hibitset/
atomic.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
use std::default::Default;
use std::fmt::{Debug, Error as FormatError, Formatter};
use std::iter::repeat;
use std::marker::PhantomData;
use std::ptr;
use std::sync::atomic::{AtomicPtr, AtomicUsize, Ordering};

use util::*;
use {BitSetLike, DrainableBitSet};

/// This is similar to a [`BitSet`] but allows setting of value
/// without unique ownership of the structure
///
/// An `AtomicBitSet` has the ability to add an item to the set
/// without unique ownership (given that the set is big enough).
/// Removing elements does require unique ownership as an effect
/// of the hierarchy it holds. Worst case multiple writers set the
/// same bit twice (but only is told they set it).
///
/// It is possible to atomically remove from the set, but not at the
/// same time as atomically adding. This is because there is no way
/// to know if layer 1-3 would be left in a consistent state if they are
/// being cleared and set at the same time.
///
/// `AtromicBitSet` resolves this race by disallowing atomic
/// clearing of bits.
///
/// [`BitSet`]: ../struct.BitSet.html
#[derive(Debug)]
pub struct AtomicBitSet {
    layer3: AtomicUsize,
    layer2: Vec<AtomicUsize>,
    layer1: Vec<AtomicBlock>,
}

impl AtomicBitSet {
    /// Creates an empty `AtomicBitSet`.
    pub fn new() -> AtomicBitSet {
        Default::default()
    }

    /// Adds `id` to the `AtomicBitSet`. Returns `true` if the value was
    /// already in the set.
    ///
    /// Because we cannot safely extend an AtomicBitSet without unique ownership
    /// this will panic if the Index is out of range.
    #[inline]
    pub fn add_atomic(&self, id: Index) -> bool {
        let (_, p1, p2) = offsets(id);

        // While it is tempting to check of the bit was set and exit here if it
        // was, this can result in a data race. If this thread and another
        // thread both set the same bit it is possible for the second thread
        // to exit before l3 was set. Resulting in the iterator to be in an
        // incorrect state. The window is small, but it exists.
        let set = self.layer1[p1].add(id);
        self.layer2[p2].fetch_or(id.mask(SHIFT2), Ordering::Relaxed);
        self.layer3.fetch_or(id.mask(SHIFT3), Ordering::Relaxed);
        set
    }

    /// Adds `id` to the `BitSet`. Returns `true` if the value was
    /// already in the set.
    #[inline]
    pub fn add(&mut self, id: Index) -> bool {
        use std::sync::atomic::Ordering::Relaxed;

        let (_, p1, p2) = offsets(id);
        if self.layer1[p1].add(id) {
            return true;
        }

        self.layer2[p2].store(self.layer2[p2].load(Relaxed) | id.mask(SHIFT2), Relaxed);
        self.layer3
            .store(self.layer3.load(Relaxed) | id.mask(SHIFT3), Relaxed);
        false
    }

    /// Removes `id` from the set, returns `true` if the value
    /// was removed, and `false` if the value was not set
    /// to begin with.
    #[inline]
    pub fn remove(&mut self, id: Index) -> bool {
        use std::sync::atomic::Ordering::Relaxed;
        let (_, p1, p2) = offsets(id);

        // if the bitmask was set we need to clear
        // its bit from layer0 to 3. the layers above only
        // should be cleared if the bit cleared was the last bit
        // in its set
        //
        // These are used over a `fetch_and` because we have a mutable
        // access to the AtomicBitSet so this is sound (and faster)
        if !self.layer1[p1].remove(id) {
            return false;
        }
        if self.layer1[p1].mask.load(Ordering::Relaxed) != 0 {
            return true;
        }

        let v = self.layer2[p2].load(Relaxed) & !id.mask(SHIFT2);
        self.layer2[p2].store(v, Relaxed);
        if v != 0 {
            return true;
        }

        let v = self.layer3.load(Relaxed) & !id.mask(SHIFT3);
        self.layer3.store(v, Relaxed);
        return true;
    }

    /// Returns `true` if `id` is in the set.
    #[inline]
    pub fn contains(&self, id: Index) -> bool {
        let i = id.offset(SHIFT2);
        self.layer1[i].contains(id)
    }

    /// Clear all bits in the set
    pub fn clear(&mut self) {
        // This is the same hierarchical-striding used in the iterators.
        // Using this technique we can avoid clearing segments of the bitset
        // that are already clear. In the best case when the set is already cleared,
        // this will only touch the highest layer.

        let (mut m3, mut m2) = (self.layer3.swap(0, Ordering::Relaxed), 0usize);
        let mut offset = 0;

        loop {
            if m2 != 0 {
                let bit = m2.trailing_zeros() as usize;
                m2 &= !(1 << bit);

