fancy_regex/analyze.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
// Copyright 2016 The Fancy Regex Authors.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//! Analysis of regex expressions.
use bit_set::BitSet;
use std::cmp::min;
use std::usize;
use crate::parse::ExprTree;
use crate::CompileError;
use crate::Error;
use crate::Expr;
use crate::Result;
#[derive(Debug)]
pub struct Info<'a> {
pub(crate) start_group: usize,
pub(crate) end_group: usize,
pub(crate) min_size: usize,
pub(crate) const_size: bool,
pub(crate) hard: bool,
/// Whether the expression's matching could be dependent on what the
/// previous character was. E.g. `^` matches if there's no previous
/// character; `(?m:^)` matches if the previous character was a newline.
/// The matching of `\b` depends on the previous character.
pub(crate) looks_left: bool,
pub(crate) expr: &'a Expr,
pub(crate) children: Vec<Info<'a>>,
}
impl<'a> Info<'a> {
pub(crate) fn is_literal(&self) -> bool {
match *self.expr {
Expr::Literal { casei, .. } => !casei,
Expr::Concat(_) => self.children.iter().all(|child| child.is_literal()),
_ => false,
}
}
pub(crate) fn push_literal(&self, buf: &mut String) {
match *self.expr {
// could be more paranoid about checking casei
Expr::Literal { ref val, .. } => buf.push_str(val),
Expr::Concat(_) => {
for child in &self.children {
child.push_literal(buf);
}
}
_ => panic!("push_literal called on non-literal"),
}
}
}
struct Analyzer<'a> {
backrefs: &'a BitSet,
group_ix: usize,
}
impl<'a> Analyzer<'a> {
fn visit(&mut self, expr: &'a Expr) -> Result<Info<'a>> {
let start_group = self.group_ix;
let mut children = Vec::new();
let mut min_size = 0;
let mut const_size = false;
let mut hard = false;
let mut looks_left = false;
match *expr {
Expr::Empty | Expr::EndText | Expr::EndLine => {
const_size = true;
}
Expr::Any { .. } => {
min_size = 1;
const_size = true;
}
Expr::Literal { ref val, casei } => {
// right now each character in a literal gets its own node, that might change
min_size = 1;
const_size = literal_const_size(val, casei);
}
Expr::StartText | Expr::StartLine => {
const_size = true;
looks_left = true;
}
Expr::Concat(ref v) => {
const_size = true;
for child in v {
let child_info = self.visit(child)?;
looks_left |= child_info.looks_left && min_size == 0;
min_size += child_info.min_size;
const_size &= child_info.const_size;
hard |= child_info.hard;
children.push(child_info);
}
}
Expr::Alt(ref v) => {
let child_info = self.visit(&v[0])?;
min_size = child_info.min_size;
const_size = child_info.const_size;
hard = child_info.hard;
looks_left = child_info.looks_left;
children.push(child_info);
for child in &v[1..] {
let child_info = self.visit(child)?;
const_size &= child_info.const_size && min_size == child_info.min_size;
min_size = min(min_size, child_info.min_size);
hard |= child_info.hard;
looks_left |= child_info.looks_left;
children.push(child_info);
}
}
Expr::Group(ref child) => {
let group = self.group_ix;
self.group_ix += 1;
let child_info = self.visit(child)?;
min_size = child_info.min_size;
const_size = child_info.const_size;
looks_left = child_info.looks_left;
// If there's a backref to this group, we potentially have to backtrack within the
// group. E.g. with `(x|xy)\1` and input `xyxy`, `x` matches but then the backref
// doesn't, so we have to backtrack and try `xy`.
hard = child_info.hard | self.backrefs.contains(group);
children.push(child_info);
}
Expr::LookAround(ref child, _) => {
let child_info = self.visit(child)?;
// min_size = 0
const_size = true;
hard = true;
looks_left = child_info.looks_left;
children.push(child_info);
}
Expr::Repeat {
ref child, lo, hi, ..
