1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
use crate::io::{Interest, PollEvented, ReadBuf, Ready};
use crate::net::{to_socket_addrs, ToSocketAddrs};
use std::fmt;
use std::io;
use std::net::{self, Ipv4Addr, Ipv6Addr, SocketAddr};
use std::task::{Context, Poll};
cfg_io_util! {
use bytes::BufMut;
}
cfg_net! {
/// A UDP socket.
///
/// UDP is "connectionless", unlike TCP. Meaning, regardless of what address you've bound to, a `UdpSocket`
/// is free to communicate with many different remotes. In tokio there are basically two main ways to use `UdpSocket`:
///
/// * one to many: [`bind`](`UdpSocket::bind`) and use [`send_to`](`UdpSocket::send_to`)
/// and [`recv_from`](`UdpSocket::recv_from`) to communicate with many different addresses
/// * one to one: [`connect`](`UdpSocket::connect`) and associate with a single address, using [`send`](`UdpSocket::send`)
/// and [`recv`](`UdpSocket::recv`) to communicate only with that remote address
///
/// This type does not provide a `split` method, because this functionality
/// can be achieved by instead wrapping the socket in an [`Arc`]. Note that
/// you do not need a `Mutex` to share the `UdpSocket` — an `Arc<UdpSocket>`
/// is enough. This is because all of the methods take `&self` instead of
/// `&mut self`. Once you have wrapped it in an `Arc`, you can call
/// `.clone()` on the `Arc<UdpSocket>` to get multiple shared handles to the
/// same socket. An example of such usage can be found further down.
///
/// [`Arc`]: std::sync::Arc
///
/// # Streams
///
/// If you need to listen over UDP and produce a [`Stream`], you can look
/// at [`UdpFramed`].
///
/// [`UdpFramed`]: https://docs.rs/tokio-util/latest/tokio_util/udp/struct.UdpFramed.html
/// [`Stream`]: https://docs.rs/futures/0.3/futures/stream/trait.Stream.html
///
/// # Example: one to many (bind)
///
/// Using `bind` we can create a simple echo server that sends and recv's with many different clients:
/// ```no_run
/// use tokio::net::UdpSocket;
/// use std::io;
///
/// #[tokio::main]
/// async fn main() -> io::Result<()> {
/// let sock = UdpSocket::bind("0.0.0.0:8080").await?;
/// let mut buf = [0; 1024];
/// loop {
/// let (len, addr) = sock.recv_from(&mut buf).await?;
/// println!("{:?} bytes received from {:?}", len, addr);
///
/// let len = sock.send_to(&buf[..len], addr).await?;
/// println!("{:?} bytes sent", len);
/// }
/// }
/// ```
///
/// # Example: one to one (connect)
///
/// Or using `connect` we can echo with a single remote address using `send` and `recv`:
/// ```no_run
/// use tokio::net::UdpSocket;
/// use std::io;
///
/// #[tokio::main]
/// async fn main() -> io::Result<()> {
/// let sock = UdpSocket::bind("0.0.0.0:8080").await?;
///
/// let remote_addr = "127.0.0.1:59611";
/// sock.connect(remote_addr).await?;
/// let mut buf = [0; 1024];
/// loop {
/// let len = sock.recv(&mut buf).await?;
/// println!("{:?} bytes received from {:?}", len, remote_addr);
///
/// let len = sock.send(&buf[..len]).await?;
/// println!("{:?} bytes sent", len);
/// }
/// }
/// ```
///
/// # Example: Splitting with `Arc`
///
/// Because `send_to` and `recv_from` take `&self`. It's perfectly alright
/// to use an `Arc<UdpSocket>` and share the references to multiple tasks.
/// Here is a similar "echo" example that supports concurrent
/// sending/receiving:
///
/// ```no_run
/// use tokio::{net::UdpSocket, sync::mpsc};
/// use std::{io, net::SocketAddr, sync::Arc};
///
/// #[tokio::main]
/// async fn main() -> io::Result<()> {
/// let sock = UdpSocket::bind("0.0.0.0:8080".parse::<SocketAddr>().unwrap()).await?;
/// let r = Arc::new(sock);
/// let s = r.clone();
/// let (tx, mut rx) = mpsc::channel::<(Vec<u8>, SocketAddr)>(1_000);
///
/// tokio::spawn(async move {
/// while let Some((bytes, addr)) = rx.recv().await {
/// let len = s.send_to(&bytes, &addr).await.unwrap();
/// println!("{:?} bytes sent", len);
/// }
/// });
///
/// let mut buf = [0; 1024];
/// loop {
/// let (len, addr) = r.recv_from(&mut buf).await?;
/// println!("{:?} bytes received from {:?}", len, addr);
/// tx.send((buf[..len].to_vec(), addr)).await.unwrap();
/// }
/// }
/// ```
///
pub struct UdpSocket {
io: PollEvented<mio::net::UdpSocket>,
}
}
impl UdpSocket {
/// This function will create a new UDP socket and attempt to bind it to
/// the `addr` provided.
///
/// Binding with a port number of 0 will request that the OS assigns a port
/// to this listener. The port allocated can be queried via the `local_addr`
/// method.
///
/// # Example
///
/// ```no_run
/// use tokio::net::UdpSocket;
/// use std::io;
///
/// #[tokio::main]
/// async fn main() -> io::Result<()> {
/// let sock = UdpSocket::bind("0.0.0.0:8080").await?;
/// // use `sock`
/// # let _ = sock;
/// Ok(())
/// }
/// ```
pub async fn bind<A: ToSocketAddrs>(addr: A) -> io::Result<UdpSocket> {
let addrs = to_socket_addrs(addr).await?;
let mut last_err = None;
for addr in addrs {
match UdpSocket::bind_addr(addr) {
Ok(socket) => return Ok(socket),
Err(e) => last_err = Some(e),
}
}
Err(last_err.unwrap_or_else(|| {
io::Error::new(
io::ErrorKind::InvalidInput,
"could not resolve to any address",
)
}))
}
fn bind_addr(addr: SocketAddr) -> io::Result<UdpSocket> {
let sys = mio::net::UdpSocket::bind(addr)?;
UdpSocket::new(sys)
}
#[track_caller]
fn new(socket: mio::net::UdpSocket) -> io::Result<UdpSocket> {
let io = PollEvented::new(socket)?;
Ok(UdpSocket { io })
}
/// Creates new `UdpSocket` from a previously bound `std::net::UdpSocket`.
///
/// This function is intended to be used to wrap a UDP socket from the
/// standard library in the Tokio equivalent.
///
/// This can be used in conjunction with `socket2`'s `Socket` interface to
/// configure a socket before it's handed off, such as setting options like
/// `reuse_address` or binding to multiple addresses.
///
/// # Notes
///
/// The caller is responsible for ensuring that the socket is in
/// non-blocking mode. Otherwise all I/O operations on the socket
/// will block the thread, which will cause unexpected behavior.
/// Non-blocking mode can be set using [`set_nonblocking`].
///
/// [`set_nonblocking`]: std::net::UdpSocket::set_nonblocking
///
/// # Panics
///
/// This function panics if thread-local runtime is not set.
///
/// The runtime is usually set implicitly when this function is called
/// from a future driven by a tokio runtime, otherwise runtime can be set
/// explicitly with [`Runtime::enter`](crate::runtime::Runtime::enter) function.
///
/// # Example
///
/// ```no_run
/// use tokio::net::UdpSocket;
/// # use std::{io, net::SocketAddr};
///
/// # #[tokio::main]
/// # async fn main() -> io::Result<()> {
/// let addr = "0.0.0.0:8080".parse::<SocketAddr>().unwrap();
/// let std_sock = std::net::UdpSocket::bind(addr)?;
/// std_sock.set_nonblocking(true)?;
/// let sock = UdpSocket::from_std(std_sock)?;
/// // use `sock`
/// # Ok(())
/// # }
/// ```
#[track_caller]
pub fn from_std(socket: net::UdpSocket) -> io::Result<UdpSocket> {
let io = mio::net::UdpSocket::from_std(socket);
UdpSocket::new(io)
}
/// Turns a [`tokio::net::UdpSocket`] into a [`std::net::UdpSocket`].
///
/// The returned [`std::net::UdpSocket`] will have nonblocking mode set as
/// `true`. Use [`set_nonblocking`] to change the blocking mode if needed.
