triomphe/arc.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
use alloc::alloc::handle_alloc_error;
use alloc::boxed::Box;
use core::alloc::Layout;
use core::borrow;
use core::cmp::Ordering;
use core::convert::From;
use core::ffi::c_void;
use core::fmt;
use core::hash::{Hash, Hasher};
use core::marker::PhantomData;
use core::mem::{ManuallyDrop, MaybeUninit};
use core::ops::Deref;
use core::ptr::{self, NonNull};
use core::sync::atomic;
use core::sync::atomic::Ordering::{Acquire, Relaxed, Release};
use core::{isize, usize};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
#[cfg(feature = "stable_deref_trait")]
use stable_deref_trait::{CloneStableDeref, StableDeref};
use crate::{abort, ArcBorrow, HeaderSlice, OffsetArc, UniqueArc};
/// A soft limit on the amount of references that may be made to an `Arc`.
///
/// Going above this limit will abort your program (although not
/// necessarily) at _exactly_ `MAX_REFCOUNT + 1` references.
const MAX_REFCOUNT: usize = (isize::MAX) as usize;
/// The object allocated by an Arc<T>
#[repr(C)]
pub(crate) struct ArcInner<T: ?Sized> {
pub(crate) count: atomic::AtomicUsize,
pub(crate) data: T,
}
unsafe impl<T: ?Sized + Sync + Send> Send for ArcInner<T> {}
unsafe impl<T: ?Sized + Sync + Send> Sync for ArcInner<T> {}
/// An atomically reference counted shared pointer
///
/// See the documentation for [`Arc`] in the standard library. Unlike the
/// standard library `Arc`, this `Arc` does not support weak reference counting.
///
/// [`Arc`]: https://doc.rust-lang.org/stable/std/sync/struct.Arc.html
#[repr(transparent)]
pub struct Arc<T: ?Sized> {
pub(crate) p: ptr::NonNull<ArcInner<T>>,
pub(crate) phantom: PhantomData<T>,
}
unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {}
unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {}
impl<T> Arc<T> {
/// Construct an `Arc<T>`
#[inline]
pub fn new(data: T) -> Self {
let ptr = Box::into_raw(Box::new(ArcInner {
count: atomic::AtomicUsize::new(1),
data,
}));
unsafe {
Arc {
p: ptr::NonNull::new_unchecked(ptr),
phantom: PhantomData,
}
}
}
/// Reconstruct the Arc<T> from a raw pointer obtained from into_raw()
///
/// Note: This raw pointer will be offset in the allocation and must be preceded
/// by the atomic count.
///
/// It is recommended to use OffsetArc for this
#[inline]
pub unsafe fn from_raw(ptr: *const T) -> Self {
// FIXME: when `byte_sub` is stabilized, this can accept T: ?Sized.
// To find the corresponding pointer to the `ArcInner` we need
// to subtract the offset of the `data` field from the pointer.
let ptr = (ptr as *const u8).sub(offset_of!(ArcInner<T>, data));
Arc::from_raw_inner(ptr as *mut ArcInner<T>)
}
/// Temporarily converts |self| into a bonafide OffsetArc and exposes it to the
/// provided callback. The refcount is not modified.
#[inline(always)]
pub fn with_raw_offset_arc<F, U>(&self, f: F) -> U
where
F: FnOnce(&OffsetArc<T>) -> U,
{
// Synthesize transient Arc, which never touches the refcount of the ArcInner.
// Store transient in `ManuallyDrop`, to leave the refcount untouched.
let transient = unsafe { ManuallyDrop::new(Arc::into_raw_offset(ptr::read(self))) };
// Expose the transient Arc to the callback, which may clone it if it wants.
f(&transient)
}
/// Converts an `Arc` into a `OffsetArc`. This consumes the `Arc`, so the refcount
/// is not modified.
#[inline]
pub fn into_raw_offset(a: Self) -> OffsetArc<T> {
unsafe {
OffsetArc {
ptr: ptr::NonNull::new_unchecked(Arc::into_raw(a) as *mut T),
phantom: PhantomData,
}
}
}
/// Converts a `OffsetArc` into an `Arc`. This consumes the `OffsetArc`, so the refcount
/// is not modified.