                // layer 1 & 0 are cleared unconditionally. it's only 32-64 words
                // and the extra logic to select the correct works is slower
                // then just clearing them all.
                self.layer1[offset + bit].clear();
                continue;
            }

            if m3 != 0 {
                let bit = m3.trailing_zeros() as usize;
                m3 &= !(1 << bit);
                offset = bit << BITS;
                m2 = self.layer2[bit].swap(0, Ordering::Relaxed);
                continue;
            }
            break;
        }
    }
}

impl BitSetLike for AtomicBitSet {
    #[inline]
    fn layer3(&self) -> usize {
        self.layer3.load(Ordering::Relaxed)
    }
    #[inline]
    fn layer2(&self, i: usize) -> usize {
        self.layer2[i].load(Ordering::Relaxed)
    }
    #[inline]
    fn layer1(&self, i: usize) -> usize {
        self.layer1[i].mask.load(Ordering::Relaxed)
    }
    #[inline]
    fn layer0(&self, i: usize) -> usize {
        let (o1, o0) = (i >> BITS, i & ((1 << BITS) - 1));
        self.layer1[o1]
            .atom
            .get()
            .map(|layer0| layer0[o0].load(Ordering::Relaxed))
            .unwrap_or(0)
    }
    #[inline]
    fn contains(&self, i: Index) -> bool {
        self.contains(i)
    }
}

impl DrainableBitSet for AtomicBitSet {
    #[inline]
    fn remove(&mut self, i: Index) -> bool {
        self.remove(i)
    }
}

impl Default for AtomicBitSet {
    fn default() -> Self {
        AtomicBitSet {
            layer3: Default::default(),
            layer2: repeat(0)
                .map(|_| AtomicUsize::new(0))
                .take(1 << BITS)
                .collect(),
            layer1: repeat(0)
                .map(|_| AtomicBlock::new())
                .take(1 << (2 * BITS))
                .collect(),
        }
    }
}

struct OnceAtom {
    inner: AtomicPtr<[AtomicUsize; 1 << BITS]>,
    marker: PhantomData<Option<Box<[AtomicUsize; 1 << BITS]>>>,
}

impl Drop for OnceAtom {
    fn drop(&mut self) {
        let ptr = *self.inner.get_mut();
        if !ptr.is_null() {
            // SAFETY: If the pointer is not null, we created it from
            // `Box::into_raw` in `Self::atom_get_or_init`.
            drop(unsafe { Box::from_raw(ptr) });
        }
    }
}

impl OnceAtom {
    fn new() -> Self {
        Self {
            inner: AtomicPtr::new(ptr::null_mut()),
            marker: PhantomData,
        }
    }

    fn get_or_init(&self) -> &[AtomicUsize; 1 << BITS] {
        let current_ptr = self.inner.load(Ordering::Acquire);
        let ptr = if current_ptr.is_null() {
            const ZERO: AtomicUsize = AtomicUsize::new(0);
            let new_ptr = Box::into_raw(Box::new([ZERO; 1 << BITS]));
            if let Err(existing_ptr) = self.inner.compare_exchange(
                ptr::null_mut(),
                new_ptr,
                // On success, Release matches any Acquire loads of the non-null
                // pointer, to ensure the new box is visible to other threads.
                Ordering::Release,
                Ordering::Acquire,
            ) {
                // SAFETY: We obtained this pointer from `Box::into_raw` above
                // and failed to publish it to the `AtomicPtr`.
                drop(unsafe { Box::from_raw(new_ptr) });
                existing_ptr
            } else {
                new_ptr
            }
        } else {
            current_ptr
        };

        // SAFETY: We checked that this pointer is not null (either by
        // `.is_null()` check, `compare_exhange`, or from `Box::into_raw`). We
        // created from `Box::into_raw` (at some point) and we only use it to
        // create immutable references (unless we have exclusive access to self)
        unsafe { &*ptr }
    }

    fn get(&self) -> Option<&[AtomicUsize; 1 << BITS]> {
        let ptr = self.inner.load(Ordering::Acquire);
        // SAFETY: If it is not null, we created this pointer from
        // `Box::into_raw` and only use it to create immutable references
        // (unless we have exclusive access to self)
        unsafe { ptr.as_ref() }
    }

    fn get_mut(&mut self) -> Option<&mut [AtomicUsize; 1 << BITS]> {
        let ptr = self.inner.get_mut();
        // SAFETY: If this is not null, we created this pointer from
        // `Box::into_raw` and we have an exclusive borrow of self.
        unsafe { ptr.as_mut() }
    }
}

struct AtomicBlock {
    mask: AtomicUsize,
    atom: OnceAtom,
}

impl AtomicBlock {
    fn new() -> AtomicBlock {
        AtomicBlock {
            mask: AtomicUsize::new(0),
            atom: OnceAtom::new(),
        }
    }

    fn add(&self, id: Index) -> bool {
        let (i, m) = (id.row(SHIFT1), id.mask(SHIFT0));
        let old = self.atom.get_or_init()[i].fetch_or(m, Ordering::Relaxed);
        self.mask.fetch_or(id.mask(SHIFT1), Ordering::Relaxed);
        old & m != 0
    }

