mz_storage/
upsert_continual_feedback.rs

1// Copyright Materialize, Inc. and contributors. All rights reserved.
2//
3// Use of this software is governed by the Business Source License
4// included in the LICENSE file.
5//
6// As of the Change Date specified in that file, in accordance with
7// the Business Source License, use of this software will be governed
8// by the Apache License, Version 2.0.
9
10//! Implementation of feedback UPSERT operator and associated helpers. See
11//! [`upsert_inner`] for a description of how the operator works and why.
12
13use std::cmp::Reverse;
14use std::fmt::Debug;
15use std::sync::Arc;
16
17use differential_dataflow::hashable::Hashable;
18use differential_dataflow::{AsCollection, VecCollection};
19use indexmap::map::Entry;
20use itertools::Itertools;
21use mz_repr::{Diff, GlobalId, Row};
22use mz_storage_types::errors::{DataflowError, EnvelopeError};
23use mz_timely_util::builder_async::{
24    Event as AsyncEvent, OperatorBuilder as AsyncOperatorBuilder, PressOnDropButton,
25};
26use std::convert::Infallible;
27use timely::container::CapacityContainerBuilder;
28use timely::dataflow::channels::pact::Exchange;
29use timely::dataflow::operators::{Capability, CapabilitySet};
30use timely::dataflow::{Scope, Stream};
31use timely::order::{PartialOrder, TotalOrder};
32use timely::progress::timestamp::Refines;
33use timely::progress::{Antichain, Timestamp};
34
35use crate::healthcheck::HealthStatusUpdate;
36use crate::metrics::upsert::UpsertMetrics;
37use crate::upsert::UpsertConfig;
38use crate::upsert::UpsertErrorEmitter;
39use crate::upsert::UpsertKey;
40use crate::upsert::UpsertValue;
41use crate::upsert::types::UpsertValueAndSize;
42use crate::upsert::types::{self as upsert_types, ValueMetadata};
43use crate::upsert::types::{StateValue, UpsertState, UpsertStateBackend};
44
45/// An operator that transforms an input stream of upserts (updates to key-value
46/// pairs), which represents an imaginary key-value state, into a differential
47/// collection. It keeps an internal map-like state which keeps the latest value
48/// for each key, such that it can emit the retractions and additions implied by
49/// a new update for a given key.
50///
51/// This operator is intended to be used in an ingestion pipeline that reads
52/// from an external source, and the output of this operator is eventually
53/// written to persist.
54///
55/// The operator has two inputs: a) the source input, of upserts, and b) a
56/// persist input that feeds back the upsert state to the operator. Below, there
57/// is a section for each input that describes how and why we process updates
58/// from each input.
59///
60/// An important property of this operator is that it does _not_ update the
61/// map-like state that it keeps for translating the stream of upserts into a
62/// differential collection when it processes source input. It _only_ updates
63/// the map-like state based on updates from the persist (feedback) input. We do
64/// this because the operator is expected to be used in cases where there are
65/// multiple concurrent instances of the same ingestion pipeline, and the
66/// different instances might see different input because of concurrency and
67/// non-determinism. All instances of the upsert operator must produce output
68/// that is consistent with the current state of the output (that all instances
69/// produce "collaboratively"). This global state is what the operator
70/// continually learns about via updates from the persist input.
71///
72/// ## Processing the Source Input
73///
74/// Updates on the source input are stashed/staged until they can be processed.
75/// Whether or not an update can be processed depends both on the upper frontier
76/// of the source input and on the upper frontier of the persist input:
77///
78///  - Input updates are only processed once their timestamp is "done", that is
79///  the input upper is no longer `less_equal` their timestamp.
80///
81///  - Input updates are only processed once they are at the persist upper, that
82///  is we have emitted and written down updates for all previous times and we
83///  have updated our map-like state to the latest global state of the output of
84///  the ingestion pipeline. We know this is the case when the persist upper is
85///  no longer `less_than` their timestamp.
86///
87/// As an optimization, we allow processing input updates when they are right at
88/// the input frontier. This is called _partial emission_ because we are
89/// emitting updates that might be retracted when processing more updates from
90/// the same timestamp. In order to be able to process these updates we keep
91/// _provisional values_ in our upsert state. These will be overwritten when we
92/// get the final upsert values on the persist input.
93///
94/// ## Processing the Persist Input
95///
96/// We continually ingest updates from the persist input into our state using
97/// `UpsertState::consolidate_chunk`. We might be ingesting updates from the
98/// initial snapshot (when starting the operator) that are not consolidated or
99/// we might be ingesting updates from a partial emission (see above). In either
100/// case, our input might not be consolidated and `consolidate_chunk` is able to
101/// handle that.