#[inline]
pub fn from_raw_offset(a: OffsetArc<T>) -> Self {
let a = ManuallyDrop::new(a);
let ptr = a.ptr.as_ptr();
unsafe { Arc::from_raw(ptr) }
}
/// Returns the inner value, if the [`Arc`] has exactly one strong reference.
///
/// Otherwise, an [`Err`] is returned with the same [`Arc`] that was
/// passed in.
///
/// # Examples
///
/// ```
/// use triomphe::Arc;
///
/// let x = Arc::new(3);
/// assert_eq!(Arc::try_unwrap(x), Ok(3));
///
/// let x = Arc::new(4);
/// let _y = Arc::clone(&x);
/// assert_eq!(*Arc::try_unwrap(x).unwrap_err(), 4);
/// ```
pub fn try_unwrap(this: Self) -> Result<T, Self> {
Self::try_unique(this).map(UniqueArc::into_inner)
}
}
impl<T: ?Sized> Arc<T> {
/// Convert the Arc<T> to a raw pointer, suitable for use across FFI
///
/// Note: This returns a pointer to the data T, which is offset in the allocation.
///
/// It is recommended to use OffsetArc for this.
#[inline]
pub fn into_raw(this: Self) -> *const T {
let this = ManuallyDrop::new(this);
this.as_ptr()
}
/// Returns the raw pointer.
///
/// Same as into_raw except `self` isn't consumed.
#[inline]
pub fn as_ptr(&self) -> *const T {
// SAFETY: This cannot go through a reference to `data`, because this method
// is used to implement `into_raw`. To reconstruct the full `Arc` from this
// pointer, it needs to maintain its full provenance, and not be reduced to
// just the contained `T`.
unsafe { ptr::addr_of_mut!((*self.ptr()).data) }
}
/// Produce a pointer to the data that can be converted back
/// to an Arc. This is basically an `&Arc<T>`, without the extra indirection.
/// It has the benefits of an `&T` but also knows about the underlying refcount
/// and can be converted into more `Arc<T>`s if necessary.
#[inline]
pub fn borrow_arc(&self) -> ArcBorrow<'_, T> {
ArcBorrow(&**self)
}
/// Returns the address on the heap of the Arc itself -- not the T within it -- for memory
/// reporting.
pub fn heap_ptr(&self) -> *const c_void {
self.p.as_ptr() as *const ArcInner<T> as *const c_void
}
#[inline]
pub(super) fn into_raw_inner(this: Self) -> *mut ArcInner<T> {
let this = ManuallyDrop::new(this);
this.ptr()
}
/// Construct an `Arc` from an allocated `ArcInner`.
/// # Safety
/// The `ptr` must point to a valid instance, allocated by an `Arc`. The reference could will
/// not be modified.
pub(super) unsafe fn from_raw_inner(ptr: *mut ArcInner<T>) -> Self {
Arc {
p: ptr::NonNull::new_unchecked(ptr),
phantom: PhantomData,
}
}
#[inline]
pub(super) fn inner(&self) -> &ArcInner<T> {
// This unsafety is ok because while this arc is alive we're guaranteed
// that the inner pointer is valid. Furthermore, we know that the
// `ArcInner` structure itself is `Sync` because the inner data is
// `Sync` as well, so we're ok loaning out an immutable pointer to these
// contents.
unsafe { &*self.ptr() }
}
// Non-inlined part of `drop`. Just invokes the destructor.
#[inline(never)]
unsafe fn drop_slow(&mut self) {
let _ = Box::from_raw(self.ptr());
}
/// Test pointer equality between the two Arcs, i.e. they must be the _same_
/// allocation
#[inline]
pub fn ptr_eq(this: &Self, other: &Self) -> bool {
this.ptr() == other.ptr()
}
pub(crate) fn ptr(&self) -> *mut ArcInner<T> {
self.p.as_ptr()
}
/// Allocates an `ArcInner<T>` with sufficient space for
/// a possibly-unsized inner value where the value has the layout provided.
///
/// The function `mem_to_arcinner` is called with the data pointer
/// and must return back a (potentially fat)-pointer for the `ArcInner<T>`.
///
/// ## Safety
///
/// `mem_to_arcinner` must return the same pointer, the only things that can change are
/// - its type
/// - its metadata
///
/// `value_layout` must be correct for `T`.
