1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! The `Correction` data structure used by `persist_sink::write_batches` to stash updates before
//! they are written into batches.
use std::collections::BTreeMap;
use std::ops::{AddAssign, Bound, SubAssign};
use differential_dataflow::consolidation::{consolidate, consolidate_updates};
use differential_dataflow::Data;
use itertools::Itertools;
use mz_ore::iter::IteratorExt;
use mz_persist_client::metrics::{SinkMetrics, SinkWorkerMetrics, UpdateDelta};
use mz_repr::{Diff, Timestamp};
use timely::progress::Antichain;
use timely::PartialOrder;
/// A collection holding `persist_sink` updates.
///
/// The `Correction` data structure is purpose-built for the `persist_sink::write_batches`
/// operator:
///
/// * It stores updates by time, to enable efficient separation between updates that should
/// be written to a batch and updates whose time has not yet arrived.
/// * It eschews an interface for directly removing previously inserted updates. Instead, updates
/// are removed by inserting them again, with negated diffs. Stored updates are continuously
/// consolidated to give them opportunity to cancel each other out.
/// * It provides an interface for advancing all contained updates to a given frontier.
pub(super) struct Correction<D> {
/// Stashed updates by time.
updates: BTreeMap<Timestamp, ConsolidatingVec<D>>,
/// Frontier to which all update times are advanced.
since: Antichain<Timestamp>,
/// Total length and capacity of vectors in `updates`.
///
/// Tracked to maintain metrics.
total_size: LengthAndCapacity,
/// Global persist sink metrics.
metrics: SinkMetrics,
/// Per-worker persist sink metrics.
worker_metrics: SinkWorkerMetrics,
}
impl<D> Correction<D> {
/// Construct a new `Correction` instance.
pub fn new(metrics: SinkMetrics, worker_metrics: SinkWorkerMetrics) -> Self {
Self {
updates: Default::default(),
since: Antichain::from_elem(Timestamp::MIN),
total_size: Default::default(),
metrics,
worker_metrics,
}
}
/// Update persist sink metrics to the given new length and capacity.
fn update_metrics(&mut self, new_size: LengthAndCapacity) {
let old_size = self.total_size;
let len_delta = UpdateDelta::new(new_size.length, old_size.length);
let cap_delta = UpdateDelta::new(new_size.capacity, old_size.capacity);
self.metrics
.report_correction_update_deltas(len_delta, cap_delta);
self.worker_metrics
.report_correction_update_totals(new_size.length, new_size.capacity);
self.total_size = new_size;
}
}
impl<D: Data> Correction<D> {
/// Insert a batch of updates.
pub fn insert(&mut self, mut updates: Vec<(D, Timestamp, Diff)>) {
let Some(since_ts) = self.since.as_option() else {
// If the since frontier is empty, discard all updates.
return;
};
for (_, time, _) in &mut updates {
*time = std::cmp::max(*time, *since_ts);
}
self.insert_inner(updates);
}
/// Insert a batch of updates, after negating their diffs.
pub fn insert_negated(&mut self, mut updates: Vec<(D, Timestamp, Diff)>) {
let Some(since_ts) = self.since.as_option() else {
// If the since frontier is empty, discard all updates.
return;
};
for (_, time, diff) in &mut updates {
*time = std::cmp::max(*time, *since_ts);
*diff = -*diff;
}
self.insert_inner(updates);
}
/// Insert a batch of updates.
///
/// The given `updates` must all have been advanced by `self.since`.
fn insert_inner(&mut self, mut updates: Vec<(D, Timestamp, Diff)>) {
consolidate_updates(&mut updates);
updates.sort_unstable_by_key(|(_, time, _)| *time);
let mut new_size = self.total_size;
let mut updates = updates.into_iter().peekable();
while let Some(&(_, time, _)) = updates.peek() {
debug_assert!(
self.since.less_equal(&time),
"update not advanced by `since`"
);
let data = updates
.peeking_take_while(|(_, t, _)| *t == time)
.map(|(d, _, r)| (d, r));
use std::collections::btree_map::Entry;
match self.updates.entry(time) {
Entry::Vacant(entry) => {
let vec: ConsolidatingVec<_> = data.collect();
new_size += (vec.len(), vec.capacity());
entry.insert(vec);
}
Entry::Occupied(mut entry) => {
let vec = entry.get_mut();
new_size -= (vec.len(), vec.capacity());
vec.extend(data);
new_size += (vec.len(), vec.capacity());
}
}
}
self.update_metrics(new_size);
}
/// Consolidate and return updates within the given bounds.
///
/// # Panics
///
/// Panics if `lower` is not less than or equal to `upper`.
pub fn updates_within(
&mut self,
lower: &Antichain<Timestamp>,
upper: &Antichain<Timestamp>,
) -> impl Iterator<Item = (D, Timestamp, Diff)> + ExactSizeIterator + '_ {
assert!(PartialOrder::less_equal(lower, upper));
let start = match lower.as_option() {
Some(ts) => Bound::Included(*ts),
None => Bound::Excluded(Timestamp::MAX),
};
let end = match upper.as_option() {
Some(ts) => Bound::Excluded(*ts),
None => Bound::Unbounded,
};
let mut new_size = self.total_size;
// Consolidate relevant times and compute the total number of updates.
let range = self.updates.range_mut((start, end));
let update_count = range.fold(0, |acc, (_, data)| {
new_size -= (data.len(), data.capacity());
data.consolidate();
new_size += (data.len(), data.capacity());
acc + data.len()
});
self.update_metrics(new_size);
let range = self.updates.range((start, end));
range
.flat_map(|(t, data)| data.iter().map(|(d, r)| (d.clone(), *t, *r)))
.exact_size(update_count)
}
/// Consolidate and return updates before the given `upper`.
pub fn updates_before(
&mut self,
upper: &Antichain<Timestamp>,
) -> impl Iterator<Item = (D, Timestamp, Diff)> + ExactSizeIterator + '_ {
let lower = Antichain::from_elem(Timestamp::MIN);
self.updates_within(&lower, upper)
}
/// Return the current since frontier.
pub fn since(&self) -> &Antichain<Timestamp> {
&self.since
}
/// Advance the since frontier.
