seahash/helper.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
//! Helper functions.
/// Read a buffer smaller than 8 bytes into an integer in little-endian.
///
/// This assumes that `buf.len() < 8`. If this is not satisfied, the behavior is unspecified.
#[inline(always)]
pub fn read_int(buf: &[u8]) -> u64 {
// Because we want to make sure that it is register allocated, we fetch this into a variable.
// It will likely make no difference anyway, though.
let ptr = buf.as_ptr();
unsafe {
// Break it down to reads of integers with widths in total spanning the buffer. This minimizes
// the number of reads
match buf.len() {
// u8.
1 => *ptr as u64,
// u16.
2 => (ptr as *const u16).read_unaligned().to_le() as u64,
// u16 + u8.
3 => {
let a = (ptr as *const u16).read_unaligned().to_le() as u64;
let b = *ptr.offset(2) as u64;
a | (b << 16)
}
// u32.
4 => (ptr as *const u32).read_unaligned().to_le() as u64,
// u32 + u8.
5 => {
let a = (ptr as *const u32).read_unaligned().to_le() as u64;
let b = *ptr.offset(4) as u64;
a | (b << 32)
}
// u32 + u16.
6 => {
let a = (ptr as *const u32).read_unaligned().to_le() as u64;
let b = (ptr.offset(4) as *const u16).read_unaligned().to_le() as u64;
a | (b << 32)
}
// u32 + u16 + u8.
7 => {
let a = (ptr as *const u32).read_unaligned().to_le() as u64;
let b = (ptr.offset(4) as *const u16).read_unaligned().to_le() as u64;
let c = *ptr.offset(6) as u64;
a | (b << 32) | (c << 48)
}
_ => 0,
}
}
}
/// Read a little-endian 64-bit integer from some buffer.
#[inline(always)]
pub unsafe fn read_u64(ptr: *const u8) -> u64 {
#[cfg(target_pointer_width = "32")]
{
// We cannot be sure about the memory layout of a potentially emulated 64-bit integer, so
// we read it manually. If possible, the compiler should emit proper instructions.
let a = (ptr as *const u32).read_unaligned().to_le();
let b = (ptr.offset(4) as *const u32).read_unaligned().to_le();
a as u64 | ((b as u64) << 32)
}
#[cfg(target_pointer_width = "64")]
{
(ptr as *const u64).read_unaligned().to_le()
}
}
/// The diffusion function.
///
/// This is a bijective function emitting chaotic behavior. Such functions are used as building
/// blocks for hash functions.
pub const fn diffuse(mut x: u64) -> u64 {
// These are derived from the PCG RNG's round. Thanks to @Veedrac for proposing this. The basic
// idea is that we use dynamic shifts, which are determined by the input itself. The shift is
// chosen by the higher bits, which means that changing those flips the lower bits, which
// scatters upwards because of the multiplication.
x = x.wrapping_mul(0x6eed0e9da4d94a4f);
let a = x >> 32;
let b = x >> 60;
x ^= a >> b;
x = x.wrapping_mul(0x6eed0e9da4d94a4f);
x
}
/// Reverse the `diffuse` function.
pub const fn undiffuse(mut x: u64) -> u64 {
// 0x2f72b4215a3d8caf is the modular multiplicative inverse of the constant used in `diffuse`.
x = x.wrapping_mul(0x2f72b4215a3d8caf);
let a = x >> 32;
let b = x >> 60;
x ^= a >> b;
x = x.wrapping_mul(0x2f72b4215a3d8caf);
x
}
#[cfg(test)]
mod tests {
use super::*;
fn diffuse_test(x: u64, y: u64) {
assert_eq!(diffuse(x), y);
assert_eq!(x, undiffuse(y));
assert_eq!(undiffuse(diffuse(x)), x);
}
#[test]
fn read_int_() {
assert_eq!(read_int(&[2, 3]), 770);
assert_eq!(read_int(&[3, 2]), 515);
assert_eq!(read_int(&[3, 2, 5]), 328195);
}
#[test]
fn read_u64_() {
unsafe {
assert_eq!(read_u64([1, 0, 0, 0, 0, 0, 0, 0].as_ptr()), 1);
assert_eq!(read_u64([2, 1, 0, 0, 0, 0, 0, 0].as_ptr()), 258);
}
}
#[test]
fn diffuse_test_vectors() {
diffuse_test(94203824938, 17289265692384716055);
diffuse_test(0xDEADBEEF, 12110756357096144265);
diffuse_test(0, 0);
diffuse_test(1, 15197155197312260123);
diffuse_test(2, 1571904453004118546);
diffuse_test(3, 16467633989910088880);
}
}