tokio/runtime/scheduler/multi_thread/worker.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
//! A scheduler is initialized with a fixed number of workers. Each worker is
//! driven by a thread. Each worker has a "core" which contains data such as the
//! run queue and other state. When `block_in_place` is called, the worker's
//! "core" is handed off to a new thread allowing the scheduler to continue to
//! make progress while the originating thread blocks.
//!
//! # Shutdown
//!
//! Shutting down the runtime involves the following steps:
//!
//! 1. The Shared::close method is called. This closes the inject queue and
//! `OwnedTasks` instance and wakes up all worker threads.
//!
//! 2. Each worker thread observes the close signal next time it runs
//! Core::maintenance by checking whether the inject queue is closed.
//! The `Core::is_shutdown` flag is set to true.
//!
//! 3. The worker thread calls `pre_shutdown` in parallel. Here, the worker
//! will keep removing tasks from `OwnedTasks` until it is empty. No new
//! tasks can be pushed to the `OwnedTasks` during or after this step as it
//! was closed in step 1.
//!
//! 5. The workers call Shared::shutdown to enter the single-threaded phase of
//! shutdown. These calls will push their core to `Shared::shutdown_cores`,
//! and the last thread to push its core will finish the shutdown procedure.
//!
//! 6. The local run queue of each core is emptied, then the inject queue is
//! emptied.
//!
//! At this point, shutdown has completed. It is not possible for any of the
//! collections to contain any tasks at this point, as each collection was
//! closed first, then emptied afterwards.
//!
//! ## Spawns during shutdown
//!
//! When spawning tasks during shutdown, there are two cases:
//!
//! * The spawner observes the `OwnedTasks` being open, and the inject queue is
//! closed.
//! * The spawner observes the `OwnedTasks` being closed and doesn't check the
//! inject queue.
//!
//! The first case can only happen if the `OwnedTasks::bind` call happens before
//! or during step 1 of shutdown. In this case, the runtime will clean up the
//! task in step 3 of shutdown.
//!
//! In the latter case, the task was not spawned and the task is immediately
//! cancelled by the spawner.
//!
//! The correctness of shutdown requires both the inject queue and `OwnedTasks`
//! collection to have a closed bit. With a close bit on only the inject queue,
//! spawning could run in to a situation where a task is successfully bound long
//! after the runtime has shut down. With a close bit on only the `OwnedTasks`,
//! the first spawning situation could result in the notification being pushed
//! to the inject queue after step 6 of shutdown, which would leave a task in
//! the inject queue indefinitely. This would be a ref-count cycle and a memory
//! leak.
use crate::loom::sync::{Arc, Mutex};
use crate::runtime;
use crate::runtime::context;
use crate::runtime::scheduler::multi_thread::{
idle, queue, Counters, Handle, Idle, Overflow, Parker, Stats, TraceStatus, Unparker,
};
use crate::runtime::scheduler::{inject, Defer, Lock};
use crate::runtime::task::OwnedTasks;
use crate::runtime::{
blocking, coop, driver, scheduler, task, Config, SchedulerMetrics, WorkerMetrics,
};
use crate::util::atomic_cell::AtomicCell;
use crate::util::rand::{FastRand, RngSeedGenerator};
use std::cell::RefCell;
use std::task::Waker;
use std::time::Duration;
cfg_unstable_metrics! {
mod metrics;
}
cfg_taskdump! {
mod taskdump;
}
cfg_not_taskdump! {
mod taskdump_mock;
}
/// A scheduler worker
pub(super) struct Worker {
/// Reference to scheduler's handle
handle: Arc<Handle>,
/// Index holding this worker's remote state
index: usize,
/// Used to hand-off a worker's core to another thread.
core: AtomicCell<Core>,
}
/// Core data
struct Core {
/// Used to schedule bookkeeping tasks every so often.
tick: u32,
/// When a task is scheduled from a worker, it is stored in this slot. The
/// worker will check this slot for a task **before** checking the run
/// queue. This effectively results in the **last** scheduled task to be run
/// next (LIFO). This is an optimization for improving locality which
/// benefits message passing patterns and helps to reduce latency.
lifo_slot: Option<Notified>,
/// When `true`, locally scheduled tasks go to the LIFO slot. When `false`,
/// they go to the back of the `run_queue`.
lifo_enabled: bool,
/// The worker-local run queue.