102pub fn upsert_inner<G: Scope, FromTime, F, Fut, US>(
103    input: &VecCollection<G, (UpsertKey, Option<UpsertValue>, FromTime), Diff>,
104    key_indices: Vec<usize>,
105    resume_upper: Antichain<G::Timestamp>,
106    persist_input: VecCollection<G, Result<Row, DataflowError>, Diff>,
107    mut persist_token: Option<Vec<PressOnDropButton>>,
108    upsert_metrics: UpsertMetrics,
109    source_config: crate::source::SourceExportCreationConfig,
110    state_fn: F,
111    upsert_config: UpsertConfig,
112    prevent_snapshot_buffering: bool,
113    snapshot_buffering_max: Option<usize>,
114) -> (
115    VecCollection<G, Result<Row, DataflowError>, Diff>,
116    Stream<G, (Option<GlobalId>, HealthStatusUpdate)>,
117    Stream<G, Infallible>,
118    PressOnDropButton,
119)
120where
121    G::Timestamp: Refines<mz_repr::Timestamp> + TotalOrder + Sync,
122    F: FnOnce() -> Fut + 'static,
123    Fut: std::future::Future<Output = US>,
124    US: UpsertStateBackend<G::Timestamp, FromTime>,
125    FromTime: Debug + timely::ExchangeData + Ord + Sync,
126{
127    let mut builder = AsyncOperatorBuilder::new("Upsert".to_string(), input.scope());
128
129    // We only care about UpsertValueError since this is the only error that we can retract
130    let persist_input = persist_input.flat_map(move |result| {
131        let value = match result {
132            Ok(ok) => Ok(ok),
133            Err(DataflowError::EnvelopeError(err)) => match *err {
134                EnvelopeError::Upsert(err) => Err(Box::new(err)),
135                _ => return None,
136            },
137            Err(_) => return None,
138        };
139        let value_ref = match value {
140            Ok(ref row) => Ok(row),
141            Err(ref err) => Err(&**err),
142        };
143        Some((UpsertKey::from_value(value_ref, &key_indices), value))
144    });
145    let (output_handle, output) = builder.new_output::<CapacityContainerBuilder<_>>();
146
147    // An output that just reports progress of the snapshot consolidation process upstream to the
148    // persist source to ensure that backpressure is applied
149    let (_snapshot_handle, snapshot_stream) =
150        builder.new_output::<CapacityContainerBuilder<Vec<Infallible>>>();
151
152    let (mut health_output, health_stream) = builder.new_output();
153    let mut input = builder.new_input_for(
154        &input.inner,
155        Exchange::new(move |((key, _, _), _, _)| UpsertKey::hashed(key)),
156        &output_handle,
157    );
158
159    let mut persist_input = builder.new_disconnected_input(
160        &persist_input.inner,
161        Exchange::new(|((key, _), _, _)| UpsertKey::hashed(key)),
162    );
163
164    let upsert_shared_metrics = Arc::clone(&upsert_metrics.shared);
165
166    let shutdown_button = builder.build(move |caps| async move {
167        let [output_cap, snapshot_cap, health_cap]: [_; 3] = caps.try_into().unwrap();
168        drop(output_cap);
169        let mut snapshot_cap = CapabilitySet::from_elem(snapshot_cap);
170
171        let mut state = UpsertState::<_, G::Timestamp, FromTime>::new(
172            state_fn().await,
173            upsert_shared_metrics,
174            &upsert_metrics,
175            source_config.source_statistics.clone(),
176            upsert_config.shrink_upsert_unused_buffers_by_ratio,
177        );
178
179        // True while we're still reading the initial "snapshot" (a whole bunch
180        // of updates, all at the same initial timestamp) from our persist
181        // input or while we're reading the initial snapshot from the upstream
182        // source.
183        let mut hydrating = true;
184
185        // A re-usable buffer of changes, per key. This is an `IndexMap` because it has to be `drain`-able
186        // and have a consistent iteration order.
187        let mut commands_state: indexmap::IndexMap<_, upsert_types::UpsertValueAndSize<G::Timestamp, FromTime>> =
188            indexmap::IndexMap::new();
189        let mut multi_get_scratch = Vec::new();
190
191        // For stashing source input while it's not eligible for processing.
192        let mut stash = vec![];
193        // A capability suitable for emitting any updates based on stash. No capability is held
194        // when the stash is empty.
195        let mut stash_cap: Option<Capability<G::Timestamp>> = None;
196        let mut input_upper = Antichain::from_elem(Timestamp::minimum());
197        let mut partial_drain_time = None;
198
199        // For our persist/feedback input, both of these.
200        let mut persist_stash = vec![];
201        let mut persist_upper = Antichain::from_elem(Timestamp::minimum());
202
203        // We keep track of the largest timestamp seen on the persist input so
204        // that we can block processing source input while that timestamp is
205        // beyond the persist frontier. While ingesting updates of a timestamp,
206        // our upsert state is in a consolidating state, and trying to read it
207        // at that time would yield a panic.
208        //
209        // NOTE(aljoscha): You would think that it cannot happen that we even
210        // attempt to process source updates while the state is in a
211        // consolidating state, because we always wait until the persist
212        // frontier "catches up" with the timestamp of the source input. If
213        // there is only this here UPSERT operator and no concurrent instances,
214        // this is true. But with concurrent instances it can happen that an
215        // operator that is faster than us makes it so updates get written to
216        // persist. And we would then be ingesting them.
217        let mut largest_seen_persist_ts: Option<G::Timestamp> = None;
218
219        // A buffer for our output.
220        let mut output_updates = vec![];
221
222        let mut error_emitter = (&mut health_output, &health_cap);
223
224
225        loop {
226            tokio::select! {
227                _ = persist_input.ready() => {
228                    // Read away as much input as we can.
229                    while let Some(persist_event) = persist_input.next_sync() {
230                        match persist_event {
231                            AsyncEvent::Data(time, data) => {
232                                tracing::trace!(
233                                    worker_id = %source_config.worker_id,
234                                    source_id = %source_config.id,
235                                    time=?time,
236                                    updates=%data.len(),
237                                    "received persist data");
238
239                                persist_stash.extend(data.into_iter().map(|((key, value), ts, diff)| {
240                                    largest_seen_persist_ts = std::cmp::max(largest_seen_persist_ts.clone(), Some(ts.clone()));
241                                    (key, value, ts, diff)
242                                }));
243                            }
244                            AsyncEvent::Progress(upper) => {
245                                tracing::trace!(
246                                    worker_id = %source_config.worker_id,
247                                    source_id = %source_config.id,
248                                    ?upper,
249                                    "received persist progress");
250                                persist_upper = upper;
251                            }
252                        }
253                    }
254
255                    let last_rehydration_chunk =
256                        hydrating && PartialOrder::less_equal(&resume_upper, &persist_upper);
257
258                    tracing::debug!(
259                        worker_id = %source_config.worker_id,
260                        source_id = %source_config.id,
261                        persist_stash = %persist_stash.len(),
262                        %hydrating,
263                        %last_rehydration_chunk,
264                        ?resume_upper,
265                        ?persist_upper,
266                        "ingesting persist snapshot chunk");
267
268                    let persist_stash_iter = persist_stash
269                        .drain(..)
270                        .map(|(key, val, _ts, diff)| (key, val, diff));
271
272                    match state
273                        .consolidate_chunk(
274                            persist_stash_iter,
275                            last_rehydration_chunk,
276                        )
277                        .await
278                    {
279                        Ok(_) => {}
280                        Err(e) => {
281                            // Make sure our persist source can shut down.
282                            persist_token.take();
283                            snapshot_cap.downgrade(&[]);
284                            UpsertErrorEmitter::<G>::emit(
285                                &mut error_emitter,
286                                "Failed to rehydrate state".to_string(),
287                                e,
288                            )
289                            .await;
290                        }
291                    }
292
293                    tracing::debug!(
294                        worker_id = %source_config.worker_id,
295                        source_id = %source_config.id,
296                        ?resume_upper,
297                        ?persist_upper,
298                        "downgrading snapshot cap",
299                    );
300
301                    // Only downgrade this _after_ ingesting the data, because
302                    // that can actually take quite some time, and we don't want
303                    // to announce that we're done ingesting the initial
304                    // snapshot too early.