///
/// # Examples
///
/// ```rust,no_run
/// use std::error::Error;
///
/// #[tokio::main]
/// async fn main() -> Result<(), Box<dyn Error>> {
/// let tokio_socket = tokio::net::UdpSocket::bind("127.0.0.1:0").await?;
/// let std_socket = tokio_socket.into_std()?;
/// std_socket.set_nonblocking(false)?;
/// Ok(())
/// }
/// ```
///
/// [`tokio::net::UdpSocket`]: UdpSocket
/// [`std::net::UdpSocket`]: std::net::UdpSocket
/// [`set_nonblocking`]: fn@std::net::UdpSocket::set_nonblocking
pub fn into_std(self) -> io::Result<std::net::UdpSocket> {
#[cfg(unix)]
{
use std::os::unix::io::{FromRawFd, IntoRawFd};
self.io
.into_inner()
.map(IntoRawFd::into_raw_fd)
.map(|raw_fd| unsafe { std::net::UdpSocket::from_raw_fd(raw_fd) })
}
#[cfg(windows)]
{
use std::os::windows::io::{FromRawSocket, IntoRawSocket};
self.io
.into_inner()
.map(|io| io.into_raw_socket())
.map(|raw_socket| unsafe { std::net::UdpSocket::from_raw_socket(raw_socket) })
}
}
fn as_socket(&self) -> socket2::SockRef<'_> {
socket2::SockRef::from(self)
}
/// Returns the local address that this socket is bound to.
///
/// # Example
///
/// ```no_run
/// use tokio::net::UdpSocket;
/// # use std::{io, net::SocketAddr};
///
/// # #[tokio::main]
/// # async fn main() -> io::Result<()> {
/// let addr = "0.0.0.0:8080".parse::<SocketAddr>().unwrap();
/// let sock = UdpSocket::bind(addr).await?;
/// // the address the socket is bound to
/// let local_addr = sock.local_addr()?;
/// # Ok(())
/// # }
/// ```
pub fn local_addr(&self) -> io::Result<SocketAddr> {
self.io.local_addr()
}
/// Returns the socket address of the remote peer this socket was connected to.
///
/// # Example
///
/// ```
/// use tokio::net::UdpSocket;
///
/// # use std::{io, net::SocketAddr};
/// # #[tokio::main]
/// # async fn main() -> io::Result<()> {
/// let addr = "0.0.0.0:8080".parse::<SocketAddr>().unwrap();
/// let peer = "127.0.0.1:11100".parse::<SocketAddr>().unwrap();
/// let sock = UdpSocket::bind(addr).await?;
/// sock.connect(peer).await?;
/// assert_eq!(peer, sock.peer_addr()?);
/// # Ok(())
/// # }
/// ```
pub fn peer_addr(&self) -> io::Result<SocketAddr> {
self.io.peer_addr()
}
/// Connects the UDP socket setting the default destination for send() and
/// limiting packets that are read via `recv` from the address specified in
/// `addr`.
///
/// # Example
///
/// ```no_run
/// use tokio::net::UdpSocket;
/// # use std::{io, net::SocketAddr};
///
/// # #[tokio::main]
/// # async fn main() -> io::Result<()> {
/// let sock = UdpSocket::bind("0.0.0.0:8080".parse::<SocketAddr>().unwrap()).await?;
///
/// let remote_addr = "127.0.0.1:59600".parse::<SocketAddr>().unwrap();
/// sock.connect(remote_addr).await?;
/// let mut buf = [0u8; 32];
/// // recv from remote_addr
/// let len = sock.recv(&mut buf).await?;
/// // send to remote_addr
/// let _len = sock.send(&buf[..len]).await?;
/// # Ok(())
/// # }
/// ```
pub async fn connect<A: ToSocketAddrs>(&self, addr: A) -> io::Result<()> {
let addrs = to_socket_addrs(addr).await?;
let mut last_err = None;
for addr in addrs {
match self.io.connect(addr) {
Ok(()) => return Ok(()),
Err(e) => last_err = Some(e),
}
}
Err(last_err.unwrap_or_else(|| {
io::Error::new(
io::ErrorKind::InvalidInput,
"could not resolve to any address",
)
}))
}
/// Waits for any of the requested ready states.
///
/// This function is usually paired with `try_recv()` or `try_send()`. It
/// can be used to concurrently `recv` / `send` to the same socket on a single
/// task without splitting the socket.
///
/// The function may complete without the socket being ready. This is a
/// false-positive and attempting an operation will return with
/// `io::ErrorKind::WouldBlock`. The function can also return with an empty
/// [`Ready`] set, so you should always check the returned value and possibly
/// wait again if the requested states are not set.
///
/// # Cancel safety
///
/// This method is cancel safe. Once a readiness event occurs, the method
/// will continue to return immediately until the readiness event is
/// consumed by an attempt to read or write that fails with `WouldBlock` or
/// `Poll::Pending`.
///
/// # Examples
///
/// Concurrently receive from and send to the socket on the same task
/// without splitting.
///
/// ```no_run
/// use tokio::io::{self, Interest};
/// use tokio::net::UdpSocket;
///
/// #[tokio::main]
/// async fn main() -> io::Result<()> {
/// let socket = UdpSocket::bind("127.0.0.1:8080").await?;
/// socket.connect("127.0.0.1:8081").await?;
///
/// loop {
/// let ready = socket.ready(Interest::READABLE | Interest::WRITABLE).await?;
///
/// if ready.is_readable() {
/// // The buffer is **not** included in the async task and will only exist
/// // on the stack.
/// let mut data = [0; 1024];
/// match socket.try_recv(&mut data[..]) {
/// Ok(n) => {
/// println!("received {:?}", &data[..n]);
/// }
/// // False-positive, continue
/// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {}
/// Err(e) => {
/// return Err(e);
/// }
/// }
/// }
///
/// if ready.is_writable() {
/// // Write some data
/// match socket.try_send(b"hello world") {
/// Ok(n) => {
/// println!("sent {} bytes", n);
/// }
/// // False-positive, continue
/// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {}
/// Err(e) => {
/// return Err(e);
/// }
/// }
/// }
/// }
/// }
/// ```
pub async fn ready(&self, interest: Interest) -> io::Result<Ready> {
let event = self.io.registration().readiness(interest).await?;
Ok(event.ready)
}
/// Waits for the socket to become writable.
///
/// This function is equivalent to `ready(Interest::WRITABLE)` and is
/// usually paired with `try_send()` or `try_send_to()`.
///
/// The function may complete without the socket being writable. This is a
/// false-positive and attempting a `try_send()` will return with
/// `io::ErrorKind::WouldBlock`.
///
/// # Cancel safety
///
/// This method is cancel safe. Once a readiness event occurs, the method
/// will continue to return immediately until the readiness event is
/// consumed by an attempt to write that fails with `WouldBlock` or
/// `Poll::Pending`.
///
/// # Examples
///
/// ```no_run
/// use tokio::net::UdpSocket;
/// use std::io;
///
/// #[tokio::main]
/// async fn main() -> io::Result<()> {
/// // Bind socket
/// let socket = UdpSocket::bind("127.0.0.1:8080").await?;
/// socket.connect("127.0.0.1:8081").await?;
///
/// loop {
/// // Wait for the socket to be writable
/// socket.writable().await?;
///
/// // Try to send data, this may still fail with `WouldBlock`
/// // if the readiness event is a false positive.
/// match socket.try_send(b"hello world") {
/// Ok(n) => {
/// break;
/// }
/// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
/// continue;
/// }
/// Err(e) => {
/// return Err(e);
/// }
/// }
/// }
///
/// Ok(())
/// }
/// ```
pub async fn writable(&self) -> io::Result<()> {
self.ready(Interest::WRITABLE).await?;
Ok(())
}
/// Polls for write/send readiness.
///
/// If the udp stream is not currently ready for sending, this method will
/// store a clone of the `Waker` from the provided `Context`. When the udp
/// stream becomes ready for sending, `Waker::wake` will be called on the
/// waker.
///
/// Note that on multiple calls to `poll_send_ready` or `poll_send`, only
/// the `Waker` from the `Context` passed to the most recent call is
/// scheduled to receive a wakeup. (However, `poll_recv_ready` retains a
/// second, independent waker.)
///
/// This function is intended for cases where creating and pinning a future
/// via [`writable`] is not feasible. Where possible, using [`writable`] is
/// preferred, as this supports polling from multiple tasks at once.
