drain(..) {
let mut batch_cursor = batch.cursor();
let (mut trace_cursor, trace_storage) = trace.cursor_through(batch.lower().borrow()).unwrap();
upper_limit.clone_from(batch.upper());
while let Some(key) = batch_cursor.get_key(&batch) {
let mut count: Option<T1::Diff> = None;
// Compute the multiplicity of this key before the current batch.
trace_cursor.seek_key(&trace_storage, key);
if trace_cursor.get_key(&trace_storage) == Some(key) {
trace_cursor.map_times(&trace_storage, |_, diff| {
count.as_mut().map(|c| c.plus_equals(&diff));
if count.is_none() { count = Some(diff.into_owned()); }
});
}
// Apply `thresh` both before and after `diff` is applied to `count`.
// If the result is non-zero, send it along.
batch_cursor.map_times(&batch, |time, diff| {
let difference =
match &count {
Some(old) => {
let mut temp = old.clone();
temp.plus_equals(&diff);
thresh(key, &temp, Some(old))
},
None => { thresh(key, &diff.into_owned(), None) },
};
// Either add or assign `diff` to `count`.
if let Some(count) = &mut count {
count.plus_equals(&diff);
}
else {
count = Some(diff.into_owned());
}
if let Some(difference) = difference {
if !difference.is_zero() {
session.give((key.clone(), time.into_owned(), difference));
}
}
});
batch_cursor.step_key(&batch);
}
}
});
// tidy up the shared input trace.
trace.advance_upper(&mut upper_limit);
trace.set_logical_compaction(upper_limit.borrow());
trace.set_physical_compaction(upper_limit.borrow());
}
})
.as_collection()
}
}