#[allow(unused_unsafe)]
pub(super) unsafe fn allocate_for_layout(
value_layout: Layout,
mem_to_arcinner: impl FnOnce(*mut u8) -> *mut ArcInner<T>,
) -> NonNull<ArcInner<T>> {
let layout = Layout::new::<ArcInner<()>>()
.extend(value_layout)
.unwrap()
.0
.pad_to_align();
// Safety: we propagate safety requirements to the caller
unsafe {
Arc::try_allocate_for_layout(value_layout, mem_to_arcinner)
.unwrap_or_else(|_| handle_alloc_error(layout))
}
}
/// Allocates an `ArcInner<T>` with sufficient space for
/// a possibly-unsized inner value where the value has the layout provided,
/// returning an error if allocation fails.
///
/// The function `mem_to_arcinner` is called with the data pointer
/// and must return back a (potentially fat)-pointer for the `ArcInner<T>`.
///
/// ## Safety
///
/// `mem_to_arcinner` must return the same pointer, the only things that can change are
/// - its type
/// - its metadata
///
/// `value_layout` must be correct for `T`.
#[allow(unused_unsafe)]
unsafe fn try_allocate_for_layout(
value_layout: Layout,
mem_to_arcinner: impl FnOnce(*mut u8) -> *mut ArcInner<T>,
) -> Result<NonNull<ArcInner<T>>, ()> {
let layout = Layout::new::<ArcInner<()>>()
.extend(value_layout)
.unwrap()
.0
.pad_to_align();
let ptr = NonNull::new(alloc::alloc::alloc(layout)).ok_or(())?;
// Initialize the ArcInner
let inner = mem_to_arcinner(ptr.as_ptr());
debug_assert_eq!(unsafe { Layout::for_value(&*inner) }, layout);
unsafe {
ptr::write(&mut (*inner).count, atomic::AtomicUsize::new(1));
}
// Safety: `ptr` is checked to be non-null,
// `inner` is the same as `ptr` (per the safety requirements of this function)
unsafe { Ok(NonNull::new_unchecked(inner)) }
}
}
impl<H, T> Arc<HeaderSlice<H, [T]>> {
pub(super) fn allocate_for_header_and_slice(
len: usize,
) -> NonNull<ArcInner<HeaderSlice<H, [T]>>> {
let layout = Layout::new::<H>()
.extend(Layout::array::<T>(len).unwrap())
.unwrap()
.0
.pad_to_align();
unsafe {
// Safety:
// - the provided closure does not change the pointer (except for meta & type)
// - the provided layout is valid for `HeaderSlice<H, [T]>`
Arc::allocate_for_layout(layout, |mem| {
// Synthesize the fat pointer. We do this by claiming we have a direct
// pointer to a [T], and then changing the type of the borrow. The key
// point here is that the length portion of the fat pointer applies
// only to the number of elements in the dynamically-sized portion of
// the type, so the value will be the same whether it points to a [T]
// or something else with a [T] as its last member.
let fake_slice = ptr::slice_from_raw_parts_mut(mem as *mut T, len);
fake_slice as *mut ArcInner<HeaderSlice<H, [T]>>
})
}
}
}
impl<T> Arc<MaybeUninit<T>> {
/// Create an Arc contains an `MaybeUninit<T>`.
pub fn new_uninit() -> Self {
Arc::new(MaybeUninit::<T>::uninit())
}
/// Calls `MaybeUninit::write` on the value contained.
///
/// ## Panics
///
/// If the `Arc` is not unique.
#[deprecated(
since = "0.1.7",
note = "this function previously was UB and now panics for non-unique `Arc`s. Use `UniqueArc::write` instead."
)]
#[track_caller]
pub fn write(&mut self, val: T) -> &mut T {
UniqueArc::write(must_be_unique(self), val)
}
/// Obtain a mutable pointer to the stored `MaybeUninit<T>`.
pub fn as_mut_ptr(&mut self) -> *mut MaybeUninit<T> {
unsafe { &mut (*self.ptr()).data }
}
/// # Safety
///
/// Must initialize all fields before calling this function.
