1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Kernels for operating on [`PrimitiveArray`]s

use arrow_array::builder::BufferBuilder;
use arrow_array::types::ArrowDictionaryKeyType;
use arrow_array::*;
use arrow_buffer::buffer::NullBuffer;
use arrow_buffer::ArrowNativeType;
use arrow_buffer::{Buffer, MutableBuffer};
use arrow_data::ArrayData;
use arrow_schema::ArrowError;
use std::sync::Arc;

/// See [`PrimitiveArray::unary`]
pub fn unary<I, F, O>(array: &PrimitiveArray<I>, op: F) -> PrimitiveArray<O>
where
    I: ArrowPrimitiveType,
    O: ArrowPrimitiveType,
    F: Fn(I::Native) -> O::Native,
{
    array.unary(op)
}

/// See [`PrimitiveArray::unary_mut`]
pub fn unary_mut<I, F>(
    array: PrimitiveArray<I>,
    op: F,
) -> Result<PrimitiveArray<I>, PrimitiveArray<I>>
where
    I: ArrowPrimitiveType,
    F: Fn(I::Native) -> I::Native,
{
    array.unary_mut(op)
}

/// See [`PrimitiveArray::try_unary`]
pub fn try_unary<I, F, O>(array: &PrimitiveArray<I>, op: F) -> Result<PrimitiveArray<O>, ArrowError>
where
    I: ArrowPrimitiveType,
    O: ArrowPrimitiveType,
    F: Fn(I::Native) -> Result<O::Native, ArrowError>,
{
    array.try_unary(op)
}

/// See [`PrimitiveArray::try_unary_mut`]
pub fn try_unary_mut<I, F>(
    array: PrimitiveArray<I>,
    op: F,
) -> Result<Result<PrimitiveArray<I>, ArrowError>, PrimitiveArray<I>>
where
    I: ArrowPrimitiveType,
    F: Fn(I::Native) -> Result<I::Native, ArrowError>,
{
    array.try_unary_mut(op)
}

/// A helper function that applies an infallible unary function to a dictionary array with primitive value type.
fn unary_dict<K, F, T>(array: &DictionaryArray<K>, op: F) -> Result<ArrayRef, ArrowError>
where
    K: ArrowDictionaryKeyType + ArrowNumericType,
    T: ArrowPrimitiveType,
    F: Fn(T::Native) -> T::Native,
{
    let dict_values = array.values().as_any().downcast_ref().unwrap();
    let values = unary::<T, F, T>(dict_values, op);
    Ok(Arc::new(array.with_values(Arc::new(values))))
}

/// A helper function that applies a fallible unary function to a dictionary array with primitive value type.
fn try_unary_dict<K, F, T>(array: &DictionaryArray<K>, op: F) -> Result<ArrayRef, ArrowError>
where
    K: ArrowDictionaryKeyType + ArrowNumericType,
    T: ArrowPrimitiveType,
    F: Fn(T::Native) -> Result<T::Native, ArrowError>,
{
    if !PrimitiveArray::<T>::is_compatible(&array.value_type()) {
        return Err(ArrowError::CastError(format!(
            "Cannot perform the unary operation of type {} on dictionary array of value type {}",
            T::DATA_TYPE,
            array.value_type()
        )));
    }

    let dict_values = array.values().as_any().downcast_ref().unwrap();
    let values = try_unary::<T, F, T>(dict_values, op)?;
    Ok(Arc::new(array.with_values(Arc::new(values))))
}

/// Applies an infallible unary function to an array with primitive values.
#[deprecated(note = "Use arrow_array::AnyDictionaryArray")]
pub fn unary_dyn<F, T>(array: &dyn Array, op: F) -> Result<ArrayRef, ArrowError>
where
    T: ArrowPrimitiveType,
    F: Fn(T::Native) -> T::Native,
{
    downcast_dictionary_array! {
        array => unary_dict::<_, F, T>(array, op),
        t => {
            if PrimitiveArray::<T>::is_compatible(t) {
                Ok(Arc::new(unary::<T, F, T>(
                    array.as_any().downcast_ref::<PrimitiveArray<T>>().unwrap(),
                    op,
                )))
            } else {
                Err(ArrowError::NotYetImplemented(format!(
                    "Cannot perform unary operation of type {} on array of type {}",
                    T::DATA_TYPE,
                    t
                )))
            }
        }
    }
}