run_queue: queue::Local<Arc<Handle>>,
/// True if the worker is currently searching for more work. Searching
/// involves attempting to steal from other workers.
is_searching: bool,
/// True if the scheduler is being shutdown
is_shutdown: bool,
/// True if the scheduler is being traced
is_traced: bool,
/// Parker
///
/// Stored in an `Option` as the parker is added / removed to make the
/// borrow checker happy.
park: Option<Parker>,
/// Per-worker runtime stats
stats: Stats,
/// How often to check the global queue
global_queue_interval: u32,
/// Fast random number generator.
rand: FastRand,
}
/// State shared across all workers
pub(crate) struct Shared {
/// Per-worker remote state. All other workers have access to this and is
/// how they communicate between each other.
remotes: Box<[Remote]>,
/// Global task queue used for:
/// 1. Submit work to the scheduler while **not** currently on a worker thread.
/// 2. Submit work to the scheduler when a worker run queue is saturated
pub(super) inject: inject::Shared<Arc<Handle>>,
/// Coordinates idle workers
idle: Idle,
/// Collection of all active tasks spawned onto this executor.
pub(crate) owned: OwnedTasks<Arc<Handle>>,
/// Data synchronized by the scheduler mutex
pub(super) synced: Mutex<Synced>,
/// Cores that have observed the shutdown signal
///
/// The core is **not** placed back in the worker to avoid it from being
/// stolen by a thread that was spawned as part of `block_in_place`.
#[allow(clippy::vec_box)] // we're moving an already-boxed value
shutdown_cores: Mutex<Vec<Box<Core>>>,
/// The number of cores that have observed the trace signal.
pub(super) trace_status: TraceStatus,
/// Scheduler configuration options
config: Config,
/// Collects metrics from the runtime.
pub(super) scheduler_metrics: SchedulerMetrics,
pub(super) worker_metrics: Box<[WorkerMetrics]>,
/// Only held to trigger some code on drop. This is used to get internal
/// runtime metrics that can be useful when doing performance
/// investigations. This does nothing (empty struct, no drop impl) unless
/// the `tokio_internal_mt_counters` `cfg` flag is set.
_counters: Counters,
}
/// Data synchronized by the scheduler mutex
pub(crate) struct Synced {
/// Synchronized state for `Idle`.
pub(super) idle: idle::Synced,
/// Synchronized state for `Inject`.
pub(crate) inject: inject::Synced,
}
/// Used to communicate with a worker from other threads.
struct Remote {
/// Steals tasks from this worker.
pub(super) steal: queue::Steal<Arc<Handle>>,
/// Unparks the associated worker thread
unpark: Unparker,
}
/// Thread-local context
pub(crate) struct Context {
/// Worker
worker: Arc<Worker>,
/// Core data
core: RefCell<Option<Box<Core>>>,
/// Tasks to wake after resource drivers are polled. This is mostly to
/// handle yielded tasks.
pub(crate) defer: Defer,
}
/// Starts the workers
pub(crate) struct Launch(Vec<Arc<Worker>>);
/// Running a task may consume the core. If the core is still available when
/// running the task completes, it is returned. Otherwise, the worker will need
/// to stop processing.
type RunResult = Result<Box<Core>, ()>;
/// A task handle
type Task = task::Task<Arc<Handle>>;
/// A notified task handle
type Notified = task::Notified<Arc<Handle>>;
/// Value picked out of thin-air. Running the LIFO slot a handful of times
/// seems sufficient to benefit from locality. More than 3 times probably is
/// overweighing. The value can be tuned in the future with data that shows
/// improvements.
