chrono/offset/local/tz_info/
rule.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
use std::cmp::Ordering;

use super::parser::Cursor;
use super::timezone::{LocalTimeType, SECONDS_PER_WEEK};
use super::{
    Error, CUMUL_DAY_IN_MONTHS_NORMAL_YEAR, DAYS_PER_WEEK, DAY_IN_MONTHS_NORMAL_YEAR,
    SECONDS_PER_DAY,
};

/// Transition rule
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub(super) enum TransitionRule {
    /// Fixed local time type
    Fixed(LocalTimeType),
    /// Alternate local time types
    Alternate(AlternateTime),
}

impl TransitionRule {
    /// Parse a POSIX TZ string containing a time zone description, as described in [the POSIX documentation of the `TZ` environment variable](https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap08.html).
    ///
    /// TZ string extensions from [RFC 8536](https://datatracker.ietf.org/doc/html/rfc8536#section-3.3.1) may be used.
    pub(super) fn from_tz_string(
        tz_string: &[u8],
        use_string_extensions: bool,
    ) -> Result<Self, Error> {
        let mut cursor = Cursor::new(tz_string);

        let std_time_zone = Some(parse_name(&mut cursor)?);
        let std_offset = parse_offset(&mut cursor)?;

        if cursor.is_empty() {
            return Ok(LocalTimeType::new(-std_offset, false, std_time_zone)?.into());
        }

        let dst_time_zone = Some(parse_name(&mut cursor)?);

        let dst_offset = match cursor.peek() {
            Some(&b',') => std_offset - 3600,
            Some(_) => parse_offset(&mut cursor)?,
            None => {
                return Err(Error::UnsupportedTzString("DST start and end rules must be provided"))
            }
        };

        if cursor.is_empty() {
            return Err(Error::UnsupportedTzString("DST start and end rules must be provided"));
        }

        cursor.read_tag(b",")?;
        let (dst_start, dst_start_time) = RuleDay::parse(&mut cursor, use_string_extensions)?;

        cursor.read_tag(b",")?;
        let (dst_end, dst_end_time) = RuleDay::parse(&mut cursor, use_string_extensions)?;

        if !cursor.is_empty() {
            return Err(Error::InvalidTzString("remaining data after parsing TZ string"));
        }

        Ok(AlternateTime::new(
            LocalTimeType::new(-std_offset, false, std_time_zone)?,
            LocalTimeType::new(-dst_offset, true, dst_time_zone)?,
            dst_start,
            dst_start_time,
            dst_end,
            dst_end_time,
        )?
        .into())
    }

    /// Find the local time type associated to the transition rule at the specified Unix time in seconds
    pub(super) fn find_local_time_type(&self, unix_time: i64) -> Result<&LocalTimeType, Error> {
        match self {
            TransitionRule::Fixed(local_time_type) => Ok(local_time_type),
            TransitionRule::Alternate(alternate_time) => {
                alternate_time.find_local_time_type(unix_time)
            }
        }
    }

    /// Find the local time type associated to the transition rule at the specified Unix time in seconds
    pub(super) fn find_local_time_type_from_local(
        &self,
        local_time: i64,
        year: i32,
    ) -> Result<crate::LocalResult<LocalTimeType>, Error> {
        match self {
            TransitionRule::Fixed(local_time_type) => {
                Ok(crate::LocalResult::Single(*local_time_type))
            }
            TransitionRule::Alternate(alternate_time) => {
                alternate_time.find_local_time_type_from_local(local_time, year)
            }
        }
    }
}

impl From<LocalTimeType> for TransitionRule {
    fn from(inner: LocalTimeType) -> Self {
        TransitionRule::Fixed(inner)
    }
}

impl From<AlternateTime> for TransitionRule {
    fn from(inner: AlternateTime) -> Self {
        TransitionRule::Alternate(inner)
    }
}

/// Transition rule representing alternate local time types
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub(super) struct AlternateTime {
    /// Local time type for standard time
    pub(super) std: LocalTimeType,
    /// Local time type for Daylight Saving Time
    pub(super) dst: LocalTimeType,
    /// Start day of Daylight Saving Time
    dst_start: RuleDay,
    /// Local start day time of Daylight Saving Time, in seconds
    dst_start_time: i32,
    /// End day of Daylight Saving Time
    dst_end: RuleDay,
    /// Local end day time of Daylight Saving Time, in seconds
    dst_end_time: i32,
}

impl AlternateTime {
    /// Construct a transition rule representing alternate local time types
    const fn new(
        std: LocalTimeType,
        dst: LocalTimeType,
        dst_start: RuleDay,
        dst_start_time: i32,
        dst_end: RuleDay,
        dst_end_time: i32,
    ) -> Result<Self, Error> {
        // Overflow is not possible
        if !((dst_start_time as i64).abs() < SECONDS_PER_WEEK
            && (dst_end_time as i64).abs() < SECONDS_PER_WEEK)
        {
            return Err(Error::TransitionRule("invalid DST start or end time"));
        }