305                    //
306                    // When we finish ingesting our initial persist snapshot,
307                    // during "re-hydration", we downgrade this to the empty
308                    // frontier, so we need to be lenient to this failing from
309                    // then on.
310                    let _ = snapshot_cap.try_downgrade(persist_upper.iter());
311
312
313
314                    if last_rehydration_chunk {
315                        hydrating = false;
316
317                        tracing::info!(
318                            worker_id = %source_config.worker_id,
319                            source_id = %source_config.id,
320                            "upsert source finished rehydration",
321                        );
322
323                        snapshot_cap.downgrade(&[]);
324                    }
325
326                }
327                _ = input.ready() => {
328                    let mut events_processed = 0;
329                    while let Some(event) = input.next_sync() {
330                        match event {
331                            AsyncEvent::Data(cap, mut data) => {
332                                tracing::trace!(
333                                    worker_id = %source_config.worker_id,
334                                    source_id = %source_config.id,
335                                    time=?cap.time(),
336                                    updates=%data.len(),
337                                    "received data");
338
339                                let event_time = cap.time().clone();
340
341                                stage_input(
342                                    &mut stash,
343                                    &mut data,
344                                    &input_upper,
345                                    &resume_upper,
346                                );
347                                if !stash.is_empty() {
348                                    // Update the stashed capability to the minimum
349                                    stash_cap = match stash_cap {
350                                        Some(stash_cap) => {
351                                            if cap.time() < stash_cap.time() {
352                                                Some(cap)
353                                            } else {
354                                                Some(stash_cap)
355                                            }
356                                        }
357                                        None => Some(cap)
358                                    };
359                                }
360
361                                if prevent_snapshot_buffering && input_upper.as_option() == Some(&event_time) {
362                                    tracing::debug!(
363                                        worker_id = %source_config.worker_id,
364                                        source_id = %source_config.id,
365                                        ?event_time,
366                                        ?resume_upper,
367                                        ?input_upper,
368                                        "allowing partial drain");
369                                    partial_drain_time = Some(event_time.clone());
370                                } else {
371                                    tracing::debug!(
372                                        worker_id = %source_config.worker_id,
373                                        source_id = %source_config.id,
374                                        %prevent_snapshot_buffering,
375                                        ?event_time,
376                                        ?resume_upper,
377                                        ?input_upper,
378                                        "not allowing partial drain");
379                                }
380                            }
381                            AsyncEvent::Progress(upper) => {
382                                tracing::trace!(
383                                    worker_id = %source_config.worker_id,
384                                    source_id = %source_config.id,
385                                    ?upper,
386                                    "received progress");
387
388                                // Ignore progress updates before the `resume_upper`, which is our initial
389                                // capability post-snapshotting.
390                                if PartialOrder::less_than(&upper, &resume_upper) {
391                                    tracing::trace!(
392                                        worker_id = %source_config.worker_id,
393                                        source_id = %source_config.id,
394                                        ?upper,
395                                        ?resume_upper,
396                                        "ignoring progress updates before resume_upper");
397                                    continue;
398                                }
399
400                                // Disable partial drain, because this progress
401                                // update has moved the frontier. We might allow
402                                // it again once we receive data right at the
403                                // frontier again.
404                                partial_drain_time = None;
405                                input_upper = upper;
406                            }
407                        }
408
409                        events_processed += 1;
410                        if let Some(max) = snapshot_buffering_max {
411                            if events_processed >= max {
412                                break;
413                            }
414                        }
415                    }
416                }
417            };
418
419            // While we have partially ingested updates of a timestamp our state
420            // is in an inconsistent/consolidating state and accessing it would
421            // panic.
422            if let Some(largest_seen_persist_ts) = largest_seen_persist_ts.as_ref() {
423                let largest_seen_outer_persist_ts = largest_seen_persist_ts.clone().to_outer();
424                let outer_persist_upper = persist_upper.iter().map(|ts| ts.clone().to_outer());
425                let outer_persist_upper = Antichain::from_iter(outer_persist_upper);
426                if outer_persist_upper.less_equal(&largest_seen_outer_persist_ts) {
427                    continue;
428                }
429            }
430
431            // We try and drain from our stash every time we go through the
432            // loop. More of our stash can become eligible for draining both
433            // when the source-input frontier advances or when the persist
434            // frontier advances.
435            if !stash.is_empty() {
436                let cap = stash_cap.as_mut().expect("missing capability for non-empty stash");
437
438                tracing::trace!(
439                    worker_id = %source_config.worker_id,
440                    source_id = %source_config.id,
441                    ?cap,
442                    ?stash,
443                    "stashed updates");
444
445                let mut min_remaining_time = drain_staged_input::<_, G, _, _, _>(
446                    &mut stash,
447                    &mut commands_state,
448                    &mut output_updates,
449                    &mut multi_get_scratch,
450                    DrainStyle::ToUpper{input_upper: &input_upper, persist_upper: &persist_upper},
451                    &mut error_emitter,
452                    &mut state,
453                    &source_config,
454                )
455                .await;
456
457                tracing::trace!(
458                    worker_id = %source_config.worker_id,
459                    source_id = %source_config.id,
460                    output_updates = %output_updates.len(),
461                    "output updates for complete timestamp");
462
463                for (update, ts, diff) in output_updates.drain(..) {
464                    output_handle.give(cap, (update, ts, diff));
465                }
466
467                if !stash.is_empty() {
468                    let min_remaining_time = min_remaining_time.take().expect("we still have updates left");
469                    cap.downgrade(&min_remaining_time);
470                } else {
471                    stash_cap = None;
472                }
473            }
474
475
476            if input_upper.is_empty() {
477                tracing::debug!(
478                    worker_id = %source_config.worker_id,
479                    source_id = %source_config.id,
480                    "input exhausted, shutting down");
481                break;
482            };
483
484            // If there were staged events that occurred at the capability time, drain
485            // them. This is safe because out-of-order updates to the same key that are
486            // drained in separate calls to `drain_staged_input` are correctly ordered by
487            // their `FromTime` in `drain_staged_input`.