const MAX_LIFO_POLLS_PER_TICK: usize = 3;
pub(super) fn create(
size: usize,
park: Parker,
driver_handle: driver::Handle,
blocking_spawner: blocking::Spawner,
seed_generator: RngSeedGenerator,
config: Config,
) -> (Arc<Handle>, Launch) {
let mut cores = Vec::with_capacity(size);
let mut remotes = Vec::with_capacity(size);
let mut worker_metrics = Vec::with_capacity(size);
// Create the local queues
for _ in 0..size {
let (steal, run_queue) = queue::local();
let park = park.clone();
let unpark = park.unpark();
let metrics = WorkerMetrics::from_config(&config);
let stats = Stats::new(&metrics);
cores.push(Box::new(Core {
tick: 0,
lifo_slot: None,
lifo_enabled: !config.disable_lifo_slot,
run_queue,
is_searching: false,
is_shutdown: false,
is_traced: false,
park: Some(park),
global_queue_interval: stats.tuned_global_queue_interval(&config),
stats,
rand: FastRand::from_seed(config.seed_generator.next_seed()),
}));
remotes.push(Remote { steal, unpark });
worker_metrics.push(metrics);
}
let (idle, idle_synced) = Idle::new(size);
let (inject, inject_synced) = inject::Shared::new();
let remotes_len = remotes.len();
let handle = Arc::new(Handle {
shared: Shared {
remotes: remotes.into_boxed_slice(),
inject,
idle,
owned: OwnedTasks::new(size),
synced: Mutex::new(Synced {
idle: idle_synced,
inject: inject_synced,
}),
shutdown_cores: Mutex::new(vec![]),
trace_status: TraceStatus::new(remotes_len),
config,
scheduler_metrics: SchedulerMetrics::new(),
worker_metrics: worker_metrics.into_boxed_slice(),
_counters: Counters,
},
driver: driver_handle,
blocking_spawner,
seed_generator,
});
let mut launch = Launch(vec![]);
for (index, core) in cores.drain(..).enumerate() {
launch.0.push(Arc::new(Worker {
handle: handle.clone(),
index,
core: AtomicCell::new(Some(core)),
}));
}
(handle, launch)
}
#[track_caller]
pub(crate) fn block_in_place<F, R>(f: F) -> R
where
F: FnOnce() -> R,
{
// Try to steal the worker core back
struct Reset {
take_core: bool,
budget: coop::Budget,
}
impl Drop for Reset {
fn drop(&mut self) {
with_current(|maybe_cx| {
if let Some(cx) = maybe_cx {
if self.take_core {
let core = cx.worker.core.take();
let mut cx_core = cx.core.borrow_mut();
assert!(cx_core.is_none());
*cx_core = core;
}
// Reset the task budget as we are re-entering the
// runtime.
coop::set(self.budget);
}
});
}
}
let mut had_entered = false;
let mut take_core = false;
let setup_result = with_current(|maybe_cx| {
match (
crate::runtime::context::current_enter_context(),
maybe_cx.is_some(),
) {
(context::EnterRuntime::Entered { .. }, true) => {
// We are on a thread pool runtime thread, so we just need to
// set up blocking.
had_entered = true;
}
(
context::EnterRuntime::Entered {
allow_block_in_place,
},
false,
) => {
// We are on an executor, but _not_ on the thread pool. That is
// _only_ okay if we are in a thread pool runtime's block_on
// method:
if allow_block_in_place {
had_entered = true;
return Ok(());
} else {
// This probably means we are on the current_thread runtime or in a
// LocalSet, where it is _not_ okay to block.
return Err(
"can call blocking only when running on the multi-threaded runtime",
);
}
}
(context::EnterRuntime::NotEntered, true) => {
// This is a nested call to block_in_place (we already exited).
// All the necessary setup has already been done.
return Ok(());
}
(context::EnterRuntime::NotEntered, false) => {
// We are outside of the tokio runtime, so blocking is fine.
// We can also skip all of the thread pool blocking setup steps.
return Ok(());
}
}
let cx = maybe_cx.expect("no .is_some() == false cases above should lead here");
// Get the worker core. If none is set, then blocking is fine!
let mut core = match cx.core.borrow_mut().take() {
Some(core) => core,
None => return Ok(()),
};
// If we heavily call `spawn_blocking`, there might be no available thread to
// run this core. Except for the task in the lifo_slot, all tasks can be
// stolen, so we move the task out of the lifo_slot to the run_queue.
if let Some(task) = core.lifo_slot.take() {
core.run_queue
.push_back_or_overflow(task, &*cx.worker.handle, &mut core.stats);
}
// We are taking the core from the context and sending it to another
// thread.
take_core = true;
// The parker should be set here
assert!(core.park.is_some());
// In order to block, the core must be sent to another thread for
// execution.
//
// First, move the core back into the worker's shared core slot.
cx.worker.core.set(core);
// Next, clone the worker handle and send it to a new thread for
// processing.
