1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.

//! The `Correction` data structure used by `persist_sink::write_batches` to stash updates before
//! they are written into batches.

use std::collections::BTreeMap;
use std::ops::{AddAssign, Bound, SubAssign};

use differential_dataflow::consolidation::{consolidate, consolidate_updates};
use differential_dataflow::Data;
use itertools::Itertools;
use mz_ore::iter::IteratorExt;
use mz_persist_client::metrics::{SinkMetrics, SinkWorkerMetrics, UpdateDelta};
use mz_repr::{Diff, Timestamp};
use timely::progress::Antichain;
use timely::PartialOrder;

/// A collection holding `persist_sink` updates.
///
/// The `Correction` data structure is purpose-built for the `persist_sink::write_batches`
/// operator:
///
///  * It stores updates by time, to enable efficient separation between updates that should
///    be written to a batch and updates whose time has not yet arrived.
///  * It eschews an interface for directly removing previously inserted updates. Instead, updates
///    are removed by inserting them again, with negated diffs. Stored updates are continuously
///    consolidated to give them opportunity to cancel each other out.
///  * It provides an interface for advancing all contained updates to a given frontier.
pub(super) struct Correction<D> {
    /// Stashed updates by time.
    updates: BTreeMap<Timestamp, ConsolidatingVec<D>>,
    /// Frontier to which all update times are advanced.
    since: Antichain<Timestamp>,

    /// Total length and capacity of vectors in `updates`.
    ///
    /// Tracked to maintain metrics.
    total_size: LengthAndCapacity,
    /// Global persist sink metrics.
    metrics: SinkMetrics,
    /// Per-worker persist sink metrics.
    worker_metrics: SinkWorkerMetrics,
}

impl<D> Correction<D> {
    /// Construct a new `Correction` instance.
    pub fn new(metrics: SinkMetrics, worker_metrics: SinkWorkerMetrics) -> Self {
        Self {
            updates: Default::default(),
            since: Antichain::from_elem(Timestamp::MIN),
            total_size: Default::default(),
            metrics,
            worker_metrics,
        }
    }

    /// Update persist sink metrics to the given new length and capacity.
    fn update_metrics(&mut self, new_size: LengthAndCapacity) {
        let old_size = self.total_size;
        let len_delta = UpdateDelta::new(new_size.length, old_size.length);
        let cap_delta = UpdateDelta::new(new_size.capacity, old_size.capacity);
        self.metrics
            .report_correction_update_deltas(len_delta, cap_delta);
        self.worker_metrics
            .report_correction_update_totals(new_size.length, new_size.capacity);

        self.total_size = new_size;
    }
}

impl<D: Data> Correction<D> {
    /// Insert a batch of updates.
    pub fn insert(&mut self, mut updates: Vec<(D, Timestamp, Diff)>) {
        let Some(since_ts) = self.since.as_option() else {
            // If the since frontier is empty, discard all updates.
            return;
        };

        for (_, time, _) in &mut updates {
            *time = std::cmp::max(*time, *since_ts);
        }
        self.insert_inner(updates);
    }

    /// Insert a batch of updates, after negating their diffs.
    pub fn insert_negated(&mut self, mut updates: Vec<(D, Timestamp, Diff)>) {
        let Some(since_ts) = self.since.as_option() else {
            // If the since frontier is empty, discard all updates.
            return;
        };

        for (_, time, diff) in &mut updates {
            *time = std::cmp::max(*time, *since_ts);
            *diff = -*diff;
        }
        self.insert_inner(updates);
    }