488            //
489            // Note also that this may result in more updates in the output collection than
490            // the minimum. However, because the frontier only advances on `Progress` updates,
491            // the collection always accumulates correctly for all keys.
492            if let Some(partial_drain_time) = &partial_drain_time {
493                if !stash.is_empty() {
494                    let cap = stash_cap.as_mut().expect("missing capability for non-empty stash");
495
496                    tracing::trace!(
497                        worker_id = %source_config.worker_id,
498                        source_id = %source_config.id,
499                        ?cap,
500                        ?stash,
501                        "stashed updates");
502
503                    let mut min_remaining_time = drain_staged_input::<_, G, _, _, _>(
504                        &mut stash,
505                        &mut commands_state,
506                        &mut output_updates,
507                        &mut multi_get_scratch,
508                        DrainStyle::AtTime{
509                            time: partial_drain_time.clone(),
510                            persist_upper: &persist_upper
511                        },
512                        &mut error_emitter,
513                        &mut state,
514                        &source_config,
515                    )
516                    .await;
517
518                    tracing::trace!(
519                        worker_id = %source_config.worker_id,
520                        source_id = %source_config.id,
521                        output_updates = %output_updates.len(),
522                        "output updates for partial timestamp");
523
524                    for (update, ts, diff) in output_updates.drain(..) {
525                        output_handle.give(cap, (update, ts, diff));
526                    }
527
528                    if !stash.is_empty() {
529                        let min_remaining_time = min_remaining_time.take().expect("we still have updates left");
530                        cap.downgrade(&min_remaining_time);
531                    } else {
532                        stash_cap = None;
533                    }
534                }
535            }
536        }
537    });
538
539    (
540        output
541            .as_collection()
542            .map(|result: UpsertValue| match result {
543                Ok(ok) => Ok(ok),
544                Err(err) => Err(DataflowError::from(EnvelopeError::Upsert(*err))),
545            }),
546        health_stream,
547        snapshot_stream,
548        shutdown_button.press_on_drop(),
549    )
550}
551
552/// Helper method for [`upsert_inner`] used to stage `data` updates
553/// from the input/source timely edge.
554#[allow(clippy::disallowed_types)]
555fn stage_input<T, FromTime>(
556    stash: &mut Vec<(T, UpsertKey, Reverse<FromTime>, Option<UpsertValue>)>,
557    data: &mut Vec<((UpsertKey, Option<UpsertValue>, FromTime), T, Diff)>,
558    input_upper: &Antichain<T>,
559    resume_upper: &Antichain<T>,
560) where
561    T: PartialOrder + timely::progress::Timestamp,
562    FromTime: Ord,
563{
564    if PartialOrder::less_equal(input_upper, resume_upper) {
565        data.retain(|(_, ts, _)| resume_upper.less_equal(ts));
566    }
567
568    stash.extend(data.drain(..).map(|((key, value, order), time, diff)| {
569        assert!(diff.is_positive(), "invalid upsert input");
570        (time, key, Reverse(order), value)
571    }));
572}
573
574/// The style of drain we are performing on the stash. `AtTime`-drains cannot
575/// assume that all values have been seen, and must leave tombstones behind for deleted values.
576#[derive(Debug)]
577enum DrainStyle<'a, T> {
578    ToUpper {
579        input_upper: &'a Antichain<T>,
580        persist_upper: &'a Antichain<T>,
581    },
582    // For partial draining when taking the source snapshot.
583    AtTime {
584        time: T,
585        persist_upper: &'a Antichain<T>,
586    },
587}
588
589/// Helper method for [`upsert_inner`] used to stage `data` updates
590/// from the input timely edge.
591///
592/// Returns the minimum observed time across the updates that remain in the
593/// stash or `None` if none are left.
594///
595/// ## Correctness
596///
597/// It is safe to call this function multiple times with the same `persist_upper` provided that the
598/// drain style is `AtTime`, which updates the state such that past actions are remembered and can
599/// be undone in subsequent calls.
600///
601/// It is *not* safe to call this function more than once with the same `persist_upper` and a
602/// `ToUpper` drain style. Doing so causes all calls except the first one to base their work on
603/// stale state, since in this drain style no modifications to the state are made.
604async fn drain_staged_input<S, G, T, FromTime, E>(
605    stash: &mut Vec<(T, UpsertKey, Reverse<FromTime>, Option<UpsertValue>)>,
606    commands_state: &mut indexmap::IndexMap<UpsertKey, UpsertValueAndSize<T, FromTime>>,
607    output_updates: &mut Vec<(UpsertValue, T, Diff)>,
608    multi_get_scratch: &mut Vec<UpsertKey>,
609    drain_style: DrainStyle<'_, T>,
610    error_emitter: &mut E,
611    state: &mut UpsertState<'_, S, T, FromTime>,
612    source_config: &crate::source::SourceExportCreationConfig,
613) -> Option<T>
614where
615    S: UpsertStateBackend<T, FromTime>,
616    G: Scope,
617    T: TotalOrder + timely::ExchangeData + Debug + Ord + Sync,
618    FromTime: timely::ExchangeData + Ord + Sync,
619    E: UpsertErrorEmitter<G>,
620{
621    let mut min_remaining_time = Antichain::new();
622
623    let mut eligible_updates = stash
624        .extract_if(.., |(ts, _, _, _)| {
625            let eligible = match &drain_style {
626                DrainStyle::ToUpper {
627                    input_upper,
628                    persist_upper,
629                } => {
630                    // We make sure that a) we only process updates when we know their
631                    // timestamp is complete, that is there will be no more updates for
632                    // that timestamp, and b) that "previous" times in the persist
633                    // input are complete. The latter makes sure that we emit updates
634                    // for the next timestamp that are consistent with the global state
635                    // in the output persist shard, which also serves as a persistent
636                    // copy of our in-memory/on-disk upsert state.
637                    !input_upper.less_equal(ts) && !persist_upper.less_than(ts)
638                }
639                DrainStyle::AtTime {
640                    time,
641                    persist_upper,
642                } => {
643                    // Even when emitting partial updates, we still need to wait
644                    // until "previous" times in the persist input are complete.