///
/// # Return value
///
/// The function returns:
///
/// * `Poll::Pending` if the udp stream is not ready for writing.
/// * `Poll::Ready(Ok(()))` if the udp stream is ready for writing.
/// * `Poll::Ready(Err(e))` if an error is encountered.
///
/// # Errors
///
/// This function may encounter any standard I/O error except `WouldBlock`.
///
/// [`writable`]: method@Self::writable
pub fn poll_send_ready(&self, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
self.io.registration().poll_write_ready(cx).map_ok(|_| ())
}
/// Sends data on the socket to the remote address that the socket is
/// connected to.
///
/// The [`connect`] method will connect this socket to a remote address.
/// This method will fail if the socket is not connected.
///
/// [`connect`]: method@Self::connect
///
/// # Return
///
/// On success, the number of bytes sent is returned, otherwise, the
/// encountered error is returned.
///
/// # Cancel safety
///
/// This method is cancel safe. If `send` is used as the event in a
/// [`tokio::select!`](crate::select) statement and some other branch
/// completes first, then it is guaranteed that the message was not sent.
///
/// # Examples
///
/// ```no_run
/// use tokio::io;
/// use tokio::net::UdpSocket;
///
/// #[tokio::main]
/// async fn main() -> io::Result<()> {
/// // Bind socket
/// let socket = UdpSocket::bind("127.0.0.1:8080").await?;
/// socket.connect("127.0.0.1:8081").await?;
///
/// // Send a message
/// socket.send(b"hello world").await?;
///
/// Ok(())
/// }
/// ```
pub async fn send(&self, buf: &[u8]) -> io::Result<usize> {
self.io
.registration()
.async_io(Interest::WRITABLE, || self.io.send(buf))
.await
}
/// Attempts to send data on the socket to the remote address to which it
/// was previously `connect`ed.
///
/// The [`connect`] method will connect this socket to a remote address.
/// This method will fail if the socket is not connected.
///
/// Note that on multiple calls to a `poll_*` method in the send direction,
/// only the `Waker` from the `Context` passed to the most recent call will
/// be scheduled to receive a wakeup.
///
/// # Return value
///
/// The function returns:
///
/// * `Poll::Pending` if the socket is not available to write
/// * `Poll::Ready(Ok(n))` `n` is the number of bytes sent
/// * `Poll::Ready(Err(e))` if an error is encountered.
///
/// # Errors
///
/// This function may encounter any standard I/O error except `WouldBlock`.
///
/// [`connect`]: method@Self::connect
pub fn poll_send(&self, cx: &mut Context<'_>, buf: &[u8]) -> Poll<io::Result<usize>> {
self.io
.registration()
.poll_write_io(cx, || self.io.send(buf))
}
/// Tries to send data on the socket to the remote address to which it is
/// connected.
///
/// When the socket buffer is full, `Err(io::ErrorKind::WouldBlock)` is
/// returned. This function is usually paired with `writable()`.
///
/// # Returns
///
/// If successful, `Ok(n)` is returned, where `n` is the number of bytes
/// sent. If the socket is not ready to send data,
/// `Err(ErrorKind::WouldBlock)` is returned.
///
/// # Examples
///
/// ```no_run
/// use tokio::net::UdpSocket;
/// use std::io;
///
/// #[tokio::main]
/// async fn main() -> io::Result<()> {
/// // Bind a UDP socket
/// let socket = UdpSocket::bind("127.0.0.1:8080").await?;
///
/// // Connect to a peer
/// socket.connect("127.0.0.1:8081").await?;
///
/// loop {
/// // Wait for the socket to be writable
/// socket.writable().await?;
///
/// // Try to send data, this may still fail with `WouldBlock`
/// // if the readiness event is a false positive.
/// match socket.try_send(b"hello world") {
/// Ok(n) => {
/// break;
/// }
/// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
/// continue;
/// }
/// Err(e) => {
/// return Err(e);
/// }
/// }
/// }
///
/// Ok(())
/// }
/// ```
pub fn try_send(&self, buf: &[u8]) -> io::Result<usize> {
self.io
.registration()
.try_io(Interest::WRITABLE, || self.io.send(buf))
}
/// Waits for the socket to become readable.
///
/// This function is equivalent to `ready(Interest::READABLE)` and is usually
/// paired with `try_recv()`.
///
/// The function may complete without the socket being readable. This is a
/// false-positive and attempting a `try_recv()` will return with
/// `io::ErrorKind::WouldBlock`.
///
/// # Cancel safety
///
/// This method is cancel safe. Once a readiness event occurs, the method
/// will continue to return immediately until the readiness event is
/// consumed by an attempt to read that fails with `WouldBlock` or
/// `Poll::Pending`.
///
/// # Examples
///
/// ```no_run
/// use tokio::net::UdpSocket;
/// use std::io;
///
/// #[tokio::main]
/// async fn main() -> io::Result<()> {
/// // Connect to a peer
/// let socket = UdpSocket::bind("127.0.0.1:8080").await?;
/// socket.connect("127.0.0.1:8081").await?;
///
/// loop {
/// // Wait for the socket to be readable
/// socket.readable().await?;
///
/// // The buffer is **not** included in the async task and will
/// // only exist on the stack.
/// let mut buf = [0; 1024];
///
/// // Try to recv data, this may still fail with `WouldBlock`
/// // if the readiness event is a false positive.
/// match socket.try_recv(&mut buf) {
/// Ok(n) => {
/// println!("GOT {:?}", &buf[..n]);
/// break;
/// }
/// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
/// continue;
/// }
/// Err(e) => {
/// return Err(e);
/// }
/// }
/// }
///
/// Ok(())
/// }
/// ```
pub async fn readable(&self) -> io::Result<()> {
self.ready(Interest::READABLE).await?;
Ok(())
}
/// Polls for read/receive readiness.
///
/// If the udp stream is not currently ready for receiving, this method will
/// store a clone of the `Waker` from the provided `Context`. When the udp
/// socket becomes ready for reading, `Waker::wake` will be called on the
/// waker.
///
/// Note that on multiple calls to `poll_recv_ready`, `poll_recv` or
/// `poll_peek`, only the `Waker` from the `Context` passed to the most
/// recent call is scheduled to receive a wakeup. (However,
/// `poll_send_ready` retains a second, independent waker.)
///
/// This function is intended for cases where creating and pinning a future
/// via [`readable`] is not feasible. Where possible, using [`readable`] is
/// preferred, as this supports polling from multiple tasks at once.
///
/// # Return value
///
/// The function returns:
///
/// * `Poll::Pending` if the udp stream is not ready for reading.
/// * `Poll::Ready(Ok(()))` if the udp stream is ready for reading.
/// * `Poll::Ready(Err(e))` if an error is encountered.
///
/// # Errors
///
/// This function may encounter any standard I/O error except `WouldBlock`.
///
/// [`readable`]: method@Self::readable
pub fn poll_recv_ready(&self, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
self.io.registration().poll_read_ready(cx).map_ok(|_| ())
}
/// Receives a single datagram message on the socket from the remote address
/// to which it is connected. On success, returns the number of bytes read.
///
/// The function must be called with valid byte array `buf` of sufficient
/// size to hold the message bytes. If a message is too long to fit in the
/// supplied buffer, excess bytes may be discarded.
///
/// The [`connect`] method will connect this socket to a remote address.
/// This method will fail if the socket is not connected.
///
/// # Cancel safety
///
/// This method is cancel safe. If `recv` is used as the event in a
/// [`tokio::select!`](crate::select) statement and some other branch
/// completes first, it is guaranteed that no messages were received on this
/// socket.
///
/// [`connect`]: method@Self::connect
///
/// ```no_run
/// use tokio::net::UdpSocket;
/// use std::io;
///
/// #[tokio::main]
/// async fn main() -> io::Result<()> {
/// // Bind socket
/// let socket = UdpSocket::bind("127.0.0.1:8080").await?;
/// socket.connect("127.0.0.1:8081").await?;
///
/// let mut buf = vec![0; 10];
/// let n = socket.recv(&mut buf).await?;
///
/// println!("received {} bytes {:?}", n, &buf[..n]);
///
/// Ok(())
/// }
/// ```
pub async fn recv(&self, buf: &mut [u8]) -> io::Result<usize> {
self.io
.registration()
.async_io(Interest::READABLE, || self.io.recv(buf))
.await
}
/// Attempts to receive a single datagram message on the socket from the remote
/// address to which it is `connect`ed.
