lexical_write_float/
shared.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
//! Shared utilities for writing floats.

use lexical_util::digit::{char_to_valid_digit_const, digit_to_char_const};
use lexical_util::format::NumberFormat;
use lexical_write_integer::write::WriteInteger;

use crate::options::{Options, RoundMode};

/// Get the exact number of digits from a minimum bound.
#[inline(always)]
pub fn min_exact_digits(digit_count: usize, options: &Options) -> usize {
    let mut exact_count: usize = digit_count;
    if let Some(min_digits) = options.min_significant_digits() {
        exact_count = min_digits.get().max(exact_count);
    }
    exact_count
}

/// Round-up the last digit, from a buffer of digits.
///
/// Round up the last digit, incrementally handling all subsequent
/// digits in case of overflow.
#[cfg_attr(not(feature = "compact"), inline(always))]
pub fn round_up(digits: &mut [u8], count: usize, radix: u32) -> (usize, bool) {
    debug_assert!(count <= digits.len(), "rounding up requires digits.len() >= count");

    let mut index = count;
    let max_char = digit_to_char_const(radix - 1, radix);
    while index != 0 {
        let c = digits[index - 1];
        if c < max_char {
            let digit = char_to_valid_digit_const(c, radix);
            let rounded = digit_to_char_const(digit + 1, radix);
            // Won't panic since `index > 0 && index <= digits.len()`.
            digits[index - 1] = rounded;
            return (index, false);
        }
        // Don't have to assign `b'0'` otherwise, since we're just carrying
        // to the next digit.
        index -= 1;
    }

    // Means all digits were max digit: we need to round up.
    digits[0] = b'1';

    (1, true)
}

/// Round the number of digits based on the maximum digits, for decimal digits.
///
/// `digits` is a mutable buffer of the current digits, `digit_count` is the
/// length of the written digits in `digits`, and `exp` is the decimal exponent
/// relative to the digits. Returns the digit count, resulting exp, and if
/// the input carried to the next digit.
#[cfg_attr(not(feature = "compact"), inline(always))]
#[allow(clippy::comparison_chain)] // reason="conditions are different logical concepts"
pub fn truncate_and_round_decimal(
    digits: &mut [u8],
    digit_count: usize,
    options: &Options,
) -> (usize, bool) {
    debug_assert!(digit_count <= digits.len());

    let max_digits = if let Some(digits) = options.max_significant_digits() {
        digits.get()
    } else {
        return (digit_count, false);
    };
    if max_digits >= digit_count {
        return (digit_count, false);
    }

    // Check if we're truncating, if so, shorten the digits in the input.
    if options.round_mode() == RoundMode::Truncate {
        // Don't round input, just shorten number of digits emitted.
        return (max_digits, false);
    }

    // We need to round-nearest, tie-even, so we need to handle
    // the truncation **here**. If the representation is above
    // halfway at all, we need to round up, even if 1 digit.

    // Get the last non-truncated digit, and the remaining ones.
    // Won't panic if `digit_count < digits.len()`, since `max_digits <
    // digit_count`.
    let truncated = digits[max_digits];
    let (digits, carried) = if truncated < b'5' {
        // Just truncate, going to round-down anyway.
        (max_digits, false)
    } else if truncated > b'5' {
        // Round-up always.
        round_up(digits, max_digits, 10)
    } else {
        // Have a near-halfway case, resolve it.
        let to_round = &digits[max_digits - 1..digit_count];
        let is_odd = to_round[0] % 2 == 1;
        let is_above = to_round[2..].iter().any(|&x| x != b'0');
        if is_odd || is_above {
            // Won't panic `digit_count <= digits.len()`, because `max_digits <
            // digit_count`.
            round_up(digits, max_digits, 10)
        } else {
            (max_digits, false)
        }
    };

    (digits, carried)
}

/// Write the sign for the exponent.
#[cfg_attr(not(feature = "compact"), inline(always))]
pub fn write_exponent_sign<const FORMAT: u128>(
    bytes: &mut [u8],
    cursor: &mut usize,
    exp: i32,
) -> u32 {
    let format = NumberFormat::<{ FORMAT }> {};
    if exp < 0 {
        bytes[*cursor] = b'-';
        *cursor += 1;
        exp.wrapping_neg() as u32
    } else if cfg!(feature = "format") && format.required_exponent_sign() {
        bytes[*cursor] = b'+';
        *cursor += 1;
        exp as u32
    } else {
        exp as u32
    }
}

/// Write the symbol, sign, and digits for the exponent.
#[cfg_attr(not(feature = "compact"), inline(always))]
pub fn write_exponent<const FORMAT: u128>(
    bytes: &mut [u8],
    cursor: &mut usize,
    exp: i32,
    exponent_character: u8,
) {
    bytes[*cursor] = exponent_character;
    *cursor += 1;
    let positive_exp: u32 = write_exponent_sign::<FORMAT>(bytes, cursor, exp);
    *cursor += positive_exp.write_exponent_signed::<FORMAT>(&mut bytes[*cursor..]);
}

/// Detect the notation to use for the float formatter and call the appropriate
/// function.
///
/// The float must be positive. This doesn't affect the safety guarantees but
/// all algorithms assume a float >0 or that is not negative 0.
///
/// - `float` - The float to write to string.
/// - `format` - The formatting specification for the float.
/// - `sci_exp` - The scientific exponents describing the float.
/// - `options` - Options configuring how to serialize the float.
/// - `write_scientific` - The callback to write scientific notation numbers.
/// - `write_positive` - The callback to write non-scientific, positive numbers.
/// - `write_negative` - The callback to write non-scientific, negative numbers.
/// - `bytes` - The output buffer to write to.
/// - `args` - Additional arguments to pass to our internal writers.
macro_rules! write_float {
    (
        $float:ident,
        $format:ident,
        $sci_exp:ident,
        $options:ident,
        $write_scientific:ident,
        $write_positive:ident,
        $write_negative:ident,
        $(generic => $generic:tt,)?
        bytes => $bytes:ident,
        args => $($args:expr,)*
    ) => {{
        use lexical_util::format::NumberFormat;

        debug_assert!($float.is_sign_positive());

        let format = NumberFormat::<{ $format }> {};
        let min_exp = $options.negative_exponent_break().map_or(-5, |x| x.get());
        let max_exp = $options.positive_exponent_break().map_or(9, |x| x.get());

        let outside_break = $sci_exp < min_exp || $sci_exp > max_exp;
        let require_exponent = format.required_exponent_notation() || outside_break;
        if !format.no_exponent_notation() && require_exponent {
            // Write digits in scientific notation.
            $write_scientific::<$($generic,)? FORMAT>($bytes, $($args,)*)
        } else if $sci_exp < 0 {
            // Write negative exponent without scientific notation.
            $write_negative::<$($generic,)? FORMAT>($bytes, $($args,)*)
        } else {
            // Write positive exponent without scientific notation.
            $write_positive::<$($generic,)? FORMAT>($bytes, $($args,)*)
        }
    }};
}