//
// Once the blocking task is done executing, we will attempt to
// steal the core back.
let worker = cx.worker.clone();
runtime::spawn_blocking(move || run(worker));
Ok(())
});
if let Err(panic_message) = setup_result {
panic!("{}", panic_message);
}
if had_entered {
// Unset the current task's budget. Blocking sections are not
// constrained by task budgets.
let _reset = Reset {
take_core,
budget: coop::stop(),
};
crate::runtime::context::exit_runtime(f)
} else {
f()
}
}
impl Launch {
pub(crate) fn launch(mut self) {
for worker in self.0.drain(..) {
runtime::spawn_blocking(move || run(worker));
}
}
}
fn run(worker: Arc<Worker>) {
#[allow(dead_code)]
struct AbortOnPanic;
impl Drop for AbortOnPanic {
fn drop(&mut self) {
if std::thread::panicking() {
eprintln!("worker thread panicking; aborting process");
std::process::abort();
}
}
}
// Catching panics on worker threads in tests is quite tricky. Instead, when
// debug assertions are enabled, we just abort the process.
#[cfg(debug_assertions)]
let _abort_on_panic = AbortOnPanic;
// Acquire a core. If this fails, then another thread is running this
// worker and there is nothing further to do.
let core = match worker.core.take() {
Some(core) => core,
None => return,
};
let handle = scheduler::Handle::MultiThread(worker.handle.clone());
crate::runtime::context::enter_runtime(&handle, true, |_| {
// Set the worker context.
let cx = scheduler::Context::MultiThread(Context {
worker,
core: RefCell::new(None),
defer: Defer::new(),
});
context::set_scheduler(&cx, || {
let cx = cx.expect_multi_thread();
// This should always be an error. It only returns a `Result` to support
// using `?` to short circuit.
assert!(cx.run(core).is_err());
// Check if there are any deferred tasks to notify. This can happen when
// the worker core is lost due to `block_in_place()` being called from
// within the task.
cx.defer.wake();
});
});
}
impl Context {
fn run(&self, mut core: Box<Core>) -> RunResult {
// Reset `lifo_enabled` here in case the core was previously stolen from
// a task that had the LIFO slot disabled.
self.reset_lifo_enabled(&mut core);
// Start as "processing" tasks as polling tasks from the local queue
// will be one of the first things we do.
core.stats.start_processing_scheduled_tasks();
while !core.is_shutdown {
self.assert_lifo_enabled_is_correct(&core);
if core.is_traced {
core = self.worker.handle.trace_core(core);
}
// Increment the tick
core.tick();
// Run maintenance, if needed
core = self.maintenance(core);
// First, check work available to the current worker.
if let Some(task) = core.next_task(&self.worker) {
core = self.run_task(task, core)?;
continue;
}
// We consumed all work in the queues and will start searching for work.
core.stats.end_processing_scheduled_tasks();
// There is no more **local** work to process, try to steal work
// from other workers.
if let Some(task) = core.steal_work(&self.worker) {
// Found work, switch back to processing
core.stats.start_processing_scheduled_tasks();
core = self.run_task(task, core)?;
} else {
// Wait for work
core = if !self.defer.is_empty() {
self.park_timeout(core, Some(Duration::from_millis(0)))
} else {
self.park(core)
};
core.stats.start_processing_scheduled_tasks();
}
}
core.pre_shutdown(&self.worker);
// Signal shutdown
self.worker.handle.shutdown_core(core);
Err(())
}
fn run_task(&self, task: Notified, mut core: Box<Core>) -> RunResult {
let task = self.worker.handle.shared.owned.assert_owner(task);
// Make sure the worker is not in the **searching** state. This enables
// another idle worker to try to steal work.
core.transition_from_searching(&self.worker);
self.assert_lifo_enabled_is_correct(&core);
// Measure the poll start time. Note that we may end up polling other
// tasks under this measurement. In this case, the tasks came from the
// LIFO slot and are considered part of the current task for scheduling
// purposes. These tasks inherent the "parent"'s limits.
core.stats.start_poll();
// Make the core available to the runtime context
*self.core.borrow_mut() = Some(core);
// Run the task
coop::budget(|| {
task.run();
let mut lifo_polls = 0;
// As long as there is budget remaining and a task exists in the
// `lifo_slot`, then keep running.
loop {
// Check if we still have the core. If not, the core was stolen
// by another worker.
