1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

use crate::builder::{ArrayBuilder, PrimitiveBuilder};
use crate::types::ArrowDictionaryKeyType;
use crate::{Array, ArrayRef, ArrowPrimitiveType, DictionaryArray};
use arrow_buffer::{ArrowNativeType, ToByteSlice};
use arrow_schema::{ArrowError, DataType};
use std::any::Any;
use std::collections::hash_map::Entry;
use std::collections::HashMap;
use std::sync::Arc;

/// Wraps a type implementing `ToByteSlice` implementing `Hash` and `Eq` for it
///
/// This is necessary to handle types such as f32, which don't natively implement these
#[derive(Debug)]
struct Value<T>(T);

impl<T: ToByteSlice> std::hash::Hash for Value<T> {
    fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
        self.0.to_byte_slice().hash(state)
    }
}

impl<T: ToByteSlice> PartialEq for Value<T> {
    fn eq(&self, other: &Self) -> bool {
        self.0.to_byte_slice().eq(other.0.to_byte_slice())
    }
}

impl<T: ToByteSlice> Eq for Value<T> {}

/// Builder for [`DictionaryArray`] of [`PrimitiveArray`](crate::array::PrimitiveArray)
///
/// # Example:
///
/// ```
///
/// # use arrow_array::builder::PrimitiveDictionaryBuilder;
/// # use arrow_array::types::{UInt32Type, UInt8Type};
/// # use arrow_array::{Array, UInt32Array, UInt8Array};
///
/// let mut builder = PrimitiveDictionaryBuilder::<UInt8Type, UInt32Type>::new();
///  builder.append(12345678).unwrap();
///  builder.append_null();
///  builder.append(22345678).unwrap();
///  let array = builder.finish();
///
///  assert_eq!(
///      array.keys(),
///      &UInt8Array::from(vec![Some(0), None, Some(1)])
///  );
///
///  // Values are polymorphic and so require a downcast.
///  let av = array.values();
///  let ava: &UInt32Array = av.as_any().downcast_ref::<UInt32Array>().unwrap();
///  let avs: &[u32] = ava.values();
///
///  assert!(!array.is_null(0));
///  assert!(array.is_null(1));
///  assert!(!array.is_null(2));
///
///  assert_eq!(avs, &[12345678, 22345678]);
/// ```
#[derive(Debug)]
pub struct PrimitiveDictionaryBuilder<K, V>
where
    K: ArrowPrimitiveType,
    V: ArrowPrimitiveType,
{
    keys_builder: PrimitiveBuilder<K>,
    values_builder: PrimitiveBuilder<V>,
    map: HashMap<Value<V::Native>, usize>,
}

impl<K, V> Default for PrimitiveDictionaryBuilder<K, V>
where
    K: ArrowPrimitiveType,
    V: ArrowPrimitiveType,
{
    fn default() -> Self {
        Self::new()
    }
}

impl<K, V> PrimitiveDictionaryBuilder<K, V>
where
    K: ArrowPrimitiveType,
    V: ArrowPrimitiveType,
{
    /// Creates a new `PrimitiveDictionaryBuilder`.
    pub fn new() -> Self {
        Self {
            keys_builder: PrimitiveBuilder::new(),
            values_builder: PrimitiveBuilder::new(),
            map: HashMap::new(),
        }
    }

    /// Creates a new `PrimitiveDictionaryBuilder` from the provided keys and values builders.
    ///
    /// # Panics
    ///
    /// This method panics if `keys_builder` or `values_builder` is not empty.
    pub fn new_from_empty_builders(
        keys_builder: PrimitiveBuilder<K>,
        values_builder: PrimitiveBuilder<V>,
    ) -> Self {
        assert!(
            keys_builder.is_empty() && values_builder.is_empty(),
            "keys and values builders must be empty"
        );
        Self {
            keys_builder,
            values_builder,
            map: HashMap::new(),
        }
    }

    /// Creates a new `PrimitiveDictionaryBuilder` from existing `PrimitiveBuilder`s of keys and values.
    ///
    /// # Safety
    ///
    /// caller must ensure that the passed in builders are valid for DictionaryArray.
    pub unsafe fn new_from_builders(
        keys_builder: PrimitiveBuilder<K>,
        values_builder: PrimitiveBuilder<V>,
    ) -> Self {
        let keys = keys_builder.values_slice();
        let values = values_builder.values_slice();
        let mut map = HashMap::with_capacity(values.len());

        keys.iter().zip(values.iter()).for_each(|(key, value)| {
            map.insert(Value(*value), K::Native::to_usize(*key).unwrap());
        });

        Self {
            keys_builder,
            values_builder,
            map,
        }
    }

    /// Creates a new `PrimitiveDictionaryBuilder` with the provided capacities
    ///
    /// `keys_capacity`: the number of keys, i.e. length of array to build
    /// `values_capacity`: the number of distinct dictionary values, i.e. size of dictionary
    pub fn with_capacity(keys_capacity: usize, values_capacity: usize) -> Self {
        Self {
            keys_builder: PrimitiveBuilder::with_capacity(keys_capacity),
            values_builder: PrimitiveBuilder::with_capacity(values_capacity),
            map: HashMap::with_capacity(values_capacity),
        }
    }
}

impl<K, V> ArrayBuilder for PrimitiveDictionaryBuilder<K, V>
where
    K: ArrowDictionaryKeyType,
    V: ArrowPrimitiveType,
{
    /// Returns the builder as an non-mutable `Any` reference.
    fn as_any(&self) -> &dyn Any {
        self
    }