645                    *ts <= *time && !persist_upper.less_than(ts)
646                }
647            };
648
649            if !eligible {
650                min_remaining_time.insert(ts.clone());
651            }
652
653            eligible
654        })
655        .filter(|(ts, _, _, _)| {
656            let persist_upper = match &drain_style {
657                DrainStyle::ToUpper {
658                    input_upper: _,
659                    persist_upper,
660                } => persist_upper,
661                DrainStyle::AtTime {
662                    time: _,
663                    persist_upper,
664                } => persist_upper,
665            };
666
667            // Any update that is "in the past" of the persist upper is not
668            // relevant anymore. We _can_ emit changes for it, but the
669            // downstream persist_sink would filter these updates out because
670            // the shard upper is already further ahead.
671            //
672            // Plus, our upsert state is up-to-date to the persist_upper, so we
673            // wouldn't be able to emit correct retractions for incoming
674            // commands whose `ts` is in the past of that.
675            let relevant = persist_upper.less_equal(ts);
676            relevant
677        })
678        .collect_vec();
679
680    tracing::debug!(
681        worker_id = %source_config.worker_id,
682        source_id = %source_config.id,
683        ?drain_style,
684        remaining = %stash.len(),
685        eligible = eligible_updates.len(),
686        "draining stash");
687
688    // Sort the eligible updates by (key, time, Reverse(from_time)) so that
689    // deduping by (key, time) gives the latest change for that key.
690    eligible_updates.sort_unstable_by(|a, b| {
691        let (ts1, key1, from_ts1, val1) = a;
692        let (ts2, key2, from_ts2, val2) = b;
693        Ord::cmp(&(ts1, key1, from_ts1, val1), &(ts2, key2, from_ts2, val2))
694    });
695
696    // Read the previous values _per key_ out of `state`, recording it
697    // along with the value with the _latest timestamp for that key_.
698    commands_state.clear();
699    for (_, key, _, _) in eligible_updates.iter() {
700        commands_state.entry(*key).or_default();
701    }
702
703    // These iterators iterate in the same order because `commands_state`
704    // is an `IndexMap`.
705    multi_get_scratch.clear();
706    multi_get_scratch.extend(commands_state.iter().map(|(k, _)| *k));
707    match state
708        .multi_get(multi_get_scratch.drain(..), commands_state.values_mut())
709        .await
710    {
711        Ok(_) => {}
712        Err(e) => {
713            error_emitter
714                .emit("Failed to fetch records from state".to_string(), e)
715                .await;
716        }
717    }
718
719    // From the prefix that can be emitted we can deduplicate based on (ts, key) in
720    // order to only process the command with the maximum order within the (ts,
721    // key) group. This is achieved by wrapping order in `Reverse(FromTime)` above.;
722    let mut commands = eligible_updates.into_iter().dedup_by(|a, b| {
723        let ((a_ts, a_key, _, _), (b_ts, b_key, _, _)) = (a, b);
724        a_ts == b_ts && a_key == b_key
725    });
726
727    let bincode_opts = upsert_types::upsert_bincode_opts();
728    // Upsert the values into `commands_state`, by recording the latest
729    // value (or deletion). These will be synced at the end to the `state`.
730    //
731    // Note that we are effectively doing "mini-upsert" here, using
732    // `command_state`. This "mini-upsert" is seeded with data from `state`, using
733    // a single `multi_get` above, and the final state is written out into
734    // `state` using a single `multi_put`. This simplifies `UpsertStateBackend`
735    // implementations, and reduces the number of reads and write we need to do.
736    //
737    // This "mini-upsert" technique is actually useful in `UpsertState`'s
738    // `consolidate_snapshot_read_write_inner` implementation, minimizing gets and puts on
739    // the `UpsertStateBackend` implementations. In some sense, its "upsert all the way down".
740    while let Some((ts, key, from_time, value)) = commands.next() {
741        let mut command_state = if let Entry::Occupied(command_state) = commands_state.entry(key) {
742            command_state
743        } else {
744            panic!("key missing from commands_state");
745        };
746
747        let existing_state_cell = &mut command_state.get_mut().value;
748
749        if let Some(cs) = existing_state_cell.as_mut() {
750            cs.ensure_decoded(bincode_opts, source_config.id);
751        }
752
753        // Skip this command if its order key is below the one in the upsert state.
754        // Note that the existing order key may be `None` if the existing value
755        // is from snapshotting, which always sorts below new values/deletes.
756        let existing_order = existing_state_cell
757            .as_ref()
758            .and_then(|cs| cs.provisional_order(&ts));
759        if existing_order >= Some(&from_time.0) {
760            // Skip this update. If no later updates adjust this key, then we just
761            // end up writing the same value back to state. If there
762            // is nothing in the state, `existing_order` is `None`, and this
763            // does not occur.
764            continue;
765        }
766
767        match value {
768            Some(value) => {
769                if let Some(old_value) = existing_state_cell.as_ref() {
770                    if let Some(old_value) = old_value.provisional_value_ref(&ts) {
771                        output_updates.push((old_value.clone(), ts.clone(), Diff::MINUS_ONE));
772                    }
773                }
774
775                match &drain_style {
776                    DrainStyle::AtTime { .. } => {
777                        let existing_value = existing_state_cell.take();
778
779                        let new_value = match existing_value {
780                            Some(existing_value) => existing_value.clone().into_provisional_value(
781                                value.clone(),
782                                ts.clone(),
783                                from_time.0.clone(),
784                            ),
785                            None => StateValue::new_provisional_value(
786                                value.clone(),
787                                ts.clone(),
788                                from_time.0.clone(),
789                            ),
790                        };
791
792                        existing_state_cell.replace(new_value);
793                    }
794                    DrainStyle::ToUpper { .. } => {
795                        // Not writing down provisional values, or anything.
796                    }
797                };
798
799                output_updates.push((value, ts, Diff::ONE));
800            }
801            None => {
802                if let Some(old_value) = existing_state_cell.as_ref() {
803                    if let Some(old_value) = old_value.provisional_value_ref(&ts) {
804                        output_updates.push((old_value.clone(), ts.clone(), Diff::MINUS_ONE));
805                    }
806                }
807
808                match &drain_style {
809                    DrainStyle::AtTime { .. } => {
810                        let existing_value = existing_state_cell.take();
811
812                        let new_value = match existing_value {
813                            Some(existing_value) => existing_value
814                                .into_provisional_tombstone(ts.clone(), from_time.0.clone()),
815                            None => StateValue::new_provisional_tombstone(
816                                ts.clone(),
817                                from_time.0.clone(),
818                            ),
819                        };
820
821                        existing_state_cell.replace(new_value);
822                    }
823                    DrainStyle::ToUpper { .. } => {
824                        // Not writing down provisional values, or anything.