        Ok(Self { std, dst, dst_start, dst_start_time, dst_end, dst_end_time })
    }

    /// Find the local time type associated to the alternate transition rule at the specified Unix time in seconds
    fn find_local_time_type(&self, unix_time: i64) -> Result<&LocalTimeType, Error> {
        // Overflow is not possible
        let dst_start_time_in_utc = self.dst_start_time as i64 - self.std.ut_offset as i64;
        let dst_end_time_in_utc = self.dst_end_time as i64 - self.dst.ut_offset as i64;

        let current_year = match UtcDateTime::from_timespec(unix_time) {
            Ok(dt) => dt.year,
            Err(error) => return Err(error),
        };

        // Check if the current year is valid for the following computations
        if !(i32::min_value() + 2 <= current_year && current_year <= i32::max_value() - 2) {
            return Err(Error::OutOfRange("out of range date time"));
        }

        let current_year_dst_start_unix_time =
            self.dst_start.unix_time(current_year, dst_start_time_in_utc);
        let current_year_dst_end_unix_time =
            self.dst_end.unix_time(current_year, dst_end_time_in_utc);

        // Check DST start/end Unix times for previous/current/next years to support for transition day times outside of [0h, 24h] range
        let is_dst =
            match Ord::cmp(&current_year_dst_start_unix_time, &current_year_dst_end_unix_time) {
                Ordering::Less | Ordering::Equal => {
                    if unix_time < current_year_dst_start_unix_time {
                        let previous_year_dst_end_unix_time =
                            self.dst_end.unix_time(current_year - 1, dst_end_time_in_utc);
                        if unix_time < previous_year_dst_end_unix_time {
                            let previous_year_dst_start_unix_time =
                                self.dst_start.unix_time(current_year - 1, dst_start_time_in_utc);
                            previous_year_dst_start_unix_time <= unix_time
                        } else {
                            false
                        }
                    } else if unix_time < current_year_dst_end_unix_time {
                        true
                    } else {
                        let next_year_dst_start_unix_time =
                            self.dst_start.unix_time(current_year + 1, dst_start_time_in_utc);
                        if next_year_dst_start_unix_time <= unix_time {
                            let next_year_dst_end_unix_time =
                                self.dst_end.unix_time(current_year + 1, dst_end_time_in_utc);
                            unix_time < next_year_dst_end_unix_time
                        } else {
                            false
                        }
                    }
                }
                Ordering::Greater => {
                    if unix_time < current_year_dst_end_unix_time {
                        let previous_year_dst_start_unix_time =
                            self.dst_start.unix_time(current_year - 1, dst_start_time_in_utc);
                        if unix_time < previous_year_dst_start_unix_time {
                            let previous_year_dst_end_unix_time =
                                self.dst_end.unix_time(current_year - 1, dst_end_time_in_utc);
                            unix_time < previous_year_dst_end_unix_time
                        } else {
                            true
                        }
                    } else if unix_time < current_year_dst_start_unix_time {
                        false
                    } else {
                        let next_year_dst_end_unix_time =
                            self.dst_end.unix_time(current_year + 1, dst_end_time_in_utc);
                        if next_year_dst_end_unix_time <= unix_time {
                            let next_year_dst_start_unix_time =
                                self.dst_start.unix_time(current_year + 1, dst_start_time_in_utc);
                            next_year_dst_start_unix_time <= unix_time
                        } else {
                            true
                        }
                    }
                }
            };

        if is_dst {
            Ok(&self.dst)
        } else {
            Ok(&self.std)
        }
    }

    fn find_local_time_type_from_local(
        &self,
        local_time: i64,
        current_year: i32,
    ) -> Result<crate::LocalResult<LocalTimeType>, Error> {
        // Check if the current year is valid for the following computations
        if !(i32::min_value() + 2 <= current_year && current_year <= i32::max_value() - 2) {
            return Err(Error::OutOfRange("out of range date time"));
        }

        let dst_start_transition_start =
            self.dst_start.unix_time(current_year, 0) + i64::from(self.dst_start_time);
        let dst_start_transition_end = self.dst_start.unix_time(current_year, 0)
            + i64::from(self.dst_start_time)
            + i64::from(self.dst.ut_offset)
            - i64::from(self.std.ut_offset);

        let dst_end_transition_start =
            self.dst_end.unix_time(current_year, 0) + i64::from(self.dst_end_time);
        let dst_end_transition_end = self.dst_end.unix_time(current_year, 0)
            + i64::from(self.dst_end_time)
            + i64::from(self.std.ut_offset)
            - i64::from(self.dst.ut_offset);