    /// Insert a batch of updates.
    ///
    /// The given `updates` must all have been advanced by `self.since`.
    fn insert_inner(&mut self, mut updates: Vec<(D, Timestamp, Diff)>) {
        consolidate_updates(&mut updates);
        updates.sort_unstable_by_key(|(_, time, _)| *time);

        let mut new_size = self.total_size;
        let mut updates = updates.into_iter().peekable();
        while let Some(&(_, time, _)) = updates.peek() {
            debug_assert!(
                self.since.less_equal(&time),
                "update not advanced by `since`"
            );

            let data = updates
                .peeking_take_while(|(_, t, _)| *t == time)
                .map(|(d, _, r)| (d, r));

            use std::collections::btree_map::Entry;
            match self.updates.entry(time) {
                Entry::Vacant(entry) => {
                    let vec: ConsolidatingVec<_> = data.collect();
                    new_size += (vec.len(), vec.capacity());
                    entry.insert(vec);
                }
                Entry::Occupied(mut entry) => {
                    let vec = entry.get_mut();
                    new_size -= (vec.len(), vec.capacity());
                    vec.extend(data);
                    new_size += (vec.len(), vec.capacity());
                }
            }
        }

        self.update_metrics(new_size);
    }

    /// Consolidate and return updates within the given bounds.
    ///
    /// # Panics
    ///
    /// Panics if `lower` is not less than or equal to `upper`.
    pub fn updates_within(
        &mut self,
        lower: &Antichain<Timestamp>,
        upper: &Antichain<Timestamp>,
    ) -> impl Iterator<Item = (D, Timestamp, Diff)> + ExactSizeIterator + '_ {
        assert!(PartialOrder::less_equal(lower, upper));

        let start = match lower.as_option() {
            Some(ts) => Bound::Included(*ts),
            None => Bound::Excluded(Timestamp::MAX),
        };
        let end = match upper.as_option() {
            Some(ts) => Bound::Excluded(*ts),
            None => Bound::Unbounded,
        };

        let mut new_size = self.total_size;

        // Consolidate relevant times and compute the total number of updates.
        let range = self.updates.range_mut((start, end));
        let update_count = range.fold(0, |acc, (_, data)| {
            new_size -= (data.len(), data.capacity());
            data.consolidate();
            new_size += (data.len(), data.capacity());
            acc + data.len()
        });

        self.update_metrics(new_size);

        let range = self.updates.range((start, end));
        range
            .flat_map(|(t, data)| data.iter().map(|(d, r)| (d.clone(), *t, *r)))
            .exact_size(update_count)
    }

    /// Consolidate and return updates before the given `upper`.
    pub fn updates_before(
        &mut self,
        upper: &Antichain<Timestamp>,
    ) -> impl Iterator<Item = (D, Timestamp, Diff)> + ExactSizeIterator + '_ {
        let lower = Antichain::from_elem(Timestamp::MIN);
        self.updates_within(&lower, upper)
    }

    /// Return the current since frontier.
    pub fn since(&self) -> &Antichain<Timestamp> {
        &self.since
    }

    /// Advance the since frontier.
    ///
    /// # Panics
    ///
    /// Panics if the given `since` is less than the current since frontier.
    pub fn advance_since(&mut self, since: Antichain<Timestamp>) {
        assert!(PartialOrder::less_equal(&self.since, &since));

        if since != self.since {
            self.advance_by(&since);
            self.since = since;
        }
    }

    /// Advance all contained updates by the given frontier.
    ///
    /// If the given frontier is empty, all remaining updates are discarded.
    pub fn advance_by(&mut self, frontier: &Antichain<Timestamp>) {
        let Some(target_ts) = frontier.as_option() else {
            self.updates.clear();
            self.update_metrics(Default::default());
            return;
        };

        let mut new_size = self.total_size;
        while let Some((ts, data)) = self.updates.pop_first() {
            if frontier.less_equal(&ts) {
                // We have advanced all updates that can advance.
                self.updates.insert(ts, data);
                break;
            }

            use std::collections::btree_map::Entry;
            match self.updates.entry(*target_ts) {
                Entry::Vacant(entry) => {
                    entry.insert(data);
                }
                Entry::Occupied(mut entry) => {
                    let vec = entry.get_mut();
                    new_size -= (data.len(), data.capacity());
                    new_size -= (vec.len(), vec.capacity());
                    vec.extend(data);
                    new_size += (vec.len(), vec.capacity());
                }
            }
        }

        self.update_metrics(new_size);
    }
}

impl<D> Drop for Correction<D> {
    fn drop(&mut self) {
        self.update_metrics(Default::default());
    }
}