let mut core = match self.core.borrow_mut().take() {
Some(core) => core,
None => {
// In this case, we cannot call `reset_lifo_enabled()`
// because the core was stolen. The stealer will handle
// that at the top of `Context::run`
return Err(());
}
};
// Check for a task in the LIFO slot
let task = match core.lifo_slot.take() {
Some(task) => task,
None => {
self.reset_lifo_enabled(&mut core);
core.stats.end_poll();
return Ok(core);
}
};
if !coop::has_budget_remaining() {
core.stats.end_poll();
// Not enough budget left to run the LIFO task, push it to
// the back of the queue and return.
core.run_queue.push_back_or_overflow(
task,
&*self.worker.handle,
&mut core.stats,
);
// If we hit this point, the LIFO slot should be enabled.
// There is no need to reset it.
debug_assert!(core.lifo_enabled);
return Ok(core);
}
// Track that we are about to run a task from the LIFO slot.
lifo_polls += 1;
super::counters::inc_lifo_schedules();
// Disable the LIFO slot if we reach our limit
//
// In ping-ping style workloads where task A notifies task B,
// which notifies task A again, continuously prioritizing the
// LIFO slot can cause starvation as these two tasks will
// repeatedly schedule the other. To mitigate this, we limit the
// number of times the LIFO slot is prioritized.
if lifo_polls >= MAX_LIFO_POLLS_PER_TICK {
core.lifo_enabled = false;
super::counters::inc_lifo_capped();
}
// Run the LIFO task, then loop
*self.core.borrow_mut() = Some(core);
let task = self.worker.handle.shared.owned.assert_owner(task);
task.run();
}
})
}
fn reset_lifo_enabled(&self, core: &mut Core) {
core.lifo_enabled = !self.worker.handle.shared.config.disable_lifo_slot;
}
fn assert_lifo_enabled_is_correct(&self, core: &Core) {
debug_assert_eq!(
core.lifo_enabled,
!self.worker.handle.shared.config.disable_lifo_slot
);
}
fn maintenance(&self, mut core: Box<Core>) -> Box<Core> {
if core.tick % self.worker.handle.shared.config.event_interval == 0 {
super::counters::inc_num_maintenance();
core.stats.end_processing_scheduled_tasks();
// Call `park` with a 0 timeout. This enables the I/O driver, timer, ...
// to run without actually putting the thread to sleep.
core = self.park_timeout(core, Some(Duration::from_millis(0)));
// Run regularly scheduled maintenance
core.maintenance(&self.worker);
core.stats.start_processing_scheduled_tasks();
}
core
}
/// Parks the worker thread while waiting for tasks to execute.
///
/// This function checks if indeed there's no more work left to be done before parking.
/// Also important to notice that, before parking, the worker thread will try to take
/// ownership of the Driver (IO/Time) and dispatch any events that might have fired.
/// Whenever a worker thread executes the Driver loop, all waken tasks are scheduled
/// in its own local queue until the queue saturates (ntasks > `LOCAL_QUEUE_CAPACITY`).
/// When the local queue is saturated, the overflow tasks are added to the injection queue
/// from where other workers can pick them up.
/// Also, we rely on the workstealing algorithm to spread the tasks amongst workers
/// after all the IOs get dispatched
fn park(&self, mut core: Box<Core>) -> Box<Core> {
if let Some(f) = &self.worker.handle.shared.config.before_park {
f();
}
if core.transition_to_parked(&self.worker) {
while !core.is_shutdown && !core.is_traced {
core.stats.about_to_park();
core = self.park_timeout(core, None);
// Run regularly scheduled maintenance
core.maintenance(&self.worker);
if core.transition_from_parked(&self.worker) {
break;
}
}
}
if let Some(f) = &self.worker.handle.shared.config.after_unpark {
f();
}
core
}
fn park_timeout(&self, mut core: Box<Core>, duration: Option<Duration>) -> Box<Core> {
self.assert_lifo_enabled_is_correct(&core);
// Take the parker out of core
let mut park = core.park.take().expect("park missing");
// Store `core` in context
*self.core.borrow_mut() = Some(core);
// Park thread
if let Some(timeout) = duration {
park.park_timeout(&self.worker.handle.driver, timeout);
} else {
park.park(&self.worker.handle.driver);
}
self.defer.wake();
// Remove `core` from context
core = self.core.borrow_mut().take().expect("core missing");
// Place `park` back in `core`
core.park = Some(park);
if core.should_notify_others() {
self.worker.handle.notify_parked_local();
}
core
}
pub(crate) fn defer(&self, waker: &Waker) {
self.defer.defer(waker);
}
#[allow(dead_code)]
pub(crate) fn get_worker_index(&self) -> usize {
self.worker.index
}
}
impl Core {
/// Increment the tick
fn tick(&mut self) {
self.tick = self.tick.wrapping_add(1);
}
/// Return the next notified task available to this worker.