        match self.std.ut_offset.cmp(&self.dst.ut_offset) {
            Ordering::Equal => Ok(crate::LocalResult::Single(self.std)),
            Ordering::Less => {
                if self.dst_start.transition_date(current_year).0
                    < self.dst_end.transition_date(current_year).0
                {
                    // northern hemisphere
                    // For the DST END transition, the `start` happens at a later timestamp than the `end`.
                    if local_time <= dst_start_transition_start {
                        Ok(crate::LocalResult::Single(self.std))
                    } else if local_time > dst_start_transition_start
                        && local_time < dst_start_transition_end
                    {
                        Ok(crate::LocalResult::None)
                    } else if local_time >= dst_start_transition_end
                        && local_time < dst_end_transition_end
                    {
                        Ok(crate::LocalResult::Single(self.dst))
                    } else if local_time >= dst_end_transition_end
                        && local_time <= dst_end_transition_start
                    {
                        Ok(crate::LocalResult::Ambiguous(self.std, self.dst))
                    } else {
                        Ok(crate::LocalResult::Single(self.std))
                    }
                } else {
                    // southern hemisphere regular DST
                    // For the DST END transition, the `start` happens at a later timestamp than the `end`.
                    if local_time < dst_end_transition_end {
                        Ok(crate::LocalResult::Single(self.dst))
                    } else if local_time >= dst_end_transition_end
                        && local_time <= dst_end_transition_start
                    {
                        Ok(crate::LocalResult::Ambiguous(self.std, self.dst))
                    } else if local_time > dst_end_transition_end
                        && local_time < dst_start_transition_start
                    {
                        Ok(crate::LocalResult::Single(self.std))
                    } else if local_time >= dst_start_transition_start
                        && local_time < dst_start_transition_end
                    {
                        Ok(crate::LocalResult::None)
                    } else {
                        Ok(crate::LocalResult::Single(self.dst))
                    }
                }
            }
            Ordering::Greater => {
                if self.dst_start.transition_date(current_year).0
                    < self.dst_end.transition_date(current_year).0
                {
                    // southern hemisphere reverse DST
                    // For the DST END transition, the `start` happens at a later timestamp than the `end`.
                    if local_time < dst_start_transition_end {
                        Ok(crate::LocalResult::Single(self.std))
                    } else if local_time >= dst_start_transition_end
                        && local_time <= dst_start_transition_start
                    {
                        Ok(crate::LocalResult::Ambiguous(self.dst, self.std))
                    } else if local_time > dst_start_transition_start
                        && local_time < dst_end_transition_start
                    {
                        Ok(crate::LocalResult::Single(self.dst))
                    } else if local_time >= dst_end_transition_start
                        && local_time < dst_end_transition_end
                    {
                        Ok(crate::LocalResult::None)
                    } else {
                        Ok(crate::LocalResult::Single(self.std))
                    }
                } else {
                    // northern hemisphere reverse DST
                    // For the DST END transition, the `start` happens at a later timestamp than the `end`.
                    if local_time <= dst_end_transition_start {
                        Ok(crate::LocalResult::Single(self.dst))
                    } else if local_time > dst_end_transition_start
                        && local_time < dst_end_transition_end
                    {
                        Ok(crate::LocalResult::None)
                    } else if local_time >= dst_end_transition_end
                        && local_time < dst_start_transition_end
                    {
                        Ok(crate::LocalResult::Single(self.std))
                    } else if local_time >= dst_start_transition_end
                        && local_time <= dst_start_transition_start
                    {
                        Ok(crate::LocalResult::Ambiguous(self.dst, self.std))
                    } else {
                        Ok(crate::LocalResult::Single(self.dst))
                    }
                }
            }
        }
    }
}

/// Parse time zone name
fn parse_name<'a>(cursor: &mut Cursor<'a>) -> Result<&'a [u8], Error> {
    match cursor.peek() {
        Some(b'<') => {}
        _ => return Ok(cursor.read_while(u8::is_ascii_alphabetic)?),
    }

    cursor.read_exact(1)?;
    let unquoted = cursor.read_until(|&x| x == b'>')?;
    cursor.read_exact(1)?;
    Ok(unquoted)
}

/// Parse time zone offset
fn parse_offset(cursor: &mut Cursor) -> Result<i32, Error> {
    let (sign, hour, minute, second) = parse_signed_hhmmss(cursor)?;

    if !(0..=24).contains(&hour) {
        return Err(Error::InvalidTzString("invalid offset hour"));
    }
    if !(0..=59).contains(&minute) {
        return Err(Error::InvalidTzString("invalid offset minute"));
    }
    if !(0..=59).contains(&second) {
        return Err(Error::InvalidTzString("invalid offset second"));
    }

    Ok(sign * (hour * 3600 + minute * 60 + second))
}

/// Parse transition rule time
fn parse_rule_time(cursor: &mut Cursor) -> Result<i32, Error> {
    let (hour, minute, second) = parse_hhmmss(cursor)?;

    if !(0..=24).contains(&hour) {
        return Err(Error::InvalidTzString("invalid day time hour"));
    }
    if !(0..=59).contains(&minute) {
        return Err(Error::InvalidTzString("invalid day time minute"));
    }
    if !(0..=59).contains(&second) {
        return Err(Error::InvalidTzString("invalid day time second"));
    }