#[inline]
pub unsafe fn assume_init(self) -> Arc<T> {
Arc::from_raw_inner(ManuallyDrop::new(self).ptr().cast())
}
}
impl<T> Arc<[MaybeUninit<T>]> {
/// Create an Arc contains an array `[MaybeUninit<T>]` of `len`.
pub fn new_uninit_slice(len: usize) -> Self {
UniqueArc::new_uninit_slice(len).shareable()
}
/// Obtain a mutable slice to the stored `[MaybeUninit<T>]`.
#[deprecated(
since = "0.1.8",
note = "this function previously was UB and now panics for non-unique `Arc`s. Use `UniqueArc` or `get_mut` instead."
)]
#[track_caller]
pub fn as_mut_slice(&mut self) -> &mut [MaybeUninit<T>] {
must_be_unique(self)
}
/// # Safety
///
/// Must initialize all fields before calling this function.
#[inline]
pub unsafe fn assume_init(self) -> Arc<[T]> {
Arc::from_raw_inner(ManuallyDrop::new(self).ptr() as _)
}
}
impl<T: ?Sized> Clone for Arc<T> {
#[inline]
fn clone(&self) -> Self {
// Using a relaxed ordering is alright here, as knowledge of the
// original reference prevents other threads from erroneously deleting
// the object.
//
// As explained in the [Boost documentation][1], Increasing the
// reference counter can always be done with memory_order_relaxed: New
// references to an object can only be formed from an existing
// reference, and passing an existing reference from one thread to
// another must already provide any required synchronization.
//
// [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
let old_size = self.inner().count.fetch_add(1, Relaxed);
// However we need to guard against massive refcounts in case someone
// is `mem::forget`ing Arcs. If we don't do this the count can overflow
// and users will use-after free. We racily saturate to `isize::MAX` on
// the assumption that there aren't ~2 billion threads incrementing
// the reference count at once. This branch will never be taken in
// any realistic program.
//
// We abort because such a program is incredibly degenerate, and we
// don't care to support it.
if old_size > MAX_REFCOUNT {
abort();
}
unsafe {
Arc {
p: ptr::NonNull::new_unchecked(self.ptr()),
phantom: PhantomData,
}
}
}
}
impl<T: ?Sized> Deref for Arc<T> {
type Target = T;
#[inline]
fn deref(&self) -> &T {
&self.inner().data
}
}
impl<T: Clone> Arc<T> {
/// Makes a mutable reference to the `Arc`, cloning if necessary
///
/// This is functionally equivalent to [`Arc::make_mut`][mm] from the standard library.
///
/// If this `Arc` is uniquely owned, `make_mut()` will provide a mutable
/// reference to the contents. If not, `make_mut()` will create a _new_ `Arc`
/// with a copy of the contents, update `this` to point to it, and provide
/// a mutable reference to its contents.
///
/// This is useful for implementing copy-on-write schemes where you wish to
/// avoid copying things if your `Arc` is not shared.
///
/// [mm]: https://doc.rust-lang.org/stable/std/sync/struct.Arc.html#method.make_mut
#[inline]
pub fn make_mut(this: &mut Self) -> &mut T {
if !this.is_unique() {
// Another pointer exists; clone
*this = Arc::new(T::clone(&this));
}
unsafe {
// This unsafety is ok because we're guaranteed that the pointer
// returned is the *only* pointer that will ever be returned to T. Our
// reference count is guaranteed to be 1 at this point, and we required
// the Arc itself to be `mut`, so we're returning the only possible
// reference to the inner data.
&mut (*this.ptr()).data
}
}
/// Makes a `UniqueArc` from an `Arc`, cloning if necessary.
///
/// If this `Arc` is uniquely owned, `make_unique()` will provide a `UniqueArc`
/// containing `this`. If not, `make_unique()` will create a _new_ `Arc`
/// with a copy of the contents, update `this` to point to it, and provide
/// a `UniqueArc` to it.
///
/// This is useful for implementing copy-on-write schemes where you wish to
/// avoid copying things if your `Arc` is not shared.
#[inline]
pub fn make_unique(this: &mut Self) -> &mut UniqueArc<T> {
if !this.is_unique() {
// Another pointer exists; clone
*this = Arc::new(T::clone(&this));
}
unsafe {
// Safety: this is either unique or just created (which is also unique)
UniqueArc::from_arc_ref(this)
}
}
/// If we have the only reference to `T` then unwrap it. Otherwise, clone `T` and return the clone.
