1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Idiomatic iterator for [`RunArray`](crate::Array)
use crate::{array::ArrayAccessor, types::RunEndIndexType, Array, TypedRunArray};
use arrow_buffer::ArrowNativeType;
/// The [`RunArrayIter`] provides an idiomatic way to iterate over the run array.
/// It returns Some(T) if there is a value or None if the value is null.
///
/// The iterator comes with a cost as it has to iterate over three arrays to determine
/// the value to be returned. The run_ends array is used to determine the index of the value.
/// The nulls array is used to determine if the value is null and the values array is used to
/// get the value.
///
/// Unlike other iterators in this crate, [`RunArrayIter`] does not use [`ArrayAccessor`]
/// because the run array accessor does binary search to access each value which is too slow.
/// The run array iterator can determine the next value in constant time.
///
#[derive(Debug)]
pub struct RunArrayIter<'a, R, V>
where
R: RunEndIndexType,
V: Sync + Send,
&'a V: ArrayAccessor,
<&'a V as ArrayAccessor>::Item: Default,
{
array: TypedRunArray<'a, R, V>,
current_front_logical: usize,
current_front_physical: usize,
current_back_logical: usize,
current_back_physical: usize,
}
impl<'a, R, V> RunArrayIter<'a, R, V>
where
R: RunEndIndexType,
V: Sync + Send,
&'a V: ArrayAccessor,
<&'a V as ArrayAccessor>::Item: Default,
{
/// create a new iterator
pub fn new(array: TypedRunArray<'a, R, V>) -> Self {
let current_front_physical = array.run_array().get_start_physical_index();
let current_back_physical = array.run_array().get_end_physical_index() + 1;
RunArrayIter {
array,
current_front_logical: array.offset(),
current_front_physical,
current_back_logical: array.offset() + array.len(),
current_back_physical,
}
}
}
impl<'a, R, V> Iterator for RunArrayIter<'a, R, V>
where
R: RunEndIndexType,
V: Sync + Send,
&'a V: ArrayAccessor,
<&'a V as ArrayAccessor>::Item: Default,
{
type Item = Option<<&'a V as ArrayAccessor>::Item>;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
if self.current_front_logical == self.current_back_logical {
return None;
}
// If current logical index is greater than current run end index then increment
// the physical index.
let run_ends = self.array.run_ends().values();
if self.current_front_logical >= run_ends[self.current_front_physical].as_usize() {
// As the run_ends is expected to be strictly increasing, there
// should be at least one logical entry in one physical entry. Because of this
// reason the next value can be accessed by incrementing physical index once.
self.current_front_physical += 1;
}
if self.array.values().is_null(self.current_front_physical) {
self.current_front_logical += 1;
Some(None)
} else {
self.current_front_logical += 1;
// Safety:
// The self.current_physical is kept within bounds of self.current_logical.
// The self.current_logical will not go out of bounds because of the check
// `self.current_logical = self.current_end_logical` above.
unsafe {
Some(Some(
self.array
.values()
.value_unchecked(self.current_front_physical),
))
}
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
(
self.current_back_logical - self.current_front_logical,
Some(self.current_back_logical - self.current_front_logical),
)
}
}
impl<'a, R, V> DoubleEndedIterator for RunArrayIter<'a, R, V>
where
R: RunEndIndexType,
V: Sync + Send,
&'a V: ArrayAccessor,
<&'a V as ArrayAccessor>::Item: Default,
{
fn next_back(&mut self) -> Option<Self::Item> {
if self.current_back_logical == self.current_front_logical {
return None;
}
self.current_back_logical -= 1;
let run_ends = self.array.run_ends().values();
if self.current_back_physical > 0
&& self.current_back_logical < run_ends[self.current_back_physical - 1].as_usize()
{
// As the run_ends is expected to be strictly increasing, there
// should be at least one logical entry in one physical entry. Because of this
// reason the next value can be accessed by decrementing physical index once.
self.current_back_physical -= 1;
}
Some(if self.array.values().is_null(self.current_back_physical) {
None
} else {
// Safety:
// The check `self.current_end_physical > 0` ensures the value will not underflow.
// Also self.current_end_physical starts with array.len() and
// decrements based on the bounds of self.current_end_logical.
unsafe {
Some(
self.array
.values()
.value_unchecked(self.current_back_physical),
)
}
})
}
}
/// all arrays have known size.
impl<'a, R, V> ExactSizeIterator for RunArrayIter<'a, R, V>
where
R: RunEndIndexType,
V: Sync + Send,
&'a V: ArrayAccessor,
<&'a V as ArrayAccessor>::Item: Default,
{
}
#[cfg(test)]
mod tests {
use rand::{seq::SliceRandom, thread_rng, Rng};
use crate::{
array::{Int32Array, StringArray},
builder::PrimitiveRunBuilder,
types::{Int16Type, Int32Type},
Array, Int64RunArray, PrimitiveArray, RunArray,
};
fn build_input_array(size: usize) -> Vec<Option<i32>> {
// The input array is created by shuffling and repeating
// the seed values random number of times.
let mut seed: Vec<Option<i32>> = vec![
None,
None,
None,
Some(1),
Some(2),
Some(3),
Some(4),
Some(5),
Some(6),
Some(7),
Some(8),
Some(9),
];
let mut result: Vec<Option<i32>> = Vec::with_capacity(size);
let mut ix = 0;
let mut rng = thread_rng();
// run length can go up to 8. Cap the max run length for smaller arrays to size / 2.
let max_run_length = 8_usize.min(1_usize.max(size / 2));
while result.len() < size {
// shuffle the seed array if all the values are iterated.