    Ok(hour * 3600 + minute * 60 + second)
}

/// Parse transition rule time with TZ string extensions
fn parse_rule_time_extended(cursor: &mut Cursor) -> Result<i32, Error> {
    let (sign, hour, minute, second) = parse_signed_hhmmss(cursor)?;

    if !(-167..=167).contains(&hour) {
        return Err(Error::InvalidTzString("invalid day time hour"));
    }
    if !(0..=59).contains(&minute) {
        return Err(Error::InvalidTzString("invalid day time minute"));
    }
    if !(0..=59).contains(&second) {
        return Err(Error::InvalidTzString("invalid day time second"));
    }

    Ok(sign * (hour * 3600 + minute * 60 + second))
}

/// Parse hours, minutes and seconds
fn parse_hhmmss(cursor: &mut Cursor) -> Result<(i32, i32, i32), Error> {
    let hour = cursor.read_int()?;

    let mut minute = 0;
    let mut second = 0;

    if cursor.read_optional_tag(b":")? {
        minute = cursor.read_int()?;

        if cursor.read_optional_tag(b":")? {
            second = cursor.read_int()?;
        }
    }

    Ok((hour, minute, second))
}

/// Parse signed hours, minutes and seconds
fn parse_signed_hhmmss(cursor: &mut Cursor) -> Result<(i32, i32, i32, i32), Error> {
    let mut sign = 1;
    if let Some(&c) = cursor.peek() {
        if c == b'+' || c == b'-' {
            cursor.read_exact(1)?;
            if c == b'-' {
                sign = -1;
            }
        }
    }

    let (hour, minute, second) = parse_hhmmss(cursor)?;
    Ok((sign, hour, minute, second))
}

/// Transition rule day
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
enum RuleDay {
    /// Julian day in `[1, 365]`, without taking occasional Feb 29 into account, which is not referenceable
    Julian1WithoutLeap(u16),
    /// Zero-based Julian day in `[0, 365]`, taking occasional Feb 29 into account
    Julian0WithLeap(u16),
    /// Day represented by a month, a month week and a week day
    MonthWeekday {
        /// Month in `[1, 12]`
        month: u8,
        /// Week of the month in `[1, 5]`, with `5` representing the last week of the month
        week: u8,
        /// Day of the week in `[0, 6]` from Sunday
        week_day: u8,
    },
}

impl RuleDay {
    /// Parse transition rule
    fn parse(cursor: &mut Cursor, use_string_extensions: bool) -> Result<(Self, i32), Error> {
        let date = match cursor.peek() {
            Some(b'M') => {
                cursor.read_exact(1)?;
                let month = cursor.read_int()?;
                cursor.read_tag(b".")?;
                let week = cursor.read_int()?;
                cursor.read_tag(b".")?;
                let week_day = cursor.read_int()?;
                RuleDay::month_weekday(month, week, week_day)?
            }
            Some(b'J') => {
                cursor.read_exact(1)?;
                RuleDay::julian_1(cursor.read_int()?)?
            }
            _ => RuleDay::julian_0(cursor.read_int()?)?,
        };

        Ok((
            date,
            match (cursor.read_optional_tag(b"/")?, use_string_extensions) {
                (false, _) => 2 * 3600,
                (true, true) => parse_rule_time_extended(cursor)?,
                (true, false) => parse_rule_time(cursor)?,
            },
        ))
    }

    /// Construct a transition rule day represented by a Julian day in `[1, 365]`, without taking occasional Feb 29 into account, which is not referenceable
    fn julian_1(julian_day_1: u16) -> Result<Self, Error> {
        if !(1..=365).contains(&julian_day_1) {
            return Err(Error::TransitionRule("invalid rule day julian day"));
        }

        Ok(RuleDay::Julian1WithoutLeap(julian_day_1))
    }

    /// Construct a transition rule day represented by a zero-based Julian day in `[0, 365]`, taking occasional Feb 29 into account
    const fn julian_0(julian_day_0: u16) -> Result<Self, Error> {
        if julian_day_0 > 365 {
            return Err(Error::TransitionRule("invalid rule day julian day"));
        }

        Ok(RuleDay::Julian0WithLeap(julian_day_0))
    }

    /// Construct a transition rule day represented by a month, a month week and a week day
    fn month_weekday(month: u8, week: u8, week_day: u8) -> Result<Self, Error> {
        if !(1..=12).contains(&month) {
            return Err(Error::TransitionRule("invalid rule day month"));
        }

        if !(1..=5).contains(&week) {
            return Err(Error::TransitionRule("invalid rule day week"));
        }

        if week_day > 6 {
            return Err(Error::TransitionRule("invalid rule day week day"));
        }