///
/// # Panics
///
/// Panics if the given `since` is less than the current since frontier.
pub fn advance_since(&mut self, since: Antichain<Timestamp>) {
assert!(PartialOrder::less_equal(&self.since, &since));
if since != self.since {
self.advance_by(&since);
self.since = since;
}
}
/// Advance all contained updates by the given frontier.
///
/// If the given frontier is empty, all remaining updates are discarded.
pub fn advance_by(&mut self, frontier: &Antichain<Timestamp>) {
let Some(target_ts) = frontier.as_option() else {
self.updates.clear();
self.update_metrics(Default::default());
return;
};
let mut new_size = self.total_size;
while let Some((ts, data)) = self.updates.pop_first() {
if frontier.less_equal(&ts) {
// We have advanced all updates that can advance.
self.updates.insert(ts, data);
break;
}
use std::collections::btree_map::Entry;
match self.updates.entry(*target_ts) {
Entry::Vacant(entry) => {
entry.insert(data);
}
Entry::Occupied(mut entry) => {
let vec = entry.get_mut();
new_size -= (data.len(), data.capacity());
new_size -= (vec.len(), vec.capacity());
vec.extend(data);
new_size += (vec.len(), vec.capacity());
}
}
}
self.update_metrics(new_size);
}
}
impl<D> Drop for Correction<D> {
fn drop(&mut self) {
self.update_metrics(Default::default());
}
}
/// Helper type for convenient tracking of length and capacity together.
#[derive(Clone, Copy, Default)]
struct LengthAndCapacity {
length: usize,
capacity: usize,
}
impl AddAssign<(usize, usize)> for LengthAndCapacity {
fn add_assign(&mut self, (len, cap): (usize, usize)) {
self.length += len;
self.capacity += cap;
}
}
impl SubAssign<(usize, usize)> for LengthAndCapacity {
fn sub_assign(&mut self, (len, cap): (usize, usize)) {
self.length -= len;
self.capacity -= cap;
}
}
/// A vector that consolidates its contents.
///
/// The vector is filled with updates until it reaches capacity. At this point, the updates are
/// consolidated to free up space. This process repeats until the consolidation recovered less than
/// half of the vector's capacity, at which point the capacity is doubled.
#[derive(Debug)]
pub(crate) struct ConsolidatingVec<D> {
data: Vec<(D, Diff)>,
/// A lower bound for how small we'll shrink the Vec's capacity. NB: The cap
/// might start smaller than this.
min_capacity: usize,
}
impl<D: Ord> ConsolidatingVec<D> {
pub fn with_min_capacity(min_capacity: usize) -> Self {
ConsolidatingVec {
data: Vec::new(),
min_capacity,
}
}
/// Return the length of the vector.
pub fn len(&self) -> usize {
self.data.len()
}
/// Return the capacity of the vector.
pub fn capacity(&self) -> usize {
self.data.capacity()
}
/// Pushes `item` into the vector.
///
/// If the vector does not have sufficient capacity, we try to consolidate and/or double its
/// capacity.
///
/// The worst-case cost of this function is O(n log n) in the number of items the vector stores,
/// but amortizes to O(1).
pub fn push(&mut self, item: (D, Diff)) {
let capacity = self.data.capacity();
if self.data.len() == capacity {
// The vector is full. First, consolidate to try to recover some space.
self.consolidate();
// If consolidation didn't free at least half the available capacity, double the
// capacity. This ensures we won't consolidate over and over again with small gains.
if self.data.len() > capacity / 2 {
self.data.reserve(capacity);
}
}
self.data.push(item);
}
/// Consolidate the contents.
pub fn consolidate(&mut self) {
consolidate(&mut self.data);
// We may have the opportunity to reclaim allocated memory.
// Given that `push` will double the capacity when the vector is more than half full, and
// we want to avoid entering into a resizing cycle, we choose to only shrink if the
// vector's length is less than one fourth of its capacity.
if self.data.len() < self.data.capacity() / 4 {
self.data.shrink_to(self.min_capacity);
}
}
/// Return an iterator over the borrowed items.
pub fn iter(&self) -> impl Iterator<Item = &(D, Diff)> {
self.data.iter()
}
/// Returns mutable access to the underlying items.
pub fn iter_mut(&mut self) -> impl Iterator<Item = &mut (D, Diff)> {
self.data.iter_mut()
}
}
impl<D> IntoIterator for ConsolidatingVec<D> {
type Item = (D, Diff);
type IntoIter = std::vec::IntoIter<(D, Diff)>;
fn into_iter(self) -> Self::IntoIter {
self.data.into_iter()
}
}
impl<D> FromIterator<(D, Diff)> for ConsolidatingVec<D> {
fn from_iter<I>(iter: I) -> Self
where
I: IntoIterator<Item = (D, Diff)>,
{
Self {
data: Vec::from_iter(iter),
min_capacity: 0,
}
}
}
impl<D: Ord> Extend<(D, Diff)> for ConsolidatingVec<D> {
fn extend<I>(&mut self, iter: I)
where
I: IntoIterator<Item = (D, Diff)>,
{
for item in iter {
self.push(item);
}
}
}