///
/// The [`connect`] method will connect this socket to a remote address. This method
/// resolves to an error if the socket is not connected.
///
/// Note that on multiple calls to a `poll_*` method in the `recv` direction, only the
/// `Waker` from the `Context` passed to the most recent call will be scheduled to
/// receive a wakeup.
///
/// # Return value
///
/// The function returns:
///
/// * `Poll::Pending` if the socket is not ready to read
/// * `Poll::Ready(Ok(()))` reads data `ReadBuf` if the socket is ready
/// * `Poll::Ready(Err(e))` if an error is encountered.
///
/// # Errors
///
/// This function may encounter any standard I/O error except `WouldBlock`.
///
/// [`connect`]: method@Self::connect
pub fn poll_recv(&self, cx: &mut Context<'_>, buf: &mut ReadBuf<'_>) -> Poll<io::Result<()>> {
#[allow(clippy::blocks_in_conditions)]
let n = ready!(self.io.registration().poll_read_io(cx, || {
// Safety: will not read the maybe uninitialized bytes.
let b = unsafe {
&mut *(buf.unfilled_mut() as *mut [std::mem::MaybeUninit<u8>] as *mut [u8])
};
self.io.recv(b)
}))?;
// Safety: We trust `recv` to have filled up `n` bytes in the buffer.
unsafe {
buf.assume_init(n);
}
buf.advance(n);
Poll::Ready(Ok(()))
}
/// Tries to receive a single datagram message on the socket from the remote
/// address to which it is connected. On success, returns the number of
/// bytes read.
///
/// This method must be called with valid byte array `buf` of sufficient size
/// to hold the message bytes. If a message is too long to fit in the
/// supplied buffer, excess bytes may be discarded.
///
/// When there is no pending data, `Err(io::ErrorKind::WouldBlock)` is
/// returned. This function is usually paired with `readable()`.
///
/// # Examples
///
/// ```no_run
/// use tokio::net::UdpSocket;
/// use std::io;
///
/// #[tokio::main]
/// async fn main() -> io::Result<()> {
/// // Connect to a peer
/// let socket = UdpSocket::bind("127.0.0.1:8080").await?;
/// socket.connect("127.0.0.1:8081").await?;
///
/// loop {
/// // Wait for the socket to be readable
/// socket.readable().await?;
///
/// // The buffer is **not** included in the async task and will
/// // only exist on the stack.
/// let mut buf = [0; 1024];
///
/// // Try to recv data, this may still fail with `WouldBlock`
/// // if the readiness event is a false positive.
/// match socket.try_recv(&mut buf) {
/// Ok(n) => {
/// println!("GOT {:?}", &buf[..n]);
/// break;
/// }
/// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
/// continue;
/// }
/// Err(e) => {
/// return Err(e);
/// }
/// }
/// }
///
/// Ok(())
/// }
/// ```
pub fn try_recv(&self, buf: &mut [u8]) -> io::Result<usize> {
self.io
.registration()
.try_io(Interest::READABLE, || self.io.recv(buf))
}
cfg_io_util! {
/// Tries to receive data from the stream into the provided buffer, advancing the
/// buffer's internal cursor, returning how many bytes were read.
///
/// This method must be called with valid byte array `buf` of sufficient size
/// to hold the message bytes. If a message is too long to fit in the
/// supplied buffer, excess bytes may be discarded.
///
/// This method can be used even if `buf` is uninitialized.
///
/// When there is no pending data, `Err(io::ErrorKind::WouldBlock)` is
/// returned. This function is usually paired with `readable()`.
///
/// # Examples
///
/// ```no_run
/// use tokio::net::UdpSocket;
/// use std::io;
///
/// #[tokio::main]
/// async fn main() -> io::Result<()> {
/// // Connect to a peer
/// let socket = UdpSocket::bind("127.0.0.1:8080").await?;
/// socket.connect("127.0.0.1:8081").await?;
///
/// loop {
/// // Wait for the socket to be readable
/// socket.readable().await?;
///
/// let mut buf = Vec::with_capacity(1024);
///
/// // Try to recv data, this may still fail with `WouldBlock`
/// // if the readiness event is a false positive.
/// match socket.try_recv_buf(&mut buf) {
/// Ok(n) => {
/// println!("GOT {:?}", &buf[..n]);
/// break;
/// }
/// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
/// continue;
/// }
/// Err(e) => {
/// return Err(e);
/// }
/// }
/// }
///
/// Ok(())
/// }
/// ```
pub fn try_recv_buf<B: BufMut>(&self, buf: &mut B) -> io::Result<usize> {
self.io.registration().try_io(Interest::READABLE, || {
let dst = buf.chunk_mut();
let dst =
unsafe { &mut *(dst as *mut _ as *mut [std::mem::MaybeUninit<u8>] as *mut [u8]) };
let n = (*self.io).recv(dst)?;
// Safety: We trust `UdpSocket::recv` to have filled up `n` bytes in the
// buffer.
unsafe {
buf.advance_mut(n);
}
Ok(n)
})
}
/// Receives a single datagram message on the socket from the remote address
/// to which it is connected, advancing the buffer's internal cursor,
/// returning how many bytes were read.
///
/// This method must be called with valid byte array `buf` of sufficient size
/// to hold the message bytes. If a message is too long to fit in the
/// supplied buffer, excess bytes may be discarded.
///
/// This method can be used even if `buf` is uninitialized.
///
/// # Examples
///
/// ```no_run
/// use tokio::net::UdpSocket;
/// use std::io;
///
/// #[tokio::main]
/// async fn main() -> io::Result<()> {
/// // Connect to a peer
/// let socket = UdpSocket::bind("127.0.0.1:8080").await?;
/// socket.connect("127.0.0.1:8081").await?;
///
/// let mut buf = Vec::with_capacity(512);
/// let len = socket.recv_buf(&mut buf).await?;
///
/// println!("received {} bytes {:?}", len, &buf[..len]);
///
/// Ok(())
/// }
/// ```
pub async fn recv_buf<B: BufMut>(&self, buf: &mut B) -> io::Result<usize> {
self.io.registration().async_io(Interest::READABLE, || {
let dst = buf.chunk_mut();
let dst =
unsafe { &mut *(dst as *mut _ as *mut [std::mem::MaybeUninit<u8>] as *mut [u8]) };
let n = (*self.io).recv(dst)?;
// Safety: We trust `UdpSocket::recv` to have filled up `n` bytes in the
// buffer.
unsafe {
buf.advance_mut(n);
}
Ok(n)
}).await
}
/// Tries to receive a single datagram message on the socket. On success,
/// returns the number of bytes read and the origin.
///
/// This method must be called with valid byte array `buf` of sufficient size
/// to hold the message bytes. If a message is too long to fit in the
/// supplied buffer, excess bytes may be discarded.
///
/// This method can be used even if `buf` is uninitialized.
///
/// When there is no pending data, `Err(io::ErrorKind::WouldBlock)` is
/// returned. This function is usually paired with `readable()`.
///
/// # Notes
/// Note that the socket address **cannot** be implicitly trusted, because it is relatively
/// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack].
/// Because UDP is stateless and does not validate the origin of a packet,
/// the attacker does not need to be able to intercept traffic in order to interfere.
/// It is important to be aware of this when designing your application-level protocol.
///
/// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection
///
/// # Examples
///
/// ```no_run
/// use tokio::net::UdpSocket;
/// use std::io;
///
/// #[tokio::main]
/// async fn main() -> io::Result<()> {
/// // Connect to a peer
/// let socket = UdpSocket::bind("127.0.0.1:8080").await?;
///
/// loop {
/// // Wait for the socket to be readable
/// socket.readable().await?;
///
/// let mut buf = Vec::with_capacity(1024);
///
/// // Try to recv data, this may still fail with `WouldBlock`
/// // if the readiness event is a false positive.