        Ok(RuleDay::MonthWeekday { month, week, week_day })
    }

    /// Get the transition date for the provided year
    ///
    /// ## Outputs
    ///
    /// * `month`: Month in `[1, 12]`
    /// * `month_day`: Day of the month in `[1, 31]`
    fn transition_date(&self, year: i32) -> (usize, i64) {
        match *self {
            RuleDay::Julian1WithoutLeap(year_day) => {
                let year_day = year_day as i64;

                let month = match CUMUL_DAY_IN_MONTHS_NORMAL_YEAR.binary_search(&(year_day - 1)) {
                    Ok(x) => x + 1,
                    Err(x) => x,
                };

                let month_day = year_day - CUMUL_DAY_IN_MONTHS_NORMAL_YEAR[month - 1];

                (month, month_day)
            }
            RuleDay::Julian0WithLeap(year_day) => {
                let leap = is_leap_year(year) as i64;

                let cumul_day_in_months = [
                    0,
                    31,
                    59 + leap,
                    90 + leap,
                    120 + leap,
                    151 + leap,
                    181 + leap,
                    212 + leap,
                    243 + leap,
                    273 + leap,
                    304 + leap,
                    334 + leap,
                ];

                let year_day = year_day as i64;

                let month = match cumul_day_in_months.binary_search(&year_day) {
                    Ok(x) => x + 1,
                    Err(x) => x,
                };

                let month_day = 1 + year_day - cumul_day_in_months[month - 1];

                (month, month_day)
            }
            RuleDay::MonthWeekday { month: rule_month, week, week_day } => {
                let leap = is_leap_year(year) as i64;

                let month = rule_month as usize;

                let mut day_in_month = DAY_IN_MONTHS_NORMAL_YEAR[month - 1];
                if month == 2 {
                    day_in_month += leap;
                }

                let week_day_of_first_month_day =
                    (4 + days_since_unix_epoch(year, month, 1)).rem_euclid(DAYS_PER_WEEK);
                let first_week_day_occurence_in_month =
                    1 + (week_day as i64 - week_day_of_first_month_day).rem_euclid(DAYS_PER_WEEK);

                let mut month_day =
                    first_week_day_occurence_in_month + (week as i64 - 1) * DAYS_PER_WEEK;
                if month_day > day_in_month {
                    month_day -= DAYS_PER_WEEK
                }

                (month, month_day)
            }
        }
    }

    /// Returns the UTC Unix time in seconds associated to the transition date for the provided year
    fn unix_time(&self, year: i32, day_time_in_utc: i64) -> i64 {
        let (month, month_day) = self.transition_date(year);
        days_since_unix_epoch(year, month, month_day) * SECONDS_PER_DAY + day_time_in_utc
    }
}

/// UTC date time exprimed in the [proleptic gregorian calendar](https://en.wikipedia.org/wiki/Proleptic_Gregorian_calendar)
#[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd)]
pub(crate) struct UtcDateTime {
    /// Year
    pub(crate) year: i32,
    /// Month in `[1, 12]`
    pub(crate) month: u8,
    /// Day of the month in `[1, 31]`
    pub(crate) month_day: u8,
    /// Hours since midnight in `[0, 23]`
    pub(crate) hour: u8,
    /// Minutes in `[0, 59]`
    pub(crate) minute: u8,
    /// Seconds in `[0, 60]`, with a possible leap second
    pub(crate) second: u8,
}

impl UtcDateTime {
    /// Construct a UTC date time from a Unix time in seconds and nanoseconds
    pub(crate) fn from_timespec(unix_time: i64) -> Result<Self, Error> {
        let seconds = match unix_time.checked_sub(UNIX_OFFSET_SECS) {
            Some(seconds) => seconds,
            None => return Err(Error::OutOfRange("out of range operation")),
        };

        let mut remaining_days = seconds / SECONDS_PER_DAY;
        let mut remaining_seconds = seconds % SECONDS_PER_DAY;
        if remaining_seconds < 0 {
            remaining_seconds += SECONDS_PER_DAY;
            remaining_days -= 1;
        }

        let mut cycles_400_years = remaining_days / DAYS_PER_400_YEARS;
        remaining_days %= DAYS_PER_400_YEARS;
        if remaining_days < 0 {
            remaining_days += DAYS_PER_400_YEARS;
            cycles_400_years -= 1;
        }

        let cycles_100_years = Ord::min(remaining_days / DAYS_PER_100_YEARS, 3);
        remaining_days -= cycles_100_years * DAYS_PER_100_YEARS;

        let cycles_4_years = Ord::min(remaining_days / DAYS_PER_4_YEARS, 24);
        remaining_days -= cycles_4_years * DAYS_PER_4_YEARS;

        let remaining_years = Ord::min(remaining_days / DAYS_PER_NORMAL_YEAR, 3);
        remaining_days -= remaining_years * DAYS_PER_NORMAL_YEAR;

        let mut year = OFFSET_YEAR
            + remaining_years
            + cycles_4_years * 4
            + cycles_100_years * 100
            + cycles_400_years * 400;