///
/// Assuming `arc_t` is of type `Arc<T>`, this function is functionally equivalent to `(*arc_t).clone()`, but will avoid cloning the inner value where possible.
pub fn unwrap_or_clone(this: Arc<T>) -> T {
Self::try_unwrap(this).unwrap_or_else(|this| T::clone(&this))
}
}
impl<T: ?Sized> Arc<T> {
/// Provides mutable access to the contents _if_ the `Arc` is uniquely owned.
#[inline]
pub fn get_mut(this: &mut Self) -> Option<&mut T> {
if this.is_unique() {
unsafe {
// See make_mut() for documentation of the threadsafety here.
Some(&mut (*this.ptr()).data)
}
} else {
None
}
}
/// Provides unique access to the arc _if_ the `Arc` is uniquely owned.
pub fn get_unique(this: &mut Self) -> Option<&mut UniqueArc<T>> {
Self::try_as_unique(this).ok()
}
/// Whether or not the `Arc` is uniquely owned (is the refcount 1?).
pub fn is_unique(&self) -> bool {
// See the extensive discussion in [1] for why this needs to be Acquire.
//
// [1] https://github.com/servo/servo/issues/21186
Self::count(self) == 1
}
/// Gets the number of [`Arc`] pointers to this allocation
pub fn count(this: &Self) -> usize {
this.inner().count.load(Acquire)
}
/// Returns a [`UniqueArc`] if the [`Arc`] has exactly one strong reference.
///
/// Otherwise, an [`Err`] is returned with the same [`Arc`] that was
/// passed in.
///
/// # Examples
///
/// ```
/// use triomphe::{Arc, UniqueArc};
///
/// let x = Arc::new(3);
/// assert_eq!(UniqueArc::into_inner(Arc::try_unique(x).unwrap()), 3);
///
/// let x = Arc::new(4);
/// let _y = Arc::clone(&x);
/// assert_eq!(
/// *Arc::try_unique(x).map(UniqueArc::into_inner).unwrap_err(),
/// 4,
/// );
/// ```
pub fn try_unique(this: Self) -> Result<UniqueArc<T>, Self> {
if this.is_unique() {
// Safety: The current arc is unique and making a `UniqueArc`
// from it is sound
unsafe { Ok(UniqueArc::from_arc(this)) }
} else {
Err(this)
}
}
pub(crate) fn try_as_unique(this: &mut Self) -> Result<&mut UniqueArc<T>, &mut Self> {
if this.is_unique() {
// Safety: The current arc is unique and making a `UniqueArc`
// from it is sound
unsafe { Ok(UniqueArc::from_arc_ref(this)) }
} else {
Err(this)
}
}
}
impl<T: ?Sized> Drop for Arc<T> {
#[inline]
fn drop(&mut self) {
// Because `fetch_sub` is already atomic, we do not need to synchronize
// with other threads unless we are going to delete the object.
if self.inner().count.fetch_sub(1, Release) != 1 {
return;
}
// FIXME(bholley): Use the updated comment when [2] is merged.
//
// This load is needed to prevent reordering of use of the data and
// deletion of the data. Because it is marked `Release`, the decreasing
// of the reference count synchronizes with this `Acquire` load. This
// means that use of the data happens before decreasing the reference
// count, which happens before this load, which happens before the
// deletion of the data.
//
// As explained in the [Boost documentation][1],
//
// > It is important to enforce any possible access to the object in one
// > thread (through an existing reference) to *happen before* deleting
// > the object in a different thread. This is achieved by a "release"
// > operation after dropping a reference (any access to the object
// > through this reference must obviously happened before), and an
// > "acquire" operation before deleting the object.