fn next_task(&mut self, worker: &Worker) -> Option<Notified> {
if self.tick % self.global_queue_interval == 0 {
// Update the global queue interval, if needed
self.tune_global_queue_interval(worker);
worker
.handle
.next_remote_task()
.or_else(|| self.next_local_task())
} else {
let maybe_task = self.next_local_task();
if maybe_task.is_some() {
return maybe_task;
}
if worker.inject().is_empty() {
return None;
}
// Other threads can only **remove** tasks from the current worker's
// `run_queue`. So, we can be confident that by the time we call
// `run_queue.push_back` below, there will be *at least* `cap`
// available slots in the queue.
let cap = usize::min(
self.run_queue.remaining_slots(),
self.run_queue.max_capacity() / 2,
);
// The worker is currently idle, pull a batch of work from the
// injection queue. We don't want to pull *all* the work so other
// workers can also get some.
let n = usize::min(
worker.inject().len() / worker.handle.shared.remotes.len() + 1,
cap,
);
// Take at least one task since the first task is returned directly
// and not pushed onto the local queue.
let n = usize::max(1, n);
let mut synced = worker.handle.shared.synced.lock();
// safety: passing in the correct `inject::Synced`.
let mut tasks = unsafe { worker.inject().pop_n(&mut synced.inject, n) };
// Pop the first task to return immediately
let ret = tasks.next();
// Push the rest of the on the run queue
self.run_queue.push_back(tasks);
ret
}
}
fn next_local_task(&mut self) -> Option<Notified> {
self.lifo_slot.take().or_else(|| self.run_queue.pop())
}
/// Function responsible for stealing tasks from another worker
///
/// Note: Only if less than half the workers are searching for tasks to steal
/// a new worker will actually try to steal. The idea is to make sure not all
/// workers will be trying to steal at the same time.
fn steal_work(&mut self, worker: &Worker) -> Option<Notified> {
if !self.transition_to_searching(worker) {
return None;
}
let num = worker.handle.shared.remotes.len();
// Start from a random worker
let start = self.rand.fastrand_n(num as u32) as usize;
for i in 0..num {
let i = (start + i) % num;
// Don't steal from ourself! We know we don't have work.
if i == worker.index {
continue;
}
let target = &worker.handle.shared.remotes[i];
if let Some(task) = target
.steal
.steal_into(&mut self.run_queue, &mut self.stats)
{
return Some(task);
}
}
// Fallback on checking the global queue
worker.handle.next_remote_task()
}
fn transition_to_searching(&mut self, worker: &Worker) -> bool {
if !self.is_searching {
self.is_searching = worker.handle.shared.idle.transition_worker_to_searching();
}
self.is_searching
}
fn transition_from_searching(&mut self, worker: &Worker) {
if !self.is_searching {
return;
}
self.is_searching = false;
worker.handle.transition_worker_from_searching();
}
fn has_tasks(&self) -> bool {
self.lifo_slot.is_some() || self.run_queue.has_tasks()
}
fn should_notify_others(&self) -> bool {
// If there are tasks available to steal, but this worker is not
// looking for tasks to steal, notify another worker.
if self.is_searching {
return false;
}
self.lifo_slot.is_some() as usize + self.run_queue.len() > 1
}
/// Prepares the worker state for parking.