/// match socket.try_recv_buf_from(&mut buf) {
/// Ok((n, _addr)) => {
/// println!("GOT {:?}", &buf[..n]);
/// break;
/// }
/// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
/// continue;
/// }
/// Err(e) => {
/// return Err(e);
/// }
/// }
/// }
///
/// Ok(())
/// }
/// ```
pub fn try_recv_buf_from<B: BufMut>(&self, buf: &mut B) -> io::Result<(usize, SocketAddr)> {
self.io.registration().try_io(Interest::READABLE, || {
let dst = buf.chunk_mut();
let dst =
unsafe { &mut *(dst as *mut _ as *mut [std::mem::MaybeUninit<u8>] as *mut [u8]) };
let (n, addr) = (*self.io).recv_from(dst)?;
// Safety: We trust `UdpSocket::recv_from` to have filled up `n` bytes in the
// buffer.
unsafe {
buf.advance_mut(n);
}
Ok((n, addr))
})
}
/// Receives a single datagram message on the socket, advancing the
/// buffer's internal cursor, returning how many bytes were read and the origin.
///
/// This method must be called with valid byte array `buf` of sufficient size
/// to hold the message bytes. If a message is too long to fit in the
/// supplied buffer, excess bytes may be discarded.
///
/// This method can be used even if `buf` is uninitialized.
///
/// # Notes
/// Note that the socket address **cannot** be implicitly trusted, because it is relatively
/// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack].
/// Because UDP is stateless and does not validate the origin of a packet,
/// the attacker does not need to be able to intercept traffic in order to interfere.
/// It is important to be aware of this when designing your application-level protocol.
///
/// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection
///
/// # Examples
///
/// ```no_run
/// use tokio::net::UdpSocket;
/// use std::io;
///
/// #[tokio::main]
/// async fn main() -> io::Result<()> {
/// // Connect to a peer
/// let socket = UdpSocket::bind("127.0.0.1:8080").await?;
/// socket.connect("127.0.0.1:8081").await?;
///
/// let mut buf = Vec::with_capacity(512);
/// let (len, addr) = socket.recv_buf_from(&mut buf).await?;
///
/// println!("received {:?} bytes from {:?}", len, addr);
///
/// Ok(())
/// }
/// ```
pub async fn recv_buf_from<B: BufMut>(&self, buf: &mut B) -> io::Result<(usize, SocketAddr)> {
self.io.registration().async_io(Interest::READABLE, || {
let dst = buf.chunk_mut();
let dst =
unsafe { &mut *(dst as *mut _ as *mut [std::mem::MaybeUninit<u8>] as *mut [u8]) };
let (n, addr) = (*self.io).recv_from(dst)?;
// Safety: We trust `UdpSocket::recv_from` to have filled up `n` bytes in the
// buffer.
unsafe {
buf.advance_mut(n);
}
Ok((n,addr))
}).await
}
}
/// Sends data on the socket to the given address. On success, returns the
/// number of bytes written.
///
/// Address type can be any implementor of [`ToSocketAddrs`] trait. See its
/// documentation for concrete examples.
///
/// It is possible for `addr` to yield multiple addresses, but `send_to`
/// will only send data to the first address yielded by `addr`.
///
/// This will return an error when the IP version of the local socket does
/// not match that returned from [`ToSocketAddrs`].
///
/// [`ToSocketAddrs`]: crate::net::ToSocketAddrs
///
/// # Cancel safety
///
/// This method is cancel safe. If `send_to` is used as the event in a
/// [`tokio::select!`](crate::select) statement and some other branch
/// completes first, then it is guaranteed that the message was not sent.
///
/// # Example
///
/// ```no_run
/// use tokio::net::UdpSocket;
/// use std::io;
///
/// #[tokio::main]
/// async fn main() -> io::Result<()> {
/// let socket = UdpSocket::bind("127.0.0.1:8080").await?;
/// let len = socket.send_to(b"hello world", "127.0.0.1:8081").await?;
///
/// println!("Sent {} bytes", len);
///
/// Ok(())
/// }
/// ```
pub async fn send_to<A: ToSocketAddrs>(&self, buf: &[u8], target: A) -> io::Result<usize> {
let mut addrs = to_socket_addrs(target).await?;
match addrs.next() {
Some(target) => self.send_to_addr(buf, target).await,
None => Err(io::Error::new(
io::ErrorKind::InvalidInput,
"no addresses to send data to",
)),
}
}
/// Attempts to send data on the socket to a given address.
///
/// Note that on multiple calls to a `poll_*` method in the send direction, only the
/// `Waker` from the `Context` passed to the most recent call will be scheduled to
/// receive a wakeup.
///
/// # Return value
///
/// The function returns:
///
/// * `Poll::Pending` if the socket is not ready to write
/// * `Poll::Ready(Ok(n))` `n` is the number of bytes sent.
/// * `Poll::Ready(Err(e))` if an error is encountered.
///
/// # Errors
///
/// This function may encounter any standard I/O error except `WouldBlock`.
pub fn poll_send_to(
&self,
cx: &mut Context<'_>,
buf: &[u8],
target: SocketAddr,
) -> Poll<io::Result<usize>> {
self.io
.registration()
.poll_write_io(cx, || self.io.send_to(buf, target))
}
/// Tries to send data on the socket to the given address, but if the send is
/// blocked this will return right away.
///
/// This function is usually paired with `writable()`.
///
/// # Returns
///
/// If successful, returns the number of bytes sent
///
/// Users should ensure that when the remote cannot receive, the
/// [`ErrorKind::WouldBlock`] is properly handled. An error can also occur
/// if the IP version of the socket does not match that of `target`.
///
/// [`ErrorKind::WouldBlock`]: std::io::ErrorKind::WouldBlock
///
/// # Example
///
/// ```no_run
/// use tokio::net::UdpSocket;
/// use std::error::Error;
/// use std::io;
///
/// #[tokio::main]
/// async fn main() -> Result<(), Box<dyn Error>> {
/// let socket = UdpSocket::bind("127.0.0.1:8080").await?;
///
/// let dst = "127.0.0.1:8081".parse()?;
///
/// loop {
/// socket.writable().await?;
///
/// match socket.try_send_to(&b"hello world"[..], dst) {
/// Ok(sent) => {
/// println!("sent {} bytes", sent);
/// break;
/// }
/// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
/// // Writable false positive.
/// continue;
/// }
/// Err(e) => return Err(e.into()),
/// }
/// }
///
/// Ok(())
/// }
/// ```
pub fn try_send_to(&self, buf: &[u8], target: SocketAddr) -> io::Result<usize> {
self.io
.registration()
.try_io(Interest::WRITABLE, || self.io.send_to(buf, target))
}
async fn send_to_addr(&self, buf: &[u8], target: SocketAddr) -> io::Result<usize> {
self.io
.registration()
.async_io(Interest::WRITABLE, || self.io.send_to(buf, target))
.await
}
/// Receives a single datagram message on the socket. On success, returns
/// the number of bytes read and the origin.
///
/// The function must be called with valid byte array `buf` of sufficient
/// size to hold the message bytes. If a message is too long to fit in the
/// supplied buffer, excess bytes may be discarded.
///
/// # Cancel safety
///
/// This method is cancel safe. If `recv_from` is used as the event in a
/// [`tokio::select!`](crate::select) statement and some other branch
/// completes first, it is guaranteed that no messages were received on this
/// socket.
///
/// # Example
///
/// ```no_run
/// use tokio::net::UdpSocket;
/// use std::io;
///
/// #[tokio::main]
/// async fn main() -> io::Result<()> {
/// let socket = UdpSocket::bind("127.0.0.1:8080").await?;
///
/// let mut buf = vec![0u8; 32];
/// let (len, addr) = socket.recv_from(&mut buf).await?;
///
/// println!("received {:?} bytes from {:?}", len, addr);
///
/// Ok(())
/// }
/// ```
///
/// # Notes
/// Note that the socket address **cannot** be implicitly trusted, because it is relatively
/// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack].
/// Because UDP is stateless and does not validate the origin of a packet,
/// the attacker does not need to be able to intercept traffic in order to interfere.
/// It is important to be aware of this when designing your application-level protocol.
///
/// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection
pub async fn recv_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> {
self.io
.registration()
.async_io(Interest::READABLE, || self.io.recv_from(buf))
.await
}
/// Attempts to receive a single datagram on the socket.
///
/// Note that on multiple calls to a `poll_*` method in the `recv` direction, only the
/// `Waker` from the `Context` passed to the most recent call will be scheduled to
/// receive a wakeup.
///
/// # Return value
///
/// The function returns:
///
/// * `Poll::Pending` if the socket is not ready to read
/// * `Poll::Ready(Ok(addr))` reads data from `addr` into `ReadBuf` if the socket is ready
/// * `Poll::Ready(Err(e))` if an error is encountered.