825                    }
826                }
827            }
828        }
829    }
830
831    match &drain_style {
832        DrainStyle::AtTime { .. } => {
833            match state
834                .multi_put(
835                    // We don't want to update per-record stats, like size of
836                    // records indexed or count of records indexed.
837                    //
838                    // We only add provisional values and these will be
839                    // overwritten once we receive updates for state from the
840                    // persist input. And the merge functionality cannot know
841                    // what was in state before merging, so it cannot correctly
842                    // retract/update stats added here.
843                    //
844                    // Mostly, the merge functionality can't update those stats
845                    // because merging happens in a function that we pass to
846                    // rocksdb which doesn't have access to any external
847                    // context. And in general, with rocksdb we do blind writes
848                    // rather than inspect what was there before when
849                    // updating/inserting.
850                    false,
851                    commands_state.drain(..).map(|(k, cv)| {
852                        (
853                            k,
854                            upsert_types::PutValue {
855                                value: cv.value.map(|cv| cv.into_decoded()),
856                                previous_value_metadata: cv.metadata.map(|v| ValueMetadata {
857                                    size: v.size.try_into().expect("less than i64 size"),
858                                    is_tombstone: v.is_tombstone,
859                                }),
860                            },
861                        )
862                    }),
863                )
864                .await
865            {
866                Ok(_) => {}
867                Err(e) => {
868                    error_emitter
869                        .emit("Failed to update records in state".to_string(), e)
870                        .await;
871                }
872            }
873        }
874        style => {
875            tracing::trace!(
876                worker_id = %source_config.worker_id,
877                source_id = %source_config.id,
878                "not doing state update for drain style {:?}", style);
879        }
880    }
881
882    min_remaining_time.into_option()
883}
884
885#[cfg(test)]
886mod test {
887    use mz_ore::metrics::MetricsRegistry;
888    use mz_persist_types::ShardId;
889    use mz_repr::{Datum, Timestamp as MzTimestamp};
890    use mz_rocksdb::{RocksDBConfig, ValueIterator};
891    use mz_storage_operators::persist_source::Subtime;
892    use mz_storage_types::sources::SourceEnvelope;
893    use mz_storage_types::sources::envelope::{KeyEnvelope, UpsertEnvelope, UpsertStyle};
894    use rocksdb::Env;
895    use timely::dataflow::operators::capture::Extract;
896    use timely::dataflow::operators::{Capture, Input, Probe};
897    use timely::progress::Timestamp;
898
899    use crate::metrics::StorageMetrics;
900    use crate::metrics::upsert::UpsertMetricDefs;
901    use crate::source::SourceExportCreationConfig;
902    use crate::statistics::{SourceStatistics, SourceStatisticsMetricDefs};
903    use crate::upsert::memory::InMemoryHashMap;
904    use crate::upsert::types::{BincodeOpts, consolidating_merge_function, upsert_bincode_opts};
905
906    use super::*;
907
908    #[mz_ore::test]
909    #[cfg_attr(miri, ignore)]
910    fn gh_9160_repro() {
911        // Helper to wrap timestamps in the appropriate types
912        let new_ts = |ts| (MzTimestamp::new(ts), Subtime::minimum());
913
914        let output_handle = timely::execute_directly(move |worker| {
915            let (mut input_handle, mut persist_handle, output_handle) = worker
916                .dataflow::<MzTimestamp, _, _>(|scope| {
917                    // Enter a subscope since the upsert operator expects to work a backpressure
918                    // enabled scope.
919                    scope.scoped::<(MzTimestamp, Subtime), _, _>("upsert", |scope| {
920                        let (input_handle, input) = scope.new_input();
921                        let (persist_handle, persist_input) = scope.new_input();
922                        let upsert_config = UpsertConfig {
923                            shrink_upsert_unused_buffers_by_ratio: 0,
924                        };
925                        let source_id = GlobalId::User(0);
926                        let metrics_registry = MetricsRegistry::new();
927                        let upsert_metrics_defs =
928                            UpsertMetricDefs::register_with(&metrics_registry);
929                        let upsert_metrics =
930                            UpsertMetrics::new(&upsert_metrics_defs, source_id, 0, None);
931
932                        let metrics_registry = MetricsRegistry::new();
933                        let storage_metrics = StorageMetrics::register_with(&metrics_registry);
934
935                        let metrics_registry = MetricsRegistry::new();
936                        let source_statistics_defs =
937                            SourceStatisticsMetricDefs::register_with(&metrics_registry);
938                        let envelope = SourceEnvelope::Upsert(UpsertEnvelope {
939                            source_arity: 2,
940                            style: UpsertStyle::Default(KeyEnvelope::Flattened),
941                            key_indices: vec![0],
942                        });
943                        let source_statistics = SourceStatistics::new(
944                            source_id,
945                            0,
946                            &source_statistics_defs,
947                            source_id,
948                            &ShardId::new(),
949                            envelope,
950                            Antichain::from_elem(Timestamp::minimum()),
951                        );
952
953                        let source_config = SourceExportCreationConfig {
954                            id: GlobalId::User(0),
955                            worker_id: 0,
956                            metrics: storage_metrics,
957                            source_statistics,
958                        };
959
960                        let (output, _, _, button) = upsert_inner(
961                            &input.as_collection(),
962                            vec![0],
963                            Antichain::from_elem(Timestamp::minimum()),
964                            persist_input.as_collection(),
965                            None,
966                            upsert_metrics,
967                            source_config,
968                            || async { InMemoryHashMap::default() },
969                            upsert_config,
970                            true,
971                            None,
972                        );
973                        std::mem::forget(button);
974
975                        (input_handle, persist_handle, output.inner.capture())
976                    })
977                });
978
979            // We work with a hypothetical schema of (key int, value int).
980
981            // The input will contain records for two keys, 0 and 1.