///
/// Returns true if the transition happened, false if there is work to do first.
fn transition_to_parked(&mut self, worker: &Worker) -> bool {
// Workers should not park if they have work to do
if self.has_tasks() || self.is_traced {
return false;
}
// When the final worker transitions **out** of searching to parked, it
// must check all the queues one last time in case work materialized
// between the last work scan and transitioning out of searching.
let is_last_searcher = worker.handle.shared.idle.transition_worker_to_parked(
&worker.handle.shared,
worker.index,
self.is_searching,
);
// The worker is no longer searching. Setting this is the local cache
// only.
self.is_searching = false;
if is_last_searcher {
worker.handle.notify_if_work_pending();
}
true
}
/// Returns `true` if the transition happened.
fn transition_from_parked(&mut self, worker: &Worker) -> bool {
// If a task is in the lifo slot/run queue, then we must unpark regardless of
// being notified
if self.has_tasks() {
// When a worker wakes, it should only transition to the "searching"
// state when the wake originates from another worker *or* a new task
// is pushed. We do *not* want the worker to transition to "searching"
// when it wakes when the I/O driver receives new events.
self.is_searching = !worker
.handle
.shared
.idle
.unpark_worker_by_id(&worker.handle.shared, worker.index);
return true;
}
if worker
.handle
.shared
.idle
.is_parked(&worker.handle.shared, worker.index)
{
return false;
}
// When unparked, the worker is in the searching state.
self.is_searching = true;
true
}
/// Runs maintenance work such as checking the pool's state.
fn maintenance(&mut self, worker: &Worker) {
self.stats
.submit(&worker.handle.shared.worker_metrics[worker.index]);
if !self.is_shutdown {
// Check if the scheduler has been shutdown
let synced = worker.handle.shared.synced.lock();
self.is_shutdown = worker.inject().is_closed(&synced.inject);
}
if !self.is_traced {
// Check if the worker should be tracing.
self.is_traced = worker.handle.shared.trace_status.trace_requested();
}
}
/// Signals all tasks to shut down, and waits for them to complete. Must run
/// before we enter the single-threaded phase of shutdown processing.
fn pre_shutdown(&mut self, worker: &Worker) {
// Start from a random inner list
let start = self
.rand
.fastrand_n(worker.handle.shared.owned.get_shard_size() as u32);
// Signal to all tasks to shut down.
worker
.handle
.shared
.owned
.close_and_shutdown_all(start as usize);
self.stats
.submit(&worker.handle.shared.worker_metrics[worker.index]);
}
/// Shuts down the core.
fn shutdown(&mut self, handle: &Handle) {
// Take the core
let mut park = self.park.take().expect("park missing");
// Drain the queue
while self.next_local_task().is_some() {}
park.shutdown(&handle.driver);
}
fn tune_global_queue_interval(&mut self, worker: &Worker) {
let next = self
.stats
.tuned_global_queue_interval(&worker.handle.shared.config);
// Smooth out jitter
if abs_diff(self.global_queue_interval, next) > 2 {
self.global_queue_interval = next;
}
}
}
impl Worker {
/// Returns a reference to the scheduler's injection queue.
fn inject(&self) -> &inject::Shared<Arc<Handle>> {
&self.handle.shared.inject
}
}
// TODO: Move `Handle` impls into handle.rs
impl task::Schedule for Arc<Handle> {
fn release(&self, task: &Task) -> Option<Task> {
self.shared.owned.remove(task)
}
fn schedule(&self, task: Notified) {
self.schedule_task(task, false);
}
fn yield_now(&self, task: Notified) {
self.schedule_task(task, true);
}
}
impl Handle {
pub(super) fn schedule_task(&self, task: Notified, is_yield: bool) {
with_current(|maybe_cx| {
if let Some(cx) = maybe_cx {
// Make sure the task is part of the **current** scheduler.
if self.ptr_eq(&cx.worker.handle) {
// And the current thread still holds a core
if let Some(core) = cx.core.borrow_mut().as_mut() {
self.schedule_local(core, task, is_yield);
return;
}
}
}
// Otherwise, use the inject queue.
self.push_remote_task(task);
self.notify_parked_remote();
});
}
pub(super) fn schedule_option_task_without_yield(&self, task: Option<Notified>) {
if let Some(task) = task {
self.schedule_task(task, false);
}
}
fn schedule_local(&self, core: &mut Core, task: Notified, is_yield: bool) {
core.stats.inc_local_schedule_count();
// Spawning from the worker thread. If scheduling a "yield" then the
// task must always be pushed to the back of the queue, enabling other
// tasks to be executed. If **not** a yield, then there is more
// flexibility and the task may go to the front of the queue.