        let mut month = 0;
        while month < DAY_IN_MONTHS_LEAP_YEAR_FROM_MARCH.len() {
            let days = DAY_IN_MONTHS_LEAP_YEAR_FROM_MARCH[month];
            if remaining_days < days {
                break;
            }
            remaining_days -= days;
            month += 1;
        }
        month += 2;

        if month >= MONTHS_PER_YEAR as usize {
            month -= MONTHS_PER_YEAR as usize;
            year += 1;
        }
        month += 1;

        let month_day = 1 + remaining_days;

        let hour = remaining_seconds / SECONDS_PER_HOUR;
        let minute = (remaining_seconds / SECONDS_PER_MINUTE) % MINUTES_PER_HOUR;
        let second = remaining_seconds % SECONDS_PER_MINUTE;

        let year = match year >= i32::min_value() as i64 && year <= i32::max_value() as i64 {
            true => year as i32,
            false => return Err(Error::OutOfRange("i64 is out of range for i32")),
        };

        Ok(Self {
            year,
            month: month as u8,
            month_day: month_day as u8,
            hour: hour as u8,
            minute: minute as u8,
            second: second as u8,
        })
    }
}

/// Number of nanoseconds in one second
const NANOSECONDS_PER_SECOND: u32 = 1_000_000_000;
/// Number of seconds in one minute
const SECONDS_PER_MINUTE: i64 = 60;
/// Number of seconds in one hour
const SECONDS_PER_HOUR: i64 = 3600;
/// Number of minutes in one hour
const MINUTES_PER_HOUR: i64 = 60;
/// Number of months in one year
const MONTHS_PER_YEAR: i64 = 12;
/// Number of days in a normal year
const DAYS_PER_NORMAL_YEAR: i64 = 365;
/// Number of days in 4 years (including 1 leap year)
const DAYS_PER_4_YEARS: i64 = DAYS_PER_NORMAL_YEAR * 4 + 1;
/// Number of days in 100 years (including 24 leap years)
const DAYS_PER_100_YEARS: i64 = DAYS_PER_NORMAL_YEAR * 100 + 24;
/// Number of days in 400 years (including 97 leap years)
const DAYS_PER_400_YEARS: i64 = DAYS_PER_NORMAL_YEAR * 400 + 97;
/// Unix time at `2000-03-01T00:00:00Z` (Wednesday)
const UNIX_OFFSET_SECS: i64 = 951868800;
/// Offset year
const OFFSET_YEAR: i64 = 2000;
/// Month days in a leap year from March
const DAY_IN_MONTHS_LEAP_YEAR_FROM_MARCH: [i64; 12] =
    [31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 31, 29];

/// Compute the number of days since Unix epoch (`1970-01-01T00:00:00Z`).
///
/// ## Inputs
///
/// * `year`: Year
/// * `month`: Month in `[1, 12]`
/// * `month_day`: Day of the month in `[1, 31]`
pub(crate) const fn days_since_unix_epoch(year: i32, month: usize, month_day: i64) -> i64 {
    let is_leap_year = is_leap_year(year);

    let year = year as i64;

    let mut result = (year - 1970) * 365;

    if year >= 1970 {
        result += (year - 1968) / 4;
        result -= (year - 1900) / 100;
        result += (year - 1600) / 400;

        if is_leap_year && month < 3 {
            result -= 1;
        }
    } else {
        result += (year - 1972) / 4;
        result -= (year - 2000) / 100;
        result += (year - 2000) / 400;

        if is_leap_year && month >= 3 {
            result += 1;
        }
    }

    result += CUMUL_DAY_IN_MONTHS_NORMAL_YEAR[month - 1] + month_day - 1;

    result
}

/// Check if a year is a leap year
pub(crate) const fn is_leap_year(year: i32) -> bool {
    year % 400 == 0 || (year % 4 == 0 && year % 100 != 0)
}

#[cfg(test)]
mod tests {
    use super::super::timezone::Transition;
    use super::super::{Error, TimeZone};
    use super::{AlternateTime, LocalTimeType, RuleDay, TransitionRule};

    #[test]
    fn test_quoted() -> Result<(), Error> {
        let transition_rule = TransitionRule::from_tz_string(b"<-03>+3<+03>-3,J1,J365", false)?;
        assert_eq!(
            transition_rule,
            AlternateTime::new(
                LocalTimeType::new(-10800, false, Some(b"-03"))?,
                LocalTimeType::new(10800, true, Some(b"+03"))?,
                RuleDay::julian_1(1)?,
                7200,
                RuleDay::julian_1(365)?,
                7200,
            )?
            .into()
        );
        Ok(())
    }

    #[test]
    fn test_full() -> Result<(), Error> {
        let tz_string = b"NZST-12:00:00NZDT-13:00:00,M10.1.0/02:00:00,M3.3.0/02:00:00";
        let transition_rule = TransitionRule::from_tz_string(tz_string, false)?;
        assert_eq!(
            transition_rule,
            AlternateTime::new(
                LocalTimeType::new(43200, false, Some(b"NZST"))?,
                LocalTimeType::new(46800, true, Some(b"NZDT"))?,
                RuleDay::month_weekday(10, 1, 0)?,
                7200,
                RuleDay::month_weekday(3, 3, 0)?,
                7200,
            )?
            .into()
        );
        Ok(())
    }