/// Applies a fallible unary function to an array with primitive values.
#[deprecated(note = "Use arrow_array::AnyDictionaryArray")]
pub fn try_unary_dyn<F, T>(array: &dyn Array, op: F) -> Result<ArrayRef, ArrowError>
where
    T: ArrowPrimitiveType,
    F: Fn(T::Native) -> Result<T::Native, ArrowError>,
{
    downcast_dictionary_array! {
        array => if array.values().data_type() == &T::DATA_TYPE {
            try_unary_dict::<_, F, T>(array, op)
        } else {
            Err(ArrowError::NotYetImplemented(format!(
                "Cannot perform unary operation on dictionary array of type {}",
                array.data_type()
            )))
        },
        t => {
            if PrimitiveArray::<T>::is_compatible(t) {
                Ok(Arc::new(try_unary::<T, F, T>(
                    array.as_any().downcast_ref::<PrimitiveArray<T>>().unwrap(),
                    op,
                )?))
            } else {
                Err(ArrowError::NotYetImplemented(format!(
                    "Cannot perform unary operation of type {} on array of type {}",
                    T::DATA_TYPE,
                    t
                )))
            }
        }
    }
}

/// Allies a binary infallable function to two [`PrimitiveArray`]s,
/// producing a new [`PrimitiveArray`]
///
/// # Details
///
/// Given two arrays of length `len`, calls `op(a[i], b[i])` for `i` in `0..len`, collecting
/// the results in a [`PrimitiveArray`].
///
/// If any index is null in either `a` or `b`, the
/// corresponding index in the result will also be null
///
/// Like [`unary`], the `op` is evaluated for every element in the two arrays,
/// including those elements which are NULL. This is beneficial as the cost of
/// the operation is low compared to the cost of branching, and especially when
/// the operation can be vectorised, however, requires `op` to be infallible for
/// all possible values of its inputs
///
/// # Errors
///
/// * if the arrays have different lengths.
///
/// # Example
/// ```
/// # use arrow_arith::arity::binary;
/// # use arrow_array::{Float32Array, Int32Array};
/// # use arrow_array::types::Int32Type;
/// let a = Float32Array::from(vec![Some(5.1f32), None, Some(6.8), Some(7.2)]);
/// let b = Int32Array::from(vec![1, 2, 4, 9]);
/// // compute int(a) + b for each element
/// let c = binary(&a, &b, |a, b| a as i32 + b).unwrap();
/// assert_eq!(c, Int32Array::from(vec![Some(6), None, Some(10), Some(16)]));
/// ```
pub fn binary<A, B, F, O>(
    a: &PrimitiveArray<A>,
    b: &PrimitiveArray<B>,
    op: F,
) -> Result<PrimitiveArray<O>, ArrowError>
where
    A: ArrowPrimitiveType,
    B: ArrowPrimitiveType,
    O: ArrowPrimitiveType,
    F: Fn(A::Native, B::Native) -> O::Native,
{
    if a.len() != b.len() {
        return Err(ArrowError::ComputeError(
            "Cannot perform binary operation on arrays of different length".to_string(),
        ));
    }

    if a.is_empty() {
        return Ok(PrimitiveArray::from(ArrayData::new_empty(&O::DATA_TYPE)));
    }

    let nulls = NullBuffer::union(a.logical_nulls().as_ref(), b.logical_nulls().as_ref());

    let values = a.values().iter().zip(b.values()).map(|(l, r)| op(*l, *r));
    // JUSTIFICATION
    //  Benefit
    //      ~60% speedup
    //  Soundness
    //      `values` is an iterator with a known size from a PrimitiveArray
    let buffer = unsafe { Buffer::from_trusted_len_iter(values) };
    Ok(PrimitiveArray::new(buffer.into(), nulls))
}