///
/// # Errors
///
/// This function may encounter any standard I/O error except `WouldBlock`.
///
/// # Notes
/// Note that the socket address **cannot** be implicitly trusted, because it is relatively
/// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack].
/// Because UDP is stateless and does not validate the origin of a packet,
/// the attacker does not need to be able to intercept traffic in order to interfere.
/// It is important to be aware of this when designing your application-level protocol.
///
/// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection
pub fn poll_recv_from(
&self,
cx: &mut Context<'_>,
buf: &mut ReadBuf<'_>,
) -> Poll<io::Result<SocketAddr>> {
#[allow(clippy::blocks_in_conditions)]
let (n, addr) = ready!(self.io.registration().poll_read_io(cx, || {
// Safety: will not read the maybe uninitialized bytes.
let b = unsafe {
&mut *(buf.unfilled_mut() as *mut [std::mem::MaybeUninit<u8>] as *mut [u8])
};
self.io.recv_from(b)
}))?;
// Safety: We trust `recv` to have filled up `n` bytes in the buffer.
unsafe {
buf.assume_init(n);
}
buf.advance(n);
Poll::Ready(Ok(addr))
}
/// Tries to receive a single datagram message on the socket. On success,
/// returns the number of bytes read and the origin.
///
/// This method must be called with valid byte array `buf` of sufficient size
/// to hold the message bytes. If a message is too long to fit in the
/// supplied buffer, excess bytes may be discarded.
///
/// When there is no pending data, `Err(io::ErrorKind::WouldBlock)` is
/// returned. This function is usually paired with `readable()`.
///
/// # Notes
///
/// Note that the socket address **cannot** be implicitly trusted, because it is relatively
/// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack].
/// Because UDP is stateless and does not validate the origin of a packet,
/// the attacker does not need to be able to intercept traffic in order to interfere.
/// It is important to be aware of this when designing your application-level protocol.
///
/// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection
///
/// # Examples
///
/// ```no_run
/// use tokio::net::UdpSocket;
/// use std::io;
///
/// #[tokio::main]
/// async fn main() -> io::Result<()> {
/// // Connect to a peer
/// let socket = UdpSocket::bind("127.0.0.1:8080").await?;
///
/// loop {
/// // Wait for the socket to be readable
/// socket.readable().await?;
///
/// // The buffer is **not** included in the async task and will
/// // only exist on the stack.
/// let mut buf = [0; 1024];
///
/// // Try to recv data, this may still fail with `WouldBlock`
/// // if the readiness event is a false positive.
/// match socket.try_recv_from(&mut buf) {
/// Ok((n, _addr)) => {
/// println!("GOT {:?}", &buf[..n]);
/// break;
/// }
/// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
/// continue;
/// }
/// Err(e) => {
/// return Err(e);
/// }
/// }
/// }
///
/// Ok(())
/// }
/// ```
pub fn try_recv_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> {
self.io
.registration()
.try_io(Interest::READABLE, || self.io.recv_from(buf))
}
/// Tries to read or write from the socket using a user-provided IO operation.
///
/// If the socket is ready, the provided closure is called. The closure
/// should attempt to perform IO operation on the socket by manually
/// calling the appropriate syscall. If the operation fails because the
/// socket is not actually ready, then the closure should return a
/// `WouldBlock` error and the readiness flag is cleared. The return value
/// of the closure is then returned by `try_io`.
///
/// If the socket is not ready, then the closure is not called
/// and a `WouldBlock` error is returned.
///
/// The closure should only return a `WouldBlock` error if it has performed
/// an IO operation on the socket that failed due to the socket not being
/// ready. Returning a `WouldBlock` error in any other situation will
/// incorrectly clear the readiness flag, which can cause the socket to
/// behave incorrectly.
///
/// The closure should not perform the IO operation using any of the methods
/// defined on the Tokio `UdpSocket` type, as this will mess with the
/// readiness flag and can cause the socket to behave incorrectly.
///
/// This method is not intended to be used with combined interests.
/// The closure should perform only one type of IO operation, so it should not
/// require more than one ready state. This method may panic or sleep forever
/// if it is called with a combined interest.
///
/// Usually, [`readable()`], [`writable()`] or [`ready()`] is used with this function.
///
/// [`readable()`]: UdpSocket::readable()
/// [`writable()`]: UdpSocket::writable()
/// [`ready()`]: UdpSocket::ready()
pub fn try_io<R>(
&self,
interest: Interest,
f: impl FnOnce() -> io::Result<R>,
) -> io::Result<R> {
self.io
.registration()
.try_io(interest, || self.io.try_io(f))
}
/// Reads or writes from the socket using a user-provided IO operation.
///
/// The readiness of the socket is awaited and when the socket is ready,
/// the provided closure is called. The closure should attempt to perform
/// IO operation on the socket by manually calling the appropriate syscall.
/// If the operation fails because the socket is not actually ready,
/// then the closure should return a `WouldBlock` error. In such case the
/// readiness flag is cleared and the socket readiness is awaited again.
/// This loop is repeated until the closure returns an `Ok` or an error
/// other than `WouldBlock`.
///
/// The closure should only return a `WouldBlock` error if it has performed
/// an IO operation on the socket that failed due to the socket not being
/// ready. Returning a `WouldBlock` error in any other situation will
/// incorrectly clear the readiness flag, which can cause the socket to
/// behave incorrectly.
///
/// The closure should not perform the IO operation using any of the methods
/// defined on the Tokio `UdpSocket` type, as this will mess with the
/// readiness flag and can cause the socket to behave incorrectly.
///
/// This method is not intended to be used with combined interests.
/// The closure should perform only one type of IO operation, so it should not
/// require more than one ready state. This method may panic or sleep forever
/// if it is called with a combined interest.
pub async fn async_io<R>(
&self,
interest: Interest,
mut f: impl FnMut() -> io::Result<R>,
) -> io::Result<R> {
self.io
.registration()
.async_io(interest, || self.io.try_io(&mut f))
.await
}
/// Receives data from the socket, without removing it from the input queue.
/// On success, returns the number of bytes read and the address from whence
/// the data came.
///
/// # Notes
///
/// On Windows, if the data is larger than the buffer specified, the buffer
/// is filled with the first part of the data, and `peek_from` returns the error
/// `WSAEMSGSIZE(10040)`. The excess data is lost.
/// Make sure to always use a sufficiently large buffer to hold the
/// maximum UDP packet size, which can be up to 65536 bytes in size.
///
/// MacOS will return an error if you pass a zero-sized buffer.
///
/// If you're merely interested in learning the sender of the data at the head of the queue,
/// try [`peek_sender`].
///
/// Note that the socket address **cannot** be implicitly trusted, because it is relatively
/// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack].
/// Because UDP is stateless and does not validate the origin of a packet,
/// the attacker does not need to be able to intercept traffic in order to interfere.
/// It is important to be aware of this when designing your application-level protocol.
///
/// # Examples
///
/// ```no_run
/// use tokio::net::UdpSocket;
/// use std::io;
///
/// #[tokio::main]
/// async fn main() -> io::Result<()> {
/// let socket = UdpSocket::bind("127.0.0.1:8080").await?;
///
/// let mut buf = vec![0u8; 32];
/// let (len, addr) = socket.peek_from(&mut buf).await?;
///
/// println!("peeked {:?} bytes from {:?}", len, addr);
///
/// Ok(())
/// }
/// ```
///
/// [`peek_sender`]: method@Self::peek_sender
/// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection
pub async fn peek_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> {
self.io
.registration()
.async_io(Interest::READABLE, || self.io.peek_from(buf))
.await
}
/// Receives data from the socket, without removing it from the input queue.
/// On success, returns the sending address of the datagram.
///
/// # Notes
///
/// Note that on multiple calls to a `poll_*` method in the `recv` direction, only the
/// `Waker` from the `Context` passed to the most recent call will be scheduled to
/// receive a wakeup
///
/// On Windows, if the data is larger than the buffer specified, the buffer
/// is filled with the first part of the data, and peek returns the error
/// `WSAEMSGSIZE(10040)`. The excess data is lost.
/// Make sure to always use a sufficiently large buffer to hold the
/// maximum UDP packet size, which can be up to 65536 bytes in size.