let should_notify = if is_yield || !core.lifo_enabled {
core.run_queue
.push_back_or_overflow(task, self, &mut core.stats);
true
} else {
// Push to the LIFO slot
let prev = core.lifo_slot.take();
let ret = prev.is_some();
if let Some(prev) = prev {
core.run_queue
.push_back_or_overflow(prev, self, &mut core.stats);
}
core.lifo_slot = Some(task);
ret
};
// Only notify if not currently parked. If `park` is `None`, then the
// scheduling is from a resource driver. As notifications often come in
// batches, the notification is delayed until the park is complete.
if should_notify && core.park.is_some() {
self.notify_parked_local();
}
}
fn next_remote_task(&self) -> Option<Notified> {
if self.shared.inject.is_empty() {
return None;
}
let mut synced = self.shared.synced.lock();
// safety: passing in correct `idle::Synced`
unsafe { self.shared.inject.pop(&mut synced.inject) }
}
fn push_remote_task(&self, task: Notified) {
self.shared.scheduler_metrics.inc_remote_schedule_count();
let mut synced = self.shared.synced.lock();
// safety: passing in correct `idle::Synced`
unsafe {
self.shared.inject.push(&mut synced.inject, task);
}
}
pub(super) fn close(&self) {
if self
.shared
.inject
.close(&mut self.shared.synced.lock().inject)
{
self.notify_all();
}
}
fn notify_parked_local(&self) {
super::counters::inc_num_inc_notify_local();
if let Some(index) = self.shared.idle.worker_to_notify(&self.shared) {
super::counters::inc_num_unparks_local();
self.shared.remotes[index].unpark.unpark(&self.driver);
}
}
fn notify_parked_remote(&self) {
if let Some(index) = self.shared.idle.worker_to_notify(&self.shared) {
self.shared.remotes[index].unpark.unpark(&self.driver);
}
}
pub(super) fn notify_all(&self) {
for remote in &self.shared.remotes[..] {
remote.unpark.unpark(&self.driver);
}
}
fn notify_if_work_pending(&self) {
for remote in &self.shared.remotes[..] {
if !remote.steal.is_empty() {
self.notify_parked_local();
return;
}
}
if !self.shared.inject.is_empty() {
self.notify_parked_local();
}
}
fn transition_worker_from_searching(&self) {
if self.shared.idle.transition_worker_from_searching() {
// We are the final searching worker. Because work was found, we
// need to notify another worker.
self.notify_parked_local();
}
}
/// Signals that a worker has observed the shutdown signal and has replaced
/// its core back into its handle.
///
/// If all workers have reached this point, the final cleanup is performed.
fn shutdown_core(&self, core: Box<Core>) {
let mut cores = self.shared.shutdown_cores.lock();
cores.push(core);
if cores.len() != self.shared.remotes.len() {
return;
}
debug_assert!(self.shared.owned.is_empty());
for mut core in cores.drain(..) {
core.shutdown(self);
}
// Drain the injection queue
//
// We already shut down every task, so we can simply drop the tasks.
while let Some(task) = self.next_remote_task() {
drop(task);
}
}
fn ptr_eq(&self, other: &Handle) -> bool {
std::ptr::eq(self, other)
}
}
impl Overflow<Arc<Handle>> for Handle {
fn push(&self, task: task::Notified<Arc<Handle>>) {
self.push_remote_task(task);
}
fn push_batch<I>(&self, iter: I)
where
I: Iterator<Item = task::Notified<Arc<Handle>>>,
{
unsafe {
self.shared.inject.push_batch(self, iter);
}
}
}
pub(crate) struct InjectGuard<'a> {
lock: crate::loom::sync::MutexGuard<'a, Synced>,
}
impl<'a> AsMut<inject::Synced> for InjectGuard<'a> {
fn as_mut(&mut self) -> &mut inject::Synced {
&mut self.lock.inject
}
}
impl<'a> Lock<inject::Synced> for &'a Handle {
type Handle = InjectGuard<'a>;
fn lock(self) -> Self::Handle {
InjectGuard {
lock: self.shared.synced.lock(),
}
}
}
#[track_caller]
fn with_current<R>(f: impl FnOnce(Option<&Context>) -> R) -> R {
use scheduler::Context::MultiThread;
context::with_scheduler(|ctx| match ctx {
Some(MultiThread(ctx)) => f(Some(ctx)),
_ => f(None),
})
}
// `u32::abs_diff` is not available on Tokio's MSRV.
fn abs_diff(a: u32, b: u32) -> u32 {
if a > b {
a - b
} else {
b - a
}
}