/// Applies a binary and infallible function to values in two arrays, replacing
/// the values in the first array in place.
///
/// # Details
///
/// Given two arrays of length `len`, calls `op(a[i], b[i])` for `i` in
/// `0..len`, modifying the [`PrimitiveArray`] `a` in place, if possible.
///
/// If any index is null in either `a` or `b`, the corresponding index in the
/// result will also be null.
///
/// # Buffer Reuse
///
/// If the underlying buffers in `a` are not shared with other arrays,  mutates
/// the underlying buffer in place, without allocating.
///
/// If the underlying buffer in `a` are shared, returns Err(self)
///
/// Like [`unary`] the provided function is evaluated for every index, ignoring validity. This
/// is beneficial when the cost of the operation is low compared to the cost of branching, and
/// especially when the operation can be vectorised, however, requires `op` to be infallible
/// for all possible values of its inputs
///
/// # Errors
///
/// * If the arrays have different lengths
/// * If the array is not mutable (see "Buffer Reuse")
///
/// # See Also
///
/// * Documentation on [`PrimitiveArray::unary_mut`] for operating on [`ArrayRef`].
///
/// # Example
/// ```
/// # use arrow_arith::arity::binary_mut;
/// # use arrow_array::{Float32Array, Int32Array};
/// # use arrow_array::types::Int32Type;
/// // compute a + b for each element
/// let a = Float32Array::from(vec![Some(5.1f32), None, Some(6.8)]);
/// let b = Int32Array::from(vec![Some(1), None, Some(2)]);
/// // compute a + b, updating the value in a in place if possible
/// let a = binary_mut(a, &b, |a, b| a + b as f32).unwrap().unwrap();
/// // a is updated in place
/// assert_eq!(a, Float32Array::from(vec![Some(6.1), None, Some(8.8)]));
/// ```
///
/// # Example with shared buffers
/// ```
/// # use arrow_arith::arity::binary_mut;
/// # use arrow_array::Float32Array;
/// # use arrow_array::types::Int32Type;
/// let a = Float32Array::from(vec![Some(5.1f32), None, Some(6.8)]);
/// let b = Float32Array::from(vec![Some(1.0f32), None, Some(2.0)]);
/// // a_clone shares the buffer with a
/// let a_cloned = a.clone();
/// // try to update a in place, but it is shared. Returns Err(a)
/// let a = binary_mut(a, &b, |a, b| a + b).unwrap_err();
/// assert_eq!(a_cloned, a);
/// // drop shared reference
/// drop(a_cloned);
/// // now a is not shared, so we can update it in place
/// let a = binary_mut(a, &b, |a, b| a + b).unwrap().unwrap();
/// assert_eq!(a, Float32Array::from(vec![Some(6.1), None, Some(8.8)]));
/// ```
pub fn binary_mut<T, U, F>(
    a: PrimitiveArray<T>,
    b: &PrimitiveArray<U>,
    op: F,
) -> Result<Result<PrimitiveArray<T>, ArrowError>, PrimitiveArray<T>>
where
    T: ArrowPrimitiveType,
    U: ArrowPrimitiveType,
    F: Fn(T::Native, U::Native) -> T::Native,
{
    if a.len() != b.len() {
        return Ok(Err(ArrowError::ComputeError(
            "Cannot perform binary operation on arrays of different length".to_string(),
        )));
    }

    if a.is_empty() {
        return Ok(Ok(PrimitiveArray::from(ArrayData::new_empty(
            &T::DATA_TYPE,
        ))));
    }

    let mut builder = a.into_builder()?;

    builder
        .values_slice_mut()
        .iter_mut()
        .zip(b.values())
        .for_each(|(l, r)| *l = op(*l, *r));

    let array = builder.finish();

    // The builder has the null buffer from `a`, it is not changed.
    let nulls = NullBuffer::union(array.logical_nulls().as_ref(), b.logical_nulls().as_ref());

    let array_builder = array.into_data().into_builder().nulls(nulls);

    let array_data = unsafe { array_builder.build_unchecked() };
    Ok(Ok(PrimitiveArray::<T>::from(array_data)))
}