    #[test]
    fn test_negative_dst() -> Result<(), Error> {
        let tz_string = b"IST-1GMT0,M10.5.0,M3.5.0/1";
        let transition_rule = TransitionRule::from_tz_string(tz_string, false)?;
        assert_eq!(
            transition_rule,
            AlternateTime::new(
                LocalTimeType::new(3600, false, Some(b"IST"))?,
                LocalTimeType::new(0, true, Some(b"GMT"))?,
                RuleDay::month_weekday(10, 5, 0)?,
                7200,
                RuleDay::month_weekday(3, 5, 0)?,
                3600,
            )?
            .into()
        );
        Ok(())
    }

    #[test]
    fn test_negative_hour() -> Result<(), Error> {
        let tz_string = b"<-03>3<-02>,M3.5.0/-2,M10.5.0/-1";
        assert!(TransitionRule::from_tz_string(tz_string, false).is_err());

        assert_eq!(
            TransitionRule::from_tz_string(tz_string, true)?,
            AlternateTime::new(
                LocalTimeType::new(-10800, false, Some(b"-03"))?,
                LocalTimeType::new(-7200, true, Some(b"-02"))?,
                RuleDay::month_weekday(3, 5, 0)?,
                -7200,
                RuleDay::month_weekday(10, 5, 0)?,
                -3600,
            )?
            .into()
        );
        Ok(())
    }

    #[test]
    fn test_all_year_dst() -> Result<(), Error> {
        let tz_string = b"EST5EDT,0/0,J365/25";
        assert!(TransitionRule::from_tz_string(tz_string, false).is_err());

        assert_eq!(
            TransitionRule::from_tz_string(tz_string, true)?,
            AlternateTime::new(
                LocalTimeType::new(-18000, false, Some(b"EST"))?,
                LocalTimeType::new(-14400, true, Some(b"EDT"))?,
                RuleDay::julian_0(0)?,
                0,
                RuleDay::julian_1(365)?,
                90000,
            )?
            .into()
        );
        Ok(())
    }

    #[test]
    fn test_v3_file() -> Result<(), Error> {
        let bytes = b"TZif3\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\x01\0\0\0\x04\0\0\x1c\x20\0\0IST\0TZif3\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\x01\0\0\0\x01\0\0\0\0\0\0\0\x01\0\0\0\x01\0\0\0\x04\0\0\0\0\x7f\xe8\x17\x80\0\0\0\x1c\x20\0\0IST\0\x01\x01\x0aIST-2IDT,M3.4.4/26,M10.5.0\x0a";

        let time_zone = TimeZone::from_tz_data(bytes)?;

        let time_zone_result = TimeZone::new(
            vec![Transition::new(2145916800, 0)],
            vec![LocalTimeType::new(7200, false, Some(b"IST"))?],
            Vec::new(),
            Some(TransitionRule::from(AlternateTime::new(
                LocalTimeType::new(7200, false, Some(b"IST"))?,
                LocalTimeType::new(10800, true, Some(b"IDT"))?,
                RuleDay::month_weekday(3, 4, 4)?,
                93600,
                RuleDay::month_weekday(10, 5, 0)?,
                7200,
            )?)),
        )?;

        assert_eq!(time_zone, time_zone_result);

        Ok(())
    }

    #[test]
    fn test_rule_day() -> Result<(), Error> {
        let rule_day_j1 = RuleDay::julian_1(60)?;
        assert_eq!(rule_day_j1.transition_date(2000), (3, 1));
        assert_eq!(rule_day_j1.transition_date(2001), (3, 1));
        assert_eq!(rule_day_j1.unix_time(2000, 43200), 951912000);

        let rule_day_j0 = RuleDay::julian_0(59)?;
        assert_eq!(rule_day_j0.transition_date(2000), (2, 29));
        assert_eq!(rule_day_j0.transition_date(2001), (3, 1));
        assert_eq!(rule_day_j0.unix_time(2000, 43200), 951825600);

        let rule_day_mwd = RuleDay::month_weekday(2, 5, 2)?;
        assert_eq!(rule_day_mwd.transition_date(2000), (2, 29));
        assert_eq!(rule_day_mwd.transition_date(2001), (2, 27));
        assert_eq!(rule_day_mwd.unix_time(2000, 43200), 951825600);
        assert_eq!(rule_day_mwd.unix_time(2001, 43200), 983275200);