} => {
let child_info = self.visit(child)?;
min_size = child_info.min_size * lo;
const_size = child_info.const_size && lo == hi;
hard = child_info.hard;
looks_left = child_info.looks_left;
children.push(child_info);
}
Expr::Delegate { size, .. } => {
// currently only used for empty and single-char matches
min_size = size;
const_size = true;
looks_left = size == 0; // TODO: conservative for \z
}
Expr::Backref(group) => {
if group >= self.group_ix {
return Err(Error::CompileError(CompileError::InvalidBackref));
}
hard = true;
}
Expr::AtomicGroup(ref child) => {
let child_info = self.visit(child)?;
min_size = child_info.min_size;
const_size = child_info.const_size;
looks_left = child_info.looks_left;
hard = true; // TODO: possibly could weaken
children.push(child_info);
}
Expr::KeepOut => {
hard = true;
const_size = true;
}
Expr::ContinueFromPreviousMatchEnd => {
hard = true;
const_size = true;
}
Expr::BackrefExistsCondition(group) => {
if group >= self.group_ix {
return Err(Error::CompileError(CompileError::InvalidBackref));
}
hard = true;
const_size = true;
}
Expr::Conditional {
ref condition,
ref true_branch,
ref false_branch,
} => {
hard = true;
let child_info_condition = self.visit(condition)?;
let child_info_truth = self.visit(true_branch)?;
let child_info_false = self.visit(false_branch)?;
min_size = child_info_condition.min_size
+ min(child_info_truth.min_size, child_info_false.min_size);
const_size = child_info_condition.const_size
&& child_info_truth.const_size
&& child_info_false.const_size
// if the condition's size plus the truth branch's size is equal to the false branch's size then it's const size
&& child_info_condition.min_size + child_info_truth.min_size == child_info_false.min_size;
looks_left = child_info_condition.looks_left
|| child_info_truth.looks_left
|| child_info_false.looks_left;
children.push(child_info_condition);
children.push(child_info_truth);
children.push(child_info_false);
}
};
Ok(Info {
expr,
children,
start_group,
end_group: self.group_ix,
min_size,
const_size,
hard,
looks_left,
})
}
}
fn literal_const_size(_: &str, _: bool) -> bool {
// Right now, regex doesn't do sophisticated case folding,
// test below will fail when that changes, then we need to
// do something fancier here.
true
}
/// Analyze the parsed expression to determine whether it requires fancy features.
pub fn analyze<'a>(tree: &'a ExprTree) -> Result<Info<'a>> {
let mut analyzer = Analyzer {
backrefs: &tree.backrefs,
group_ix: 0,
};
analyzer.visit(&tree.expr)
}
#[cfg(test)]
mod tests {
use super::analyze;
use super::literal_const_size;
use crate::Expr;
use regex;
#[test]
fn case_folding_safe() {
let re = regex::Regex::new("(?i:ß)").unwrap();
if re.is_match("SS") {
assert!(!literal_const_size("ß", true));
}
// Another tricky example, Armenian ECH YIWN
let re = regex::Regex::new("(?i:\\x{0587})").unwrap();
if re.is_match("\u{0565}\u{0582}") {
assert!(!literal_const_size("\u{0587}", true));
}
}
#[test]
fn invalid_backref_1() {
assert!(analyze(&Expr::parse_tree(".\\0").unwrap()).is_err());
}
#[test]
fn invalid_backref_2() {
assert!(analyze(&Expr::parse_tree("(.\\1)").unwrap()).is_err());
}
#[test]
fn invalid_backref_3() {
assert!(analyze(&Expr::parse_tree("\\1(.)").unwrap()).is_err());
}
#[test]
fn is_literal() {
let tree = Expr::parse_tree("abc").unwrap();
let info = analyze(&tree).unwrap();
assert_eq!(info.is_literal(), true);
}
#[test]
fn is_literal_with_repeat() {
let tree = Expr::parse_tree("abc*").unwrap();
let info = analyze(&tree).unwrap();
assert_eq!(info.is_literal(), false);
}
}