if ix == 0 {
seed.shuffle(&mut rng);
}
// repeat the items between 1 and 8 times. Cap the length for smaller sized arrays
let num = max_run_length.min(rand::thread_rng().gen_range(1..=max_run_length));
for _ in 0..num {
result.push(seed[ix]);
}
ix += 1;
if ix == seed.len() {
ix = 0
}
}
result.resize(size, None);
result
}
#[test]
fn test_primitive_array_iter_round_trip() {
let mut input_vec = vec![
Some(32),
Some(32),
None,
Some(64),
Some(64),
Some(64),
Some(72),
];
let mut builder = PrimitiveRunBuilder::<Int32Type, Int32Type>::new();
builder.extend(input_vec.iter().copied());
let ree_array = builder.finish();
let ree_array = ree_array.downcast::<Int32Array>().unwrap();
let output_vec: Vec<Option<i32>> = ree_array.into_iter().collect();
assert_eq!(input_vec, output_vec);
let rev_output_vec: Vec<Option<i32>> = ree_array.into_iter().rev().collect();
input_vec.reverse();
assert_eq!(input_vec, rev_output_vec);
}
#[test]
fn test_double_ended() {
let input_vec = vec![
Some(32),
Some(32),
None,
Some(64),
Some(64),
Some(64),
Some(72),
];
let mut builder = PrimitiveRunBuilder::<Int32Type, Int32Type>::new();
builder.extend(input_vec);
let ree_array = builder.finish();
let ree_array = ree_array.downcast::<Int32Array>().unwrap();
let mut iter = ree_array.into_iter();
assert_eq!(Some(Some(32)), iter.next());
assert_eq!(Some(Some(72)), iter.next_back());
assert_eq!(Some(Some(32)), iter.next());
assert_eq!(Some(Some(64)), iter.next_back());
assert_eq!(Some(None), iter.next());
assert_eq!(Some(Some(64)), iter.next_back());
assert_eq!(Some(Some(64)), iter.next());
assert_eq!(None, iter.next_back());
assert_eq!(None, iter.next());
}
#[test]
fn test_run_iterator_comprehensive() {
// Test forward and backward iterator for different array lengths.
let logical_lengths = vec![1_usize, 2, 3, 4, 15, 16, 17, 63, 64, 65];
for logical_len in logical_lengths {
let input_array = build_input_array(logical_len);
let mut run_array_builder = PrimitiveRunBuilder::<Int32Type, Int32Type>::new();
run_array_builder.extend(input_array.iter().copied());
let run_array = run_array_builder.finish();
let typed_array = run_array.downcast::<Int32Array>().unwrap();
// test forward iterator
let mut input_iter = input_array.iter().copied();
let mut run_array_iter = typed_array.into_iter();
for _ in 0..logical_len {
assert_eq!(input_iter.next(), run_array_iter.next());
}
assert_eq!(None, run_array_iter.next());
// test reverse iterator
let mut input_iter = input_array.iter().rev().copied();
let mut run_array_iter = typed_array.into_iter().rev();
for _ in 0..logical_len {
assert_eq!(input_iter.next(), run_array_iter.next());
}
assert_eq!(None, run_array_iter.next());
}
}
#[test]
fn test_string_array_iter_round_trip() {
let input_vec = vec!["ab", "ab", "ba", "cc", "cc"];
let input_ree_array: Int64RunArray = input_vec.into_iter().collect();
let string_ree_array = input_ree_array.downcast::<StringArray>().unwrap();
// to and from iter, with a +1
let result: Vec<Option<String>> = string_ree_array
.into_iter()
.map(|e| {
e.map(|e| {
let mut a = e.to_string();
a.push('b');
a
})
})
.collect();
let result_asref: Vec<Option<&str>> = result.iter().map(|f| f.as_deref()).collect();
let expected_vec = vec![
Some("abb"),
Some("abb"),
Some("bab"),
Some("ccb"),
Some("ccb"),
];
assert_eq!(expected_vec, result_asref);
}
#[test]
#[cfg_attr(miri, ignore)] // Takes too long
fn test_sliced_run_array_iterator() {
let total_len = 80;
let input_array = build_input_array(total_len);
// Encode the input_array to run array
let mut builder =
PrimitiveRunBuilder::<Int16Type, Int32Type>::with_capacity(input_array.len());
builder.extend(input_array.iter().copied());
let run_array = builder.finish();
// test for all slice lengths.
for slice_len in 1..=total_len {
// test for offset = 0, slice length = slice_len
let sliced_run_array: RunArray<Int16Type> =
run_array.slice(0, slice_len).into_data().into();
let sliced_typed_run_array = sliced_run_array
.downcast::<PrimitiveArray<Int32Type>>()
.unwrap();
// Iterate on sliced typed run array
let actual: Vec<Option<i32>> = sliced_typed_run_array.into_iter().collect();
let expected: Vec<Option<i32>> = input_array.iter().take(slice_len).copied().collect();
assert_eq!(expected, actual);
// test for offset = total_len - slice_len, length = slice_len
let sliced_run_array: RunArray<Int16Type> = run_array
.slice(total_len - slice_len, slice_len)
.into_data()
.into();
let sliced_typed_run_array = sliced_run_array
.downcast::<PrimitiveArray<Int32Type>>()
.unwrap();
// Iterate on sliced typed run array
let actual: Vec<Option<i32>> = sliced_typed_run_array.into_iter().collect();
let expected: Vec<Option<i32>> = input_array
.iter()
.skip(total_len - slice_len)
.copied()
.collect();
assert_eq!(expected, actual);
}
}
}