982            let key0 = UpsertKey::from_key(Ok(&Row::pack_slice(&[Datum::Int64(0)])));
983            let key1 = UpsertKey::from_key(Ok(&Row::pack_slice(&[Datum::Int64(1)])));
984
985            // We will assume that the kafka topic contains the following messages with their
986            // associated reclocked timestamp:
987            //  1. {offset=1, key=0, value=0}    @ mz_time = 0
988            //  2. {offset=2, key=1, value=NULL} @ mz_time = 2  // <- deletion of unrelated key. Causes the operator
989            //                                                  //    to maintain the associated cap to time 2
990            //  3. {offset=3, key=0, value=1}    @ mz_time = 3
991            //  4. {offset=4, key=0, value=2}    @ mz_time = 3  // <- messages 2 and 3 are reclocked to time 3
992            let value1 = Row::pack_slice(&[Datum::Int64(0), Datum::Int64(0)]);
993            let value3 = Row::pack_slice(&[Datum::Int64(0), Datum::Int64(1)]);
994            let value4 = Row::pack_slice(&[Datum::Int64(0), Datum::Int64(2)]);
995            let msg1 = (key0, Some(Ok(value1.clone())), 1);
996            let msg2 = (key1, None, 2);
997            let msg3 = (key0, Some(Ok(value3)), 3);
998            let msg4 = (key0, Some(Ok(value4)), 4);
999
1000            // The first message will initialize the upsert state such that key 0 has value 0 and
1001            // produce an output update to that effect.
1002            input_handle.send((msg1, new_ts(0), Diff::ONE));
1003            input_handle.advance_to(new_ts(2));
1004            worker.step();
1005
1006            // We assume this worker succesfully CAAs the update to the shard so we send it back
1007            // through the persist_input
1008            persist_handle.send((Ok(value1), new_ts(0), Diff::ONE));
1009            persist_handle.advance_to(new_ts(1));
1010            worker.step();
1011
1012            // Then, messages 2 and 3 are sent as one batch with capability = 2
1013            input_handle.send_batch(&mut vec![
1014                (msg2, new_ts(2), Diff::ONE),
1015                (msg3, new_ts(3), Diff::ONE),
1016            ]);
1017            // Advance our capability to 3
1018            input_handle.advance_to(new_ts(3));
1019            // Message 4 is sent with capability 3
1020            input_handle.send_batch(&mut vec![(msg4, new_ts(3), Diff::ONE)]);
1021            // Advance our capability to 4
1022            input_handle.advance_to(new_ts(4));
1023            // We now step the worker so that the pending data is received. This causes the
1024            // operator to store internally the following map from capabilities to updates:
1025            // cap=2 => [ msg2, msg3 ]
1026            // cap=3 => [ msg4 ]
1027            worker.step();
1028
1029            // We now assume that another replica raced us and processed msg1 at time 2, which in
1030            // this test is a no-op so the persist frontier advances to time 3 without new data.
1031            persist_handle.advance_to(new_ts(3));
1032            // We now step this worker again, which will notice that the persist upper is {3} and
1033            // wlil attempt to process msg3 and msg4 *separately*, causing it to produce a double
1034            // retraction.
1035            worker.step();
1036
1037            output_handle
1038        });
1039
1040        let mut actual_output = output_handle
1041            .extract()
1042            .into_iter()
1043            .flat_map(|(_cap, container)| container)
1044            .collect();
1045        differential_dataflow::consolidation::consolidate_updates(&mut actual_output);
1046
1047        // The expected consolidated output contains only updates for key 0 which has the value 0
1048        // at timestamp 0 and the value 2 at timestamp 3
1049        let value1 = Row::pack_slice(&[Datum::Int64(0), Datum::Int64(0)]);
1050        let value4 = Row::pack_slice(&[Datum::Int64(0), Datum::Int64(2)]);
1051        let expected_output: Vec<(Result<Row, DataflowError>, _, _)> = vec![
1052            (Ok(value1.clone()), new_ts(0), Diff::ONE),
1053            (Ok(value1), new_ts(3), Diff::MINUS_ONE),
1054            (Ok(value4), new_ts(3), Diff::ONE),
1055        ];
1056        assert_eq!(actual_output, expected_output);
1057    }
1058
1059    #[mz_ore::test]
1060    #[cfg_attr(miri, ignore)]
1061    fn gh_9540_repro() {
1062        // Helper to wrap timestamps in the appropriate types
1063        let mz_ts = |ts| (MzTimestamp::new(ts), Subtime::minimum());
1064
1065        let rocksdb_dir = tempfile::tempdir().unwrap();
1066        let output_handle = timely::execute_directly(move |worker| {
1067            let (mut input_handle, mut persist_handle, output_probe, output_handle) =
1068                worker.dataflow::<MzTimestamp, _, _>(|scope| {
1069                    // Enter a subscope since the upsert operator expects to work a backpressure
1070                    // enabled scope.
1071                    scope.scoped::<(MzTimestamp, Subtime), _, _>("upsert", |scope| {
1072                        let (input_handle, input) = scope.new_input();
1073                        let (persist_handle, persist_input) = scope.new_input();
1074                        let upsert_config = UpsertConfig {
1075                            shrink_upsert_unused_buffers_by_ratio: 0,
1076                        };
1077                        let source_id = GlobalId::User(0);
1078                        let metrics_registry = MetricsRegistry::new();
1079                        let upsert_metrics_defs =
1080                            UpsertMetricDefs::register_with(&metrics_registry);
1081                        let upsert_metrics =
1082                            UpsertMetrics::new(&upsert_metrics_defs, source_id, 0, None);
1083                        let rocksdb_shared_metrics = Arc::clone(&upsert_metrics.rocksdb_shared);
1084                        let rocksdb_instance_metrics =
1085                            Arc::clone(&upsert_metrics.rocksdb_instance_metrics);
1086
1087                        let metrics_registry = MetricsRegistry::new();
1088                        let storage_metrics = StorageMetrics::register_with(&metrics_registry);
1089
1090                        let metrics_registry = MetricsRegistry::new();
1091                        let source_statistics_defs =
1092                            SourceStatisticsMetricDefs::register_with(&metrics_registry);
1093                        let envelope = SourceEnvelope::Upsert(UpsertEnvelope {
1094                            source_arity: 2,
1095                            style: UpsertStyle::Default(KeyEnvelope::Flattened),
1096                            key_indices: vec![0],
1097                        });
1098                        let source_statistics = SourceStatistics::new(
1099                            source_id,
1100                            0,
1101                            &source_statistics_defs,
1102                            source_id,
1103                            &ShardId::new(),
1104                            envelope,
1105                            Antichain::from_elem(Timestamp::minimum()),
1106                        );
1107
1108                        let source_config = SourceExportCreationConfig {
1109                            id: GlobalId::User(0),
1110                            worker_id: 0,
1111                            metrics: storage_metrics,
1112                            source_statistics,
1113                        };
1114
1115                        // A closure that will initialize and return a configured RocksDB instance
1116                        let rocksdb_init_fn = move || async move {
1117                            let merge_operator = Some((
1118                                "upsert_state_snapshot_merge_v1".to_string(),
1119                                |a: &[u8],
1120                                 b: ValueIterator<
1121                                    BincodeOpts,
1122                                    StateValue<(MzTimestamp, Subtime), u64>,
1123                                >| {
1124                                    consolidating_merge_function::<(MzTimestamp, Subtime), u64>(
1125                                        a.into(),
1126                                        b,
1127                                    )
1128                                },
1129                            ));
1130                            let rocksdb_cleanup_tries = 5;
1131                            let tuning = RocksDBConfig::new(Default::default(), None);
1132                            crate::upsert::rocksdb::RocksDB::new(
1133                                mz_rocksdb::RocksDBInstance::new(
1134                                    rocksdb_dir.path(),
1135                                    mz_rocksdb::InstanceOptions::new(
1136                                        Env::mem_env().unwrap(),
1137                                        rocksdb_cleanup_tries,
1138                                        merge_operator,
1139                                        // For now, just use the same config as the one used for
1140                                        // merging snapshots.