/// Applies the provided fallible binary operation across `a` and `b`.
///
/// This will return any error encountered, or collect the results into
/// a [`PrimitiveArray`]. If any index is null in either `a`
/// or `b`, the corresponding index in the result will also be null
///
/// Like [`try_unary`] the function is only evaluated for non-null indices
///
/// # Error
///
/// Return an error if the arrays have different lengths or
/// the operation is under erroneous
pub fn try_binary<A: ArrayAccessor, B: ArrayAccessor, F, O>(
    a: A,
    b: B,
    op: F,
) -> Result<PrimitiveArray<O>, ArrowError>
where
    O: ArrowPrimitiveType,
    F: Fn(A::Item, B::Item) -> Result<O::Native, ArrowError>,
{
    if a.len() != b.len() {
        return Err(ArrowError::ComputeError(
            "Cannot perform a binary operation on arrays of different length".to_string(),
        ));
    }
    if a.is_empty() {
        return Ok(PrimitiveArray::from(ArrayData::new_empty(&O::DATA_TYPE)));
    }
    let len = a.len();

    if a.null_count() == 0 && b.null_count() == 0 {
        try_binary_no_nulls(len, a, b, op)
    } else {
        let nulls =
            NullBuffer::union(a.logical_nulls().as_ref(), b.logical_nulls().as_ref()).unwrap();

        let mut buffer = BufferBuilder::<O::Native>::new(len);
        buffer.append_n_zeroed(len);
        let slice = buffer.as_slice_mut();

        nulls.try_for_each_valid_idx(|idx| {
            unsafe {
                *slice.get_unchecked_mut(idx) = op(a.value_unchecked(idx), b.value_unchecked(idx))?
            };
            Ok::<_, ArrowError>(())
        })?;

        let values = buffer.finish().into();
        Ok(PrimitiveArray::new(values, Some(nulls)))
    }
}

/// Applies the provided fallible binary operation across `a` and `b` by mutating the mutable
/// [`PrimitiveArray`] `a` with the results.
///
/// Returns any error encountered, or collects the results into a [`PrimitiveArray`] as return
/// value. If any index is null in either `a` or `b`, the corresponding index in the result will
/// also be null.
///
/// Like [`try_unary`] the function is only evaluated for non-null indices.
///
/// See [`binary_mut`] for errors and buffer reuse information.
pub fn try_binary_mut<T, F>(
    a: PrimitiveArray<T>,
    b: &PrimitiveArray<T>,
    op: F,
) -> Result<Result<PrimitiveArray<T>, ArrowError>, PrimitiveArray<T>>
where
    T: ArrowPrimitiveType,
    F: Fn(T::Native, T::Native) -> Result<T::Native, ArrowError>,
{
    if a.len() != b.len() {
        return Ok(Err(ArrowError::ComputeError(
            "Cannot perform binary operation on arrays of different length".to_string(),
        )));
    }
    let len = a.len();

    if a.is_empty() {
        return Ok(Ok(PrimitiveArray::from(ArrayData::new_empty(
            &T::DATA_TYPE,
        ))));
    }

    if a.null_count() == 0 && b.null_count() == 0 {
        try_binary_no_nulls_mut(len, a, b, op)
    } else {
        let nulls =
            create_union_null_buffer(a.logical_nulls().as_ref(), b.logical_nulls().as_ref())
                .unwrap();

        let mut builder = a.into_builder()?;

        let slice = builder.values_slice_mut();

        let r = nulls.try_for_each_valid_idx(|idx| {
            unsafe {
                *slice.get_unchecked_mut(idx) =
                    op(*slice.get_unchecked(idx), b.value_unchecked(idx))?
            };
            Ok::<_, ArrowError>(())
        });
        if let Err(err) = r {
            return Ok(Err(err));
        }
        let array_builder = builder.finish().into_data().into_builder();
        let array_data = unsafe { array_builder.nulls(Some(nulls)).build_unchecked() };
        Ok(Ok(PrimitiveArray::<T>::from(array_data)))
    }
}