        Ok(())
    }

    #[test]
    fn test_transition_rule() -> Result<(), Error> {
        let transition_rule_fixed = TransitionRule::from(LocalTimeType::new(-36000, false, None)?);
        assert_eq!(transition_rule_fixed.find_local_time_type(0)?.offset(), -36000);

        let transition_rule_dst = TransitionRule::from(AlternateTime::new(
            LocalTimeType::new(43200, false, Some(b"NZST"))?,
            LocalTimeType::new(46800, true, Some(b"NZDT"))?,
            RuleDay::month_weekday(10, 1, 0)?,
            7200,
            RuleDay::month_weekday(3, 3, 0)?,
            7200,
        )?);

        assert_eq!(transition_rule_dst.find_local_time_type(953384399)?.offset(), 46800);
        assert_eq!(transition_rule_dst.find_local_time_type(953384400)?.offset(), 43200);
        assert_eq!(transition_rule_dst.find_local_time_type(970322399)?.offset(), 43200);
        assert_eq!(transition_rule_dst.find_local_time_type(970322400)?.offset(), 46800);

        let transition_rule_negative_dst = TransitionRule::from(AlternateTime::new(
            LocalTimeType::new(3600, false, Some(b"IST"))?,
            LocalTimeType::new(0, true, Some(b"GMT"))?,
            RuleDay::month_weekday(10, 5, 0)?,
            7200,
            RuleDay::month_weekday(3, 5, 0)?,
            3600,
        )?);

        assert_eq!(transition_rule_negative_dst.find_local_time_type(954032399)?.offset(), 0);
        assert_eq!(transition_rule_negative_dst.find_local_time_type(954032400)?.offset(), 3600);
        assert_eq!(transition_rule_negative_dst.find_local_time_type(972781199)?.offset(), 3600);
        assert_eq!(transition_rule_negative_dst.find_local_time_type(972781200)?.offset(), 0);

        let transition_rule_negative_time_1 = TransitionRule::from(AlternateTime::new(
            LocalTimeType::new(0, false, None)?,
            LocalTimeType::new(0, true, None)?,
            RuleDay::julian_0(100)?,
            0,
            RuleDay::julian_0(101)?,
            -86500,
        )?);

        assert!(transition_rule_negative_time_1.find_local_time_type(8639899)?.is_dst());
        assert!(!transition_rule_negative_time_1.find_local_time_type(8639900)?.is_dst());
        assert!(!transition_rule_negative_time_1.find_local_time_type(8639999)?.is_dst());
        assert!(transition_rule_negative_time_1.find_local_time_type(8640000)?.is_dst());

        let transition_rule_negative_time_2 = TransitionRule::from(AlternateTime::new(
            LocalTimeType::new(-10800, false, Some(b"-03"))?,
            LocalTimeType::new(-7200, true, Some(b"-02"))?,
            RuleDay::month_weekday(3, 5, 0)?,
            -7200,
            RuleDay::month_weekday(10, 5, 0)?,
            -3600,
        )?);

        assert_eq!(
            transition_rule_negative_time_2.find_local_time_type(954032399)?.offset(),
            -10800
        );
        assert_eq!(
            transition_rule_negative_time_2.find_local_time_type(954032400)?.offset(),
            -7200
        );
        assert_eq!(
            transition_rule_negative_time_2.find_local_time_type(972781199)?.offset(),
            -7200
        );
        assert_eq!(
            transition_rule_negative_time_2.find_local_time_type(972781200)?.offset(),
            -10800
        );

        let transition_rule_all_year_dst = TransitionRule::from(AlternateTime::new(
            LocalTimeType::new(-18000, false, Some(b"EST"))?,
            LocalTimeType::new(-14400, true, Some(b"EDT"))?,
            RuleDay::julian_0(0)?,
            0,
            RuleDay::julian_1(365)?,
            90000,
        )?);

        assert_eq!(transition_rule_all_year_dst.find_local_time_type(946702799)?.offset(), -14400);
        assert_eq!(transition_rule_all_year_dst.find_local_time_type(946702800)?.offset(), -14400);

        Ok(())
    }

    #[test]
    fn test_transition_rule_overflow() -> Result<(), Error> {
        let transition_rule_1 = TransitionRule::from(AlternateTime::new(
            LocalTimeType::new(-1, false, None)?,
            LocalTimeType::new(-1, true, None)?,
            RuleDay::julian_1(365)?,
            0,
            RuleDay::julian_1(1)?,
            0,
        )?);

        let transition_rule_2 = TransitionRule::from(AlternateTime::new(
            LocalTimeType::new(1, false, None)?,
            LocalTimeType::new(1, true, None)?,
            RuleDay::julian_1(365)?,
            0,
            RuleDay::julian_1(1)?,
            0,
        )?);

        let min_unix_time = -67768100567971200;
        let max_unix_time = 67767976233532799;

        assert!(matches!(
            transition_rule_1.find_local_time_type(min_unix_time),
            Err(Error::OutOfRange(_))
        ));
        assert!(matches!(
            transition_rule_2.find_local_time_type(max_unix_time),
            Err(Error::OutOfRange(_))
        ));

        Ok(())
    }
}