///
/// MacOS will return an error if you pass a zero-sized buffer.
///
/// If you're merely interested in learning the sender of the data at the head of the queue,
/// try [`poll_peek_sender`].
///
/// Note that the socket address **cannot** be implicitly trusted, because it is relatively
/// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack].
/// Because UDP is stateless and does not validate the origin of a packet,
/// the attacker does not need to be able to intercept traffic in order to interfere.
/// It is important to be aware of this when designing your application-level protocol.
///
/// # Return value
///
/// The function returns:
///
/// * `Poll::Pending` if the socket is not ready to read
/// * `Poll::Ready(Ok(addr))` reads data from `addr` into `ReadBuf` if the socket is ready
/// * `Poll::Ready(Err(e))` if an error is encountered.
///
/// # Errors
///
/// This function may encounter any standard I/O error except `WouldBlock`.
///
/// [`poll_peek_sender`]: method@Self::poll_peek_sender
/// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection
pub fn poll_peek_from(
&self,
cx: &mut Context<'_>,
buf: &mut ReadBuf<'_>,
) -> Poll<io::Result<SocketAddr>> {
#[allow(clippy::blocks_in_conditions)]
let (n, addr) = ready!(self.io.registration().poll_read_io(cx, || {
// Safety: will not read the maybe uninitialized bytes.
let b = unsafe {
&mut *(buf.unfilled_mut() as *mut [std::mem::MaybeUninit<u8>] as *mut [u8])
};
self.io.peek_from(b)
}))?;
// Safety: We trust `recv` to have filled up `n` bytes in the buffer.
unsafe {
buf.assume_init(n);
}
buf.advance(n);
Poll::Ready(Ok(addr))
}
/// Tries to receive data on the socket without removing it from the input queue.
/// On success, returns the number of bytes read and the sending address of the
/// datagram.
///
/// When there is no pending data, `Err(io::ErrorKind::WouldBlock)` is
/// returned. This function is usually paired with `readable()`.
///
/// # Notes
///
/// On Windows, if the data is larger than the buffer specified, the buffer
/// is filled with the first part of the data, and peek returns the error
/// `WSAEMSGSIZE(10040)`. The excess data is lost.
/// Make sure to always use a sufficiently large buffer to hold the
/// maximum UDP packet size, which can be up to 65536 bytes in size.
///
/// MacOS will return an error if you pass a zero-sized buffer.
///
/// If you're merely interested in learning the sender of the data at the head of the queue,
/// try [`try_peek_sender`].
///
/// Note that the socket address **cannot** be implicitly trusted, because it is relatively
/// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack].
/// Because UDP is stateless and does not validate the origin of a packet,
/// the attacker does not need to be able to intercept traffic in order to interfere.
/// It is important to be aware of this when designing your application-level protocol.
///
/// [`try_peek_sender`]: method@Self::try_peek_sender
/// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection
pub fn try_peek_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> {
self.io
.registration()
.try_io(Interest::READABLE, || self.io.peek_from(buf))
}
/// Retrieve the sender of the data at the head of the input queue, waiting if empty.
///
/// This is equivalent to calling [`peek_from`] with a zero-sized buffer,
/// but suppresses the `WSAEMSGSIZE` error on Windows and the "invalid argument" error on macOS.
///
/// Note that the socket address **cannot** be implicitly trusted, because it is relatively
/// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack].
/// Because UDP is stateless and does not validate the origin of a packet,
/// the attacker does not need to be able to intercept traffic in order to interfere.
/// It is important to be aware of this when designing your application-level protocol.
///
/// [`peek_from`]: method@Self::peek_from
/// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection
pub async fn peek_sender(&self) -> io::Result<SocketAddr> {
self.io
.registration()
.async_io(Interest::READABLE, || self.peek_sender_inner())
.await
}
/// Retrieve the sender of the data at the head of the input queue,
/// scheduling a wakeup if empty.
///
/// This is equivalent to calling [`poll_peek_from`] with a zero-sized buffer,
/// but suppresses the `WSAEMSGSIZE` error on Windows and the "invalid argument" error on macOS.
///
/// # Notes
///
/// Note that on multiple calls to a `poll_*` method in the `recv` direction, only the
/// `Waker` from the `Context` passed to the most recent call will be scheduled to
/// receive a wakeup.
///
/// Note that the socket address **cannot** be implicitly trusted, because it is relatively
/// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack].
/// Because UDP is stateless and does not validate the origin of a packet,
/// the attacker does not need to be able to intercept traffic in order to interfere.
/// It is important to be aware of this when designing your application-level protocol.
///
/// [`poll_peek_from`]: method@Self::poll_peek_from
/// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection
pub fn poll_peek_sender(&self, cx: &mut Context<'_>) -> Poll<io::Result<SocketAddr>> {
self.io
.registration()
.poll_read_io(cx, || self.peek_sender_inner())
}
/// Try to retrieve the sender of the data at the head of the input queue.
///
/// When there is no pending data, `Err(io::ErrorKind::WouldBlock)` is
/// returned. This function is usually paired with `readable()`.
///
/// Note that the socket address **cannot** be implicitly trusted, because it is relatively
/// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack].
/// Because UDP is stateless and does not validate the origin of a packet,
/// the attacker does not need to be able to intercept traffic in order to interfere.
/// It is important to be aware of this when designing your application-level protocol.
///
/// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection
pub fn try_peek_sender(&self) -> io::Result<SocketAddr> {
self.io
.registration()
.try_io(Interest::READABLE, || self.peek_sender_inner())
}
#[inline]
fn peek_sender_inner(&self) -> io::Result<SocketAddr> {
self.io.try_io(|| {
self.as_socket()
.peek_sender()?
// May be `None` if the platform doesn't populate the sender for some reason.
// In testing, that only occurred on macOS if you pass a zero-sized buffer,
// but the implementation of `Socket::peek_sender()` covers that.
.as_socket()
.ok_or_else(|| io::Error::new(io::ErrorKind::Other, "sender not available"))
})
}
/// Gets the value of the `SO_BROADCAST` option for this socket.
///
/// For more information about this option, see [`set_broadcast`].
///
/// [`set_broadcast`]: method@Self::set_broadcast
pub fn broadcast(&self) -> io::Result<bool> {
self.io.broadcast()
}
/// Sets the value of the `SO_BROADCAST` option for this socket.
///
/// When enabled, this socket is allowed to send packets to a broadcast
/// address.
pub fn set_broadcast(&self, on: bool) -> io::Result<()> {
self.io.set_broadcast(on)
}
/// Gets the value of the `IP_MULTICAST_LOOP` option for this socket.
///
/// For more information about this option, see [`set_multicast_loop_v4`].
///
/// [`set_multicast_loop_v4`]: method@Self::set_multicast_loop_v4
pub fn multicast_loop_v4(&self) -> io::Result<bool> {
self.io.multicast_loop_v4()
}
/// Sets the value of the `IP_MULTICAST_LOOP` option for this socket.
///
/// If enabled, multicast packets will be looped back to the local socket.
///
/// # Note
///
/// This may not have any affect on IPv6 sockets.
pub fn set_multicast_loop_v4(&self, on: bool) -> io::Result<()> {
self.io.set_multicast_loop_v4(on)
}
/// Gets the value of the `IP_MULTICAST_TTL` option for this socket.
///
/// For more information about this option, see [`set_multicast_ttl_v4`].
///
/// [`set_multicast_ttl_v4`]: method@Self::set_multicast_ttl_v4
pub fn multicast_ttl_v4(&self) -> io::Result<u32> {
self.io.multicast_ttl_v4()
}
/// Sets the value of the `IP_MULTICAST_TTL` option for this socket.
///
/// Indicates the time-to-live value of outgoing multicast packets for
/// this socket. The default value is 1 which means that multicast packets
/// don't leave the local network unless explicitly requested.
///
/// # Note
///
/// This may not have any affect on IPv6 sockets.
pub fn set_multicast_ttl_v4(&self, ttl: u32) -> io::Result<()> {
self.io.set_multicast_ttl_v4(ttl)
}
/// Gets the value of the `IPV6_MULTICAST_LOOP` option for this socket.
///
/// For more information about this option, see [`set_multicast_loop_v6`].
///
/// [`set_multicast_loop_v6`]: method@Self::set_multicast_loop_v6
pub fn multicast_loop_v6(&self) -> io::Result<bool> {
self.io.multicast_loop_v6()
}
/// Sets the value of the `IPV6_MULTICAST_LOOP` option for this socket.