1141                                        upsert_bincode_opts(),
1142                                    ),
1143                                    tuning,
1144                                    rocksdb_shared_metrics,
1145                                    rocksdb_instance_metrics,
1146                                )
1147                                .unwrap(),
1148                            )
1149                        };
1150
1151                        let (output, _, _, button) = upsert_inner(
1152                            &input.as_collection(),
1153                            vec![0],
1154                            Antichain::from_elem(Timestamp::minimum()),
1155                            persist_input.as_collection(),
1156                            None,
1157                            upsert_metrics,
1158                            source_config,
1159                            rocksdb_init_fn,
1160                            upsert_config,
1161                            true,
1162                            None,
1163                        );
1164                        std::mem::forget(button);
1165
1166                        (
1167                            input_handle,
1168                            persist_handle,
1169                            output.inner.probe(),
1170                            output.inner.capture(),
1171                        )
1172                    })
1173                });
1174
1175            // We work with a hypothetical schema of (key int, value int).
1176
1177            // The input will contain records for two keys, 0 and 1.
1178            let key0 = UpsertKey::from_key(Ok(&Row::pack_slice(&[Datum::Int64(0)])));
1179
1180            // We will assume that the kafka topic contains the following messages with their
1181            // associated reclocked timestamp:
1182            //  1. {offset=1, key=0, value=0}    @ mz_time = 0
1183            //  2. {offset=2, key=0, value=NULL} @ mz_time = 1
1184            //  3. {offset=3, key=0, value=0}    @ mz_time = 2
1185            //  4. {offset=4, key=0, value=NULL} @ mz_time = 2  // <- messages 3 and 4 are *BOTH* reclocked to time 2
1186            let value1 = Row::pack_slice(&[Datum::Int64(0), Datum::Int64(0)]);
1187            let msg1 = ((key0, Some(Ok(value1.clone())), 1), mz_ts(0), Diff::ONE);
1188            let msg2 = ((key0, None, 2), mz_ts(1), Diff::ONE);
1189            let msg3 = ((key0, Some(Ok(value1.clone())), 3), mz_ts(2), Diff::ONE);
1190            let msg4 = ((key0, None, 4), mz_ts(2), Diff::ONE);
1191
1192            // The first message will initialize the upsert state such that key 0 has value 0 and
1193            // produce an output update to that effect.
1194            input_handle.send(msg1);
1195            input_handle.advance_to(mz_ts(1));
1196            while output_probe.less_than(&mz_ts(1)) {
1197                worker.step_or_park(None);
1198            }
1199            // Feedback the produced output..
1200            persist_handle.send((Ok(value1.clone()), mz_ts(0), Diff::ONE));
1201            persist_handle.advance_to(mz_ts(1));
1202            // ..and send the next upsert command that deletes the key.
1203            input_handle.send(msg2);
1204            input_handle.advance_to(mz_ts(2));
1205            while output_probe.less_than(&mz_ts(2)) {
1206                worker.step_or_park(None);
1207            }
1208
1209            // Feedback the produced output..
1210            persist_handle.send((Ok(value1), mz_ts(1), Diff::MINUS_ONE));
1211            persist_handle.advance_to(mz_ts(2));
1212            // ..and send the next *out of order* upsert command that deletes the key. Here msg4
1213            // happens at offset 4 and the operator should rememeber that.
1214            input_handle.send(msg4);
1215            input_handle.flush();
1216            // Run the worker for enough steps to process these events. We can't guide the
1217            // execution with the probe here since the frontier does not advance, only provisional
1218            // updates are produced.
1219            for _ in 0..5 {
1220                worker.step();
1221            }
1222
1223            // Send the missing message that will now confuse the operator because it has lost
1224            // track that for key 0 it has already seen a command for offset 4, and therefore msg3
1225            // should be skipped.
1226            input_handle.send(msg3);
1227            input_handle.flush();
1228            input_handle.advance_to(mz_ts(3));
1229
1230            output_handle
1231        });
1232
1233        let mut actual_output = output_handle
1234            .extract()
1235            .into_iter()
1236            .flat_map(|(_cap, container)| container)
1237            .collect();
1238        differential_dataflow::consolidation::consolidate_updates(&mut actual_output);
1239
1240        // The expected consolidated output contains only updates for key 0 which has the value 0
1241        // at timestamp 0 and the value 2 at timestamp 3
1242        let value1 = Row::pack_slice(&[Datum::Int64(0), Datum::Int64(0)]);
1243        let expected_output: Vec<(Result<Row, DataflowError>, _, _)> = vec![
1244            (Ok(value1.clone()), mz_ts(0), Diff::ONE),
1245            (Ok(value1), mz_ts(1), Diff::MINUS_ONE),
1246        ];
1247        assert_eq!(actual_output, expected_output);
1248    }
1249}