//
// [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
// [2]: https://github.com/rust-lang/rust/pull/41714
self.inner().count.load(Acquire);
unsafe {
self.drop_slow();
}
}
}
impl<T: ?Sized + PartialEq> PartialEq for Arc<T> {
fn eq(&self, other: &Arc<T>) -> bool {
Self::ptr_eq(self, other) || *(*self) == *(*other)
}
#[allow(clippy::partialeq_ne_impl)]
fn ne(&self, other: &Arc<T>) -> bool {
!Self::ptr_eq(self, other) && *(*self) != *(*other)
}
}
impl<T: ?Sized + PartialOrd> PartialOrd for Arc<T> {
fn partial_cmp(&self, other: &Arc<T>) -> Option<Ordering> {
(**self).partial_cmp(&**other)
}
fn lt(&self, other: &Arc<T>) -> bool {
*(*self) < *(*other)
}
fn le(&self, other: &Arc<T>) -> bool {
*(*self) <= *(*other)
}
fn gt(&self, other: &Arc<T>) -> bool {
*(*self) > *(*other)
}
fn ge(&self, other: &Arc<T>) -> bool {
*(*self) >= *(*other)
}
}
impl<T: ?Sized + Ord> Ord for Arc<T> {
fn cmp(&self, other: &Arc<T>) -> Ordering {
(**self).cmp(&**other)
}
}
impl<T: ?Sized + Eq> Eq for Arc<T> {}
impl<T: ?Sized + fmt::Display> fmt::Display for Arc<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(&**self, f)
}
}
impl<T: ?Sized + fmt::Debug> fmt::Debug for Arc<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
impl<T: ?Sized> fmt::Pointer for Arc<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Pointer::fmt(&self.ptr(), f)
}
}
impl<T: Default> Default for Arc<T> {
#[inline]
fn default() -> Arc<T> {
Arc::new(Default::default())
}
}
impl<T: ?Sized + Hash> Hash for Arc<T> {
fn hash<H: Hasher>(&self, state: &mut H) {
(**self).hash(state)
}
}
impl<T> From<T> for Arc<T> {
#[inline]
fn from(t: T) -> Self {
Arc::new(t)
}
}
impl<T: ?Sized> borrow::Borrow<T> for Arc<T> {
#[inline]
fn borrow(&self) -> &T {
&**self
}
}
impl<T: ?Sized> AsRef<T> for Arc<T> {
#[inline]
fn as_ref(&self) -> &T {
&**self
}
}
#[cfg(feature = "stable_deref_trait")]
unsafe impl<T: ?Sized> StableDeref for Arc<T> {}
#[cfg(feature = "stable_deref_trait")]
unsafe impl<T: ?Sized> CloneStableDeref for Arc<T> {}
#[cfg(feature = "serde")]
impl<'de, T: Deserialize<'de>> Deserialize<'de> for Arc<T> {
fn deserialize<D>(deserializer: D) -> Result<Arc<T>, D::Error>
where
D: ::serde::de::Deserializer<'de>,
{
T::deserialize(deserializer).map(Arc::new)
}
}
#[cfg(feature = "serde")]
impl<T: Serialize> Serialize for Arc<T> {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: ::serde::ser::Serializer,
{
(**self).serialize(serializer)
}
}
// Safety:
// This implementation must guarantee that it is sound to call replace_ptr with an unsized variant
// of the pointer retuned in `as_sized_ptr`. The basic property of Unsize coercion is that safety
// variants and layout is unaffected. The Arc does not rely on any other property of T. This makes
// any unsized ArcInner valid for being shared with the sized variant.
// This does _not_ mean that any T can be unsized into an U, but rather than if such unsizing is
// possible then it can be propagated into the Arc<T>.
#[cfg(feature = "unsize")]
unsafe impl<T, U: ?Sized> unsize::CoerciblePtr<U> for Arc<T> {
type Pointee = T;
type Output = Arc<U>;
fn as_sized_ptr(&mut self) -> *mut T {
// Returns a pointer to the complete inner. The unsizing itself won't care about the
// pointer value and promises not to offset it.
self.p.as_ptr() as *mut T
}
unsafe fn replace_ptr(self, new: *mut U) -> Arc<U> {
// Fix the provenance by ensuring that of `self` is used.
let inner = ManuallyDrop::new(self);
let p = inner.p.as_ptr() as *mut T;
// Safety: This points to an ArcInner of the previous self and holds shared ownership since
// the old pointer never decremented the reference count. The caller upholds that `new` is
// an unsized version of the previous ArcInner. This assumes that unsizing to the fat
// pointer tag of an `ArcInner<U>` and `U` is isomorphic under a direct pointer cast since
// in reality we unsized *mut T to *mut U at the address of the ArcInner. This is the case
// for all currently envisioned unsized types where the tag of T and ArcInner<T> are simply
// the same.