///
/// Controls whether this socket sees the multicast packets it sends itself.
///
/// # Note
///
/// This may not have any affect on IPv4 sockets.
pub fn set_multicast_loop_v6(&self, on: bool) -> io::Result<()> {
self.io.set_multicast_loop_v6(on)
}
/// Gets the value of the `IP_TTL` option for this socket.
///
/// For more information about this option, see [`set_ttl`].
///
/// [`set_ttl`]: method@Self::set_ttl
///
/// # Examples
///
/// ```no_run
/// use tokio::net::UdpSocket;
/// # use std::io;
///
/// # async fn dox() -> io::Result<()> {
/// let sock = UdpSocket::bind("127.0.0.1:8080").await?;
///
/// println!("{:?}", sock.ttl()?);
/// # Ok(())
/// # }
/// ```
pub fn ttl(&self) -> io::Result<u32> {
self.io.ttl()
}
/// Sets the value for the `IP_TTL` option on this socket.
///
/// This value sets the time-to-live field that is used in every packet sent
/// from this socket.
///
/// # Examples
///
/// ```no_run
/// use tokio::net::UdpSocket;
/// # use std::io;
///
/// # async fn dox() -> io::Result<()> {
/// let sock = UdpSocket::bind("127.0.0.1:8080").await?;
/// sock.set_ttl(60)?;
///
/// # Ok(())
/// # }
/// ```
pub fn set_ttl(&self, ttl: u32) -> io::Result<()> {
self.io.set_ttl(ttl)
}
/// Gets the value of the `IP_TOS` option for this socket.
///
/// For more information about this option, see [`set_tos`].
///
/// **NOTE:** On Windows, `IP_TOS` is only supported on [Windows 8+ or
/// Windows Server 2012+.](https://docs.microsoft.com/en-us/windows/win32/winsock/ipproto-ip-socket-options)
///
/// [`set_tos`]: Self::set_tos
// https://docs.rs/socket2/0.5.3/src/socket2/socket.rs.html#1464
#[cfg(not(any(
target_os = "fuchsia",
target_os = "redox",
target_os = "solaris",
target_os = "illumos",
)))]
#[cfg_attr(
docsrs,
doc(cfg(not(any(
target_os = "fuchsia",
target_os = "redox",
target_os = "solaris",
target_os = "illumos",
))))
)]
pub fn tos(&self) -> io::Result<u32> {
self.as_socket().tos()
}
/// Sets the value for the `IP_TOS` option on this socket.
///
/// This value sets the type-of-service field that is used in every packet
/// sent from this socket.
///
/// **NOTE:** On Windows, `IP_TOS` is only supported on [Windows 8+ or
/// Windows Server 2012+.](https://docs.microsoft.com/en-us/windows/win32/winsock/ipproto-ip-socket-options)
// https://docs.rs/socket2/0.5.3/src/socket2/socket.rs.html#1446
#[cfg(not(any(
target_os = "fuchsia",
target_os = "redox",
target_os = "solaris",
target_os = "illumos",
)))]
#[cfg_attr(
docsrs,
doc(cfg(not(any(
target_os = "fuchsia",
target_os = "redox",
target_os = "solaris",
target_os = "illumos",
))))
)]
pub fn set_tos(&self, tos: u32) -> io::Result<()> {
self.as_socket().set_tos(tos)
}
/// Gets the value for the `SO_BINDTODEVICE` option on this socket
///
/// This value gets the socket-bound device's interface name.
#[cfg(any(target_os = "android", target_os = "fuchsia", target_os = "linux",))]
#[cfg_attr(
docsrs,
doc(cfg(any(target_os = "android", target_os = "fuchsia", target_os = "linux",)))
)]
pub fn device(&self) -> io::Result<Option<Vec<u8>>> {
self.as_socket().device()
}
/// Sets the value for the `SO_BINDTODEVICE` option on this socket
///
/// If a socket is bound to an interface, only packets received from that
/// particular interface are processed by the socket. Note that this only
/// works for some socket types, particularly `AF_INET` sockets.
///
/// If `interface` is `None` or an empty string it removes the binding.
#[cfg(any(target_os = "android", target_os = "fuchsia", target_os = "linux"))]
#[cfg_attr(
docsrs,
doc(cfg(all(any(target_os = "android", target_os = "fuchsia", target_os = "linux"))))
)]
pub fn bind_device(&self, interface: Option<&[u8]>) -> io::Result<()> {
self.as_socket().bind_device(interface)
}
/// Executes an operation of the `IP_ADD_MEMBERSHIP` type.
///
/// This function specifies a new multicast group for this socket to join.
/// The address must be a valid multicast address, and `interface` is the
/// address of the local interface with which the system should join the
/// multicast group. If it's equal to `INADDR_ANY` then an appropriate
/// interface is chosen by the system.
pub fn join_multicast_v4(&self, multiaddr: Ipv4Addr, interface: Ipv4Addr) -> io::Result<()> {
self.io.join_multicast_v4(&multiaddr, &interface)
}
/// Executes an operation of the `IPV6_ADD_MEMBERSHIP` type.
///
/// This function specifies a new multicast group for this socket to join.
/// The address must be a valid multicast address, and `interface` is the
/// index of the interface to join/leave (or 0 to indicate any interface).
pub fn join_multicast_v6(&self, multiaddr: &Ipv6Addr, interface: u32) -> io::Result<()> {
self.io.join_multicast_v6(multiaddr, interface)
}
/// Executes an operation of the `IP_DROP_MEMBERSHIP` type.
///
/// For more information about this option, see [`join_multicast_v4`].
///
/// [`join_multicast_v4`]: method@Self::join_multicast_v4
pub fn leave_multicast_v4(&self, multiaddr: Ipv4Addr, interface: Ipv4Addr) -> io::Result<()> {
self.io.leave_multicast_v4(&multiaddr, &interface)
}
/// Executes an operation of the `IPV6_DROP_MEMBERSHIP` type.
///
/// For more information about this option, see [`join_multicast_v6`].
///
/// [`join_multicast_v6`]: method@Self::join_multicast_v6
pub fn leave_multicast_v6(&self, multiaddr: &Ipv6Addr, interface: u32) -> io::Result<()> {
self.io.leave_multicast_v6(multiaddr, interface)
}
/// Returns the value of the `SO_ERROR` option.
///
/// # Examples
/// ```
/// use tokio::net::UdpSocket;
/// use std::io;
///
/// #[tokio::main]
/// async fn main() -> io::Result<()> {
/// // Create a socket
/// let socket = UdpSocket::bind("0.0.0.0:8080").await?;
///
/// if let Ok(Some(err)) = socket.take_error() {
/// println!("Got error: {:?}", err);
/// }
///
/// Ok(())
/// }
/// ```
pub fn take_error(&self) -> io::Result<Option<io::Error>> {
self.io.take_error()
}
}
impl TryFrom<std::net::UdpSocket> for UdpSocket {
type Error = io::Error;
/// Consumes stream, returning the tokio I/O object.
///
/// This is equivalent to
/// [`UdpSocket::from_std(stream)`](UdpSocket::from_std).
fn try_from(stream: std::net::UdpSocket) -> Result<Self, Self::Error> {
Self::from_std(stream)
}
}
impl fmt::Debug for UdpSocket {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.io.fmt(f)
}
}
#[cfg(unix)]
mod sys {
use super::UdpSocket;
use std::os::unix::prelude::*;
impl AsRawFd for UdpSocket {
fn as_raw_fd(&self) -> RawFd {
self.io.as_raw_fd()
}
}
impl AsFd for UdpSocket {
fn as_fd(&self) -> BorrowedFd<'_> {
unsafe { BorrowedFd::borrow_raw(self.as_raw_fd()) }
}
}
}
cfg_windows! {
use crate::os::windows::io::{AsRawSocket, RawSocket};
use crate::os::windows::io::{AsSocket, BorrowedSocket};
impl AsRawSocket for UdpSocket {
fn as_raw_socket(&self) -> RawSocket {
self.io.as_raw_socket()
}
}
impl AsSocket for UdpSocket {
fn as_socket(&self) -> BorrowedSocket<'_> {
unsafe { BorrowedSocket::borrow_raw(self.as_raw_socket()) }
}
}
}