/// Computes the union of the nulls in two optional [`NullBuffer`] which
/// is not shared with the input buffers.
///
/// The union of the nulls is the same as `NullBuffer::union(lhs, rhs)` but
/// it does not increase the reference count of the null buffer.
fn create_union_null_buffer(
    lhs: Option<&NullBuffer>,
    rhs: Option<&NullBuffer>,
) -> Option<NullBuffer> {
    match (lhs, rhs) {
        (Some(lhs), Some(rhs)) => Some(NullBuffer::new(lhs.inner() & rhs.inner())),
        (Some(n), None) | (None, Some(n)) => Some(NullBuffer::new(n.inner() & n.inner())),
        (None, None) => None,
    }
}

/// This intentional inline(never) attribute helps LLVM optimize the loop.
#[inline(never)]
fn try_binary_no_nulls<A: ArrayAccessor, B: ArrayAccessor, F, O>(
    len: usize,
    a: A,
    b: B,
    op: F,
) -> Result<PrimitiveArray<O>, ArrowError>
where
    O: ArrowPrimitiveType,
    F: Fn(A::Item, B::Item) -> Result<O::Native, ArrowError>,
{
    let mut buffer = MutableBuffer::new(len * O::Native::get_byte_width());
    for idx in 0..len {
        unsafe {
            buffer.push_unchecked(op(a.value_unchecked(idx), b.value_unchecked(idx))?);
        };
    }
    Ok(PrimitiveArray::new(buffer.into(), None))
}

/// This intentional inline(never) attribute helps LLVM optimize the loop.
#[inline(never)]
fn try_binary_no_nulls_mut<T, F>(
    len: usize,
    a: PrimitiveArray<T>,
    b: &PrimitiveArray<T>,
    op: F,
) -> Result<Result<PrimitiveArray<T>, ArrowError>, PrimitiveArray<T>>
where
    T: ArrowPrimitiveType,
    F: Fn(T::Native, T::Native) -> Result<T::Native, ArrowError>,
{
    let mut builder = a.into_builder()?;
    let slice = builder.values_slice_mut();

    for idx in 0..len {
        unsafe {
            match op(*slice.get_unchecked(idx), b.value_unchecked(idx)) {
                Ok(value) => *slice.get_unchecked_mut(idx) = value,
                Err(err) => return Ok(Err(err)),
            };
        };
    }
    Ok(Ok(builder.finish()))
}

#[cfg(test)]
mod tests {
    use super::*;
    use arrow_array::builder::*;
    use arrow_array::types::*;

    #[test]
    #[allow(deprecated)]
    fn test_unary_f64_slice() {
        let input = Float64Array::from(vec![Some(5.1f64), None, Some(6.8), None, Some(7.2)]);
        let input_slice = input.slice(1, 4);
        let result = unary(&input_slice, |n| n.round());
        assert_eq!(
            result,
            Float64Array::from(vec![None, Some(7.0), None, Some(7.0)])
        );

        let result = unary_dyn::<_, Float64Type>(&input_slice, |n| n + 1.0).unwrap();

        assert_eq!(
            result.as_any().downcast_ref::<Float64Array>().unwrap(),
            &Float64Array::from(vec![None, Some(7.8), None, Some(8.2)])
        );
    }

    #[test]
    #[allow(deprecated)]
    fn test_unary_dict_and_unary_dyn() {
        let mut builder = PrimitiveDictionaryBuilder::<Int8Type, Int32Type>::new();
        builder.append(5).unwrap();
        builder.append(6).unwrap();
        builder.append(7).unwrap();
        builder.append(8).unwrap();
        builder.append_null();
        builder.append(9).unwrap();
        let dictionary_array = builder.finish();

        let mut builder = PrimitiveDictionaryBuilder::<Int8Type, Int32Type>::new();
        builder.append(6).unwrap();
        builder.append(7).unwrap();
        builder.append(8).unwrap();
        builder.append(9).unwrap();
        builder.append_null();
        builder.append(10).unwrap();
        let expected = builder.finish();

        let result = unary_dict::<_, _, Int32Type>(&dictionary_array, |n| n + 1).unwrap();
        assert_eq!(
            result
                .as_any()
                .downcast_ref::<DictionaryArray<Int8Type>>()
                .unwrap(),
            &expected
        );

        let result = unary_dyn::<_, Int32Type>(&dictionary_array, |n| n + 1).unwrap();
        assert_eq!(
            result
                .as_any()
                .downcast_ref::<DictionaryArray<Int8Type>>()
                .unwrap(),
            &expected
        );
    }