Arc::from_raw_inner(p.replace_ptr(new) as *mut ArcInner<U>)
}
}
#[track_caller]
fn must_be_unique<T: ?Sized>(arc: &mut Arc<T>) -> &mut UniqueArc<T> {
match Arc::try_as_unique(arc) {
Ok(unique) => unique,
Err(this) => panic!("`Arc` must be unique in order for this operation to be safe, there are currently {} copies", Arc::count(this)),
}
}
#[cfg(test)]
mod tests {
use crate::arc::Arc;
use alloc::string::String;
use core::mem::MaybeUninit;
#[cfg(feature = "unsize")]
use unsize::{CoerceUnsize, Coercion};
#[test]
fn try_unwrap() {
let x = Arc::new(100usize);
let y = x.clone();
// The count should be two so `try_unwrap()` should fail
assert_eq!(Arc::count(&x), 2);
assert!(Arc::try_unwrap(x).is_err());
// Since `x` has now been dropped, the count should be 1
// and `try_unwrap()` should succeed
assert_eq!(Arc::count(&y), 1);
assert_eq!(Arc::try_unwrap(y), Ok(100));
}
#[test]
#[cfg(feature = "unsize")]
fn coerce_to_slice() {
let x = Arc::new([0u8; 4]);
let y: Arc<[u8]> = x.clone().unsize(Coercion::to_slice());
assert_eq!((*x).as_ptr(), (*y).as_ptr());
}
#[test]
#[cfg(feature = "unsize")]
fn coerce_to_dyn() {
let x: Arc<_> = Arc::new(|| 42u32);
let x: Arc<_> = x.unsize(Coercion::<_, dyn Fn() -> u32>::to_fn());
assert_eq!((*x)(), 42);
}
#[test]
#[allow(deprecated)]
fn maybeuninit() {
let mut arc: Arc<MaybeUninit<_>> = Arc::new_uninit();
arc.write(999);
let arc = unsafe { arc.assume_init() };
assert_eq!(*arc, 999);
}
#[test]
#[allow(deprecated)]
#[should_panic = "`Arc` must be unique in order for this operation to be safe"]
fn maybeuninit_ub_to_proceed() {
let mut uninit = Arc::new_uninit();
let clone = uninit.clone();
let x: &MaybeUninit<String> = &*clone;
// This write invalidates `x` reference
uninit.write(String::from("nonononono"));
// Read invalidated reference to trigger UB
let _ = &*x;
}
#[test]
#[allow(deprecated)]
#[should_panic = "`Arc` must be unique in order for this operation to be safe"]
fn maybeuninit_slice_ub_to_proceed() {
let mut uninit = Arc::new_uninit_slice(13);
let clone = uninit.clone();
let x: &[MaybeUninit<String>] = &*clone;
// This write invalidates `x` reference
uninit.as_mut_slice()[0].write(String::from("nonononono"));
// Read invalidated reference to trigger UB
let _ = &*x;
}
#[test]
fn maybeuninit_array() {
let mut arc: Arc<[MaybeUninit<_>]> = Arc::new_uninit_slice(5);
assert!(arc.is_unique());
#[allow(deprecated)]
for (uninit, index) in arc.as_mut_slice().iter_mut().zip(0..5) {
let ptr = uninit.as_mut_ptr();
unsafe { core::ptr::write(ptr, index) };
}
let arc = unsafe { arc.assume_init() };
assert!(arc.is_unique());
// Using clone to that the layout generated in new_uninit_slice is compatible
// with ArcInner.
let arcs = [
arc.clone(),
arc.clone(),
arc.clone(),
arc.clone(),
arc.clone(),
];
assert_eq!(6, Arc::count(&arc));
// If the layout is not compatible, then the data might be corrupted.
assert_eq!(*arc, [0, 1, 2, 3, 4]);
// Drop the arcs and check the count and the content to
// make sure it isn't corrupted.
drop(arcs);
assert!(arc.is_unique());
assert_eq!(*arc, [0, 1, 2, 3, 4]);
}
#[test]
fn roundtrip() {
let arc: Arc<usize> = Arc::new(0usize);
let ptr = Arc::into_raw(arc);
unsafe {
let _arc = Arc::from_raw(ptr);
}
}
}