    fn contains(&self, id: Index) -> bool {
        self.atom
            .get()
            .map(|layer0| layer0[id.row(SHIFT1)].load(Ordering::Relaxed) & id.mask(SHIFT0) != 0)
            .unwrap_or(false)
    }

    fn remove(&mut self, id: Index) -> bool {
        if let Some(layer0) = self.atom.get_mut() {
            let (i, m) = (id.row(SHIFT1), !id.mask(SHIFT0));
            let v = layer0[i].get_mut();
            let was_set = *v & id.mask(SHIFT0) == id.mask(SHIFT0);
            *v = *v & m;
            if *v == 0 {
                // no other bits are set
                // so unset bit in the next level up
                *self.mask.get_mut() &= !id.mask(SHIFT1);
            }
            was_set
        } else {
            false
        }
    }

    fn clear(&mut self) {
        *self.mask.get_mut() = 0;
        self.atom.get_mut().map(|layer0| {
            for l in layer0 {
                *l.get_mut() = 0;
            }
        });
    }
}

impl Debug for AtomicBlock {
    fn fmt(&self, f: &mut Formatter) -> Result<(), FormatError> {
        f.debug_struct("AtomicBlock")
            .field("mask", &self.mask)
            .field("atom", &self.atom.get().unwrap().iter())
            .finish()
    }
}

#[cfg(test)]
mod atomic_set_test {
    use {AtomicBitSet, BitSetAnd, BitSetLike};

    #[test]
    fn insert() {
        let mut c = AtomicBitSet::new();
        for i in 0..1_000 {
            assert!(!c.add(i));
            assert!(c.add(i));
        }

        for i in 0..1_000 {
            assert!(c.contains(i));
        }
    }

    #[test]
    fn insert_100k() {
        let mut c = AtomicBitSet::new();
        for i in 0..100_000 {
            assert!(!c.add(i));
            assert!(c.add(i));
        }

        for i in 0..100_000 {
            assert!(c.contains(i));
        }
    }

    #[test]
    fn add_atomic() {
        let c = AtomicBitSet::new();
        for i in 0..1_000 {
            assert!(!c.add_atomic(i));
            assert!(c.add_atomic(i));
        }

        for i in 0..1_000 {
            assert!(c.contains(i));
        }
    }

    #[test]
    fn add_atomic_100k() {
        let c = AtomicBitSet::new();
        for i in 0..100_000 {
            assert!(!c.add_atomic(i));
            assert!(c.add_atomic(i));
        }

        for i in 0..100_000 {
            assert!(c.contains(i));
        }
    }

    #[test]
    fn remove() {
        let mut c = AtomicBitSet::new();
        for i in 0..1_000 {
            assert!(!c.add(i));
        }

        for i in 0..1_000 {
            assert!(c.contains(i));
            assert!(c.remove(i));
            assert!(!c.contains(i));
            assert!(!c.remove(i));
        }
    }

    #[test]
    fn iter() {
        let mut c = AtomicBitSet::new();
        for i in 0..100_000 {
            c.add(i);
        }

        let mut count = 0;
        for (idx, i) in c.iter().enumerate() {
            count += 1;
            assert_eq!(idx, i as usize);
        }
        assert_eq!(count, 100_000);
    }

    #[test]
    fn iter_odd_even() {
        let mut odd = AtomicBitSet::new();
        let mut even = AtomicBitSet::new();
        for i in 0..100_000 {
            if i % 2 == 1 {
                odd.add(i);
            } else {
                even.add(i);
            }
        }

        assert_eq!((&odd).iter().count(), 50_000);
        assert_eq!((&even).iter().count(), 50_000);
        assert_eq!(BitSetAnd(&odd, &even).iter().count(), 0);
    }

    #[test]
    fn clear() {
        let mut set = AtomicBitSet::new();
        for i in 0..1_000 {
            set.add(i);
        }

        assert_eq!((&set).iter().sum::<u32>(), 500_500 - 1_000);

        assert_eq!((&set).iter().count(), 1_000);
        set.clear();
        assert_eq!((&set).iter().count(), 0);

        for i in 0..1_000 {
            set.add(i * 64);
        }

        assert_eq!((&set).iter().count(), 1_000);
        set.clear();
        assert_eq!((&set).iter().count(), 0);

        for i in 0..1_000 {
            set.add(i * 1_000);
        }

        assert_eq!((&set).iter().count(), 1_000);
        set.clear();
        assert_eq!((&set).iter().count(), 0);

        for i in 0..100 {
            set.add(i * 10_000);
        }

        assert_eq!((&set).iter().count(), 100);
        set.clear();
        assert_eq!((&set).iter().count(), 0);

        for i in 0..10 {
            set.add(i * 10_000);
        }

        assert_eq!((&set).iter().count(), 10);
        set.clear();
        assert_eq!((&set).iter().count(), 0);
    }
}