    #[test]
    fn test_binary_mut() {
        let a = Int32Array::from(vec![15, 14, 9, 8, 1]);
        let b = Int32Array::from(vec![Some(1), None, Some(3), None, Some(5)]);
        let c = binary_mut(a, &b, |l, r| l + r).unwrap().unwrap();

        let expected = Int32Array::from(vec![Some(16), None, Some(12), None, Some(6)]);
        assert_eq!(c, expected);
    }

    #[test]
    fn test_binary_mut_null_buffer() {
        let a = Int32Array::from(vec![Some(3), Some(4), Some(5), Some(6), None]);

        let b = Int32Array::from(vec![Some(10), Some(11), Some(12), Some(13), Some(14)]);

        let r1 = binary_mut(a, &b, |a, b| a + b).unwrap();

        let a = Int32Array::from(vec![Some(3), Some(4), Some(5), Some(6), None]);
        let b = Int32Array::new(
            vec![10, 11, 12, 13, 14].into(),
            Some(vec![true, true, true, true, true].into()),
        );

        // unwrap here means that no copying occured
        let r2 = binary_mut(a, &b, |a, b| a + b).unwrap();
        assert_eq!(r1.unwrap(), r2.unwrap());
    }

    #[test]
    fn test_try_binary_mut() {
        let a = Int32Array::from(vec![15, 14, 9, 8, 1]);
        let b = Int32Array::from(vec![Some(1), None, Some(3), None, Some(5)]);
        let c = try_binary_mut(a, &b, |l, r| Ok(l + r)).unwrap().unwrap();

        let expected = Int32Array::from(vec![Some(16), None, Some(12), None, Some(6)]);
        assert_eq!(c, expected);

        let a = Int32Array::from(vec![15, 14, 9, 8, 1]);
        let b = Int32Array::from(vec![1, 2, 3, 4, 5]);
        let c = try_binary_mut(a, &b, |l, r| Ok(l + r)).unwrap().unwrap();
        let expected = Int32Array::from(vec![16, 16, 12, 12, 6]);
        assert_eq!(c, expected);

        let a = Int32Array::from(vec![15, 14, 9, 8, 1]);
        let b = Int32Array::from(vec![Some(1), None, Some(3), None, Some(5)]);
        let _ = try_binary_mut(a, &b, |l, r| {
            if l == 1 {
                Err(ArrowError::InvalidArgumentError(
                    "got error".parse().unwrap(),
                ))
            } else {
                Ok(l + r)
            }
        })
        .unwrap()
        .expect_err("should got error");
    }

    #[test]
    fn test_try_binary_mut_null_buffer() {
        let a = Int32Array::from(vec![Some(3), Some(4), Some(5), Some(6), None]);

        let b = Int32Array::from(vec![Some(10), Some(11), Some(12), Some(13), Some(14)]);

        let r1 = try_binary_mut(a, &b, |a, b| Ok(a + b)).unwrap();

        let a = Int32Array::from(vec![Some(3), Some(4), Some(5), Some(6), None]);
        let b = Int32Array::new(
            vec![10, 11, 12, 13, 14].into(),
            Some(vec![true, true, true, true, true].into()),
        );

        // unwrap here means that no copying occured
        let r2 = try_binary_mut(a, &b, |a, b| Ok(a + b)).unwrap();
        assert_eq!(r1.unwrap(), r2.unwrap());
    }

    #[test]
    fn test_unary_dict_mut() {
        let values = Int32Array::from(vec![Some(10), Some(20), None]);
        let keys = Int8Array::from_iter_values([0, 0, 1, 2]);
        let dictionary = DictionaryArray::new(keys, Arc::new(values));

        let updated = dictionary.unary_mut::<_, Int32Type>(|x| x + 1).unwrap();
        let typed = updated.downcast_dict::<Int32Array>().unwrap();
        assert_eq!(typed.value(0), 11);
        assert_eq!(typed.value(1), 11);
        assert_eq!(typed.value(2), 21);

        let values = updated.values();
        assert!(values.is_null(2));
    }
}