/// Helper type for convenient tracking of length and capacity together.
#[derive(Clone, Copy, Default)]
struct LengthAndCapacity {
    length: usize,
    capacity: usize,
}

impl AddAssign<(usize, usize)> for LengthAndCapacity {
    fn add_assign(&mut self, (len, cap): (usize, usize)) {
        self.length += len;
        self.capacity += cap;
    }
}

impl SubAssign<(usize, usize)> for LengthAndCapacity {
    fn sub_assign(&mut self, (len, cap): (usize, usize)) {
        self.length -= len;
        self.capacity -= cap;
    }
}

/// A vector that consolidates its contents.
///
/// The vector is filled with updates until it reaches capacity. At this point, the updates are
/// consolidated to free up space. This process repeats until the consolidation recovered less than
/// half of the vector's capacity, at which point the capacity is doubled.
#[derive(Debug)]
pub(crate) struct ConsolidatingVec<D> {
    data: Vec<(D, Diff)>,
    /// A lower bound for how small we'll shrink the Vec's capacity. NB: The cap
    /// might start smaller than this.
    min_capacity: usize,
}

impl<D: Ord> ConsolidatingVec<D> {
    pub fn with_min_capacity(min_capacity: usize) -> Self {
        ConsolidatingVec {
            data: Vec::new(),
            min_capacity,
        }
    }

    /// Return the length of the vector.
    pub fn len(&self) -> usize {
        self.data.len()
    }

    /// Return the capacity of the vector.
    pub fn capacity(&self) -> usize {
        self.data.capacity()
    }

    /// Pushes `item` into the vector.
    ///
    /// If the vector does not have sufficient capacity, we try to consolidate and/or double its
    /// capacity.
    ///
    /// The worst-case cost of this function is O(n log n) in the number of items the vector stores,
    /// but amortizes to O(1).
    pub fn push(&mut self, item: (D, Diff)) {
        let capacity = self.data.capacity();
        if self.data.len() == capacity {
            // The vector is full. First, consolidate to try to recover some space.
            self.consolidate();

            // If consolidation didn't free at least half the available capacity, double the
            // capacity. This ensures we won't consolidate over and over again with small gains.
            if self.data.len() > capacity / 2 {
                self.data.reserve(capacity);
            }
        }

        self.data.push(item);
    }

    /// Consolidate the contents.
    pub fn consolidate(&mut self) {
        consolidate(&mut self.data);

        // We may have the opportunity to reclaim allocated memory.
        // Given that `push` will double the capacity when the vector is more than half full, and
        // we want to avoid entering into a resizing cycle, we choose to only shrink if the
        // vector's length is less than one fourth of its capacity.
        if self.data.len() < self.data.capacity() / 4 {
            self.data.shrink_to(self.min_capacity);
        }
    }

    /// Return an iterator over the borrowed items.
    pub fn iter(&self) -> impl Iterator<Item = &(D, Diff)> {
        self.data.iter()
    }

    /// Returns mutable access to the underlying items.
    pub fn iter_mut(&mut self) -> impl Iterator<Item = &mut (D, Diff)> {
        self.data.iter_mut()
    }
}

impl<D> IntoIterator for ConsolidatingVec<D> {
    type Item = (D, Diff);
    type IntoIter = std::vec::IntoIter<(D, Diff)>;

    fn into_iter(self) -> Self::IntoIter {
        self.data.into_iter()
    }
}

impl<D> FromIterator<(D, Diff)> for ConsolidatingVec<D> {
    fn from_iter<I>(iter: I) -> Self
    where
        I: IntoIterator<Item = (D, Diff)>,
    {
        Self {
            data: Vec::from_iter(iter),
            min_capacity: 0,
        }
    }
}

impl<D: Ord> Extend<(D, Diff)> for ConsolidatingVec<D> {
    fn extend<I>(&mut self, iter: I)
    where
        I: IntoIterator<Item = (D, Diff)>,
    {
        for item in iter {
            self.push(item);
        }
    }
}