    /// Returns the builder as an mutable `Any` reference.
    fn as_any_mut(&mut self) -> &mut dyn Any {
        self
    }

    /// Returns the boxed builder as a box of `Any`.
    fn into_box_any(self: Box<Self>) -> Box<dyn Any> {
        self
    }

    /// Returns the number of array slots in the builder
    fn len(&self) -> usize {
        self.keys_builder.len()
    }

    /// Builds the array and reset this builder.
    fn finish(&mut self) -> ArrayRef {
        Arc::new(self.finish())
    }

    /// Builds the array without resetting the builder.
    fn finish_cloned(&self) -> ArrayRef {
        Arc::new(self.finish_cloned())
    }
}

impl<K, V> PrimitiveDictionaryBuilder<K, V>
where
    K: ArrowDictionaryKeyType,
    V: ArrowPrimitiveType,
{
    /// Append a primitive value to the array. Return an existing index
    /// if already present in the values array or a new index if the
    /// value is appended to the values array.
    #[inline]
    pub fn append(&mut self, value: V::Native) -> Result<K::Native, ArrowError> {
        let key = match self.map.entry(Value(value)) {
            Entry::Vacant(vacant) => {
                // Append new value.
                let key = self.values_builder.len();
                self.values_builder.append_value(value);
                vacant.insert(key);
                K::Native::from_usize(key).ok_or(ArrowError::DictionaryKeyOverflowError)?
            }
            Entry::Occupied(o) => K::Native::usize_as(*o.get()),
        };

        self.keys_builder.append_value(key);
        Ok(key)
    }

    /// Infallibly append a value to this builder
    ///
    /// # Panics
    ///
    /// Panics if the resulting length of the dictionary values array would exceed `T::Native::MAX`
    #[inline]
    pub fn append_value(&mut self, value: V::Native) {
        self.append(value).expect("dictionary key overflow");
    }

    /// Appends a null slot into the builder
    #[inline]
    pub fn append_null(&mut self) {
        self.keys_builder.append_null()
    }

    /// Append an `Option` value into the builder
    ///
    /// # Panics
    ///
    /// Panics if the resulting length of the dictionary values array would exceed `T::Native::MAX`
    #[inline]
    pub fn append_option(&mut self, value: Option<V::Native>) {
        match value {
            None => self.append_null(),
            Some(v) => self.append_value(v),
        };
    }

    /// Builds the `DictionaryArray` and reset this builder.
    pub fn finish(&mut self) -> DictionaryArray<K> {
        self.map.clear();
        let values = self.values_builder.finish();
        let keys = self.keys_builder.finish();

        let data_type =
            DataType::Dictionary(Box::new(K::DATA_TYPE), Box::new(values.data_type().clone()));

        let builder = keys
            .into_data()
            .into_builder()
            .data_type(data_type)
            .child_data(vec![values.into_data()]);

        DictionaryArray::from(unsafe { builder.build_unchecked() })
    }

    /// Builds the `DictionaryArray` without resetting the builder.
    pub fn finish_cloned(&self) -> DictionaryArray<K> {
        let values = self.values_builder.finish_cloned();
        let keys = self.keys_builder.finish_cloned();

        let data_type = DataType::Dictionary(Box::new(K::DATA_TYPE), Box::new(V::DATA_TYPE));

        let builder = keys
            .into_data()
            .into_builder()
            .data_type(data_type)
            .child_data(vec![values.into_data()]);

        DictionaryArray::from(unsafe { builder.build_unchecked() })
    }

    /// Returns the current dictionary values buffer as a slice
    pub fn values_slice(&self) -> &[V::Native] {
        self.values_builder.values_slice()
    }

    /// Returns the current dictionary values buffer as a mutable slice
    pub fn values_slice_mut(&mut self) -> &mut [V::Native] {
        self.values_builder.values_slice_mut()
    }
}

impl<K: ArrowDictionaryKeyType, P: ArrowPrimitiveType> Extend<Option<P::Native>>
    for PrimitiveDictionaryBuilder<K, P>
{
    #[inline]
    fn extend<T: IntoIterator<Item = Option<P::Native>>>(&mut self, iter: T) {
        for v in iter {
            self.append_option(v)
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    use crate::array::UInt32Array;
    use crate::array::UInt8Array;
    use crate::builder::Decimal128Builder;
    use crate::types::{Decimal128Type, Int32Type, UInt32Type, UInt8Type};

    #[test]
    fn test_primitive_dictionary_builder() {
        let mut builder = PrimitiveDictionaryBuilder::<UInt8Type, UInt32Type>::with_capacity(3, 2);
        builder.append(12345678).unwrap();
        builder.append_null();
        builder.append(22345678).unwrap();
        let array = builder.finish();

        assert_eq!(
            array.keys(),
            &UInt8Array::from(vec![Some(0), None, Some(1)])
        );

        // Values are polymorphic and so require a downcast.
        let av = array.values();
        let ava: &UInt32Array = av.as_any().downcast_ref::<UInt32Array>().unwrap();
        let avs: &[u32] = ava.values();

        assert!(!array.is_null(0));
        assert!(array.is_null(1));
        assert!(!array.is_null(2));

        assert_eq!(avs, &[12345678, 22345678]);
    }

    #[test]
    fn test_extend() {
        let mut builder = PrimitiveDictionaryBuilder::<Int32Type, Int32Type>::new();
        builder.extend([1, 2, 3, 1, 2, 3, 1, 2, 3].into_iter().map(Some));
        builder.extend([4, 5, 1, 3, 1].into_iter().map(Some));
        let dict = builder.finish();
        assert_eq!(
            dict.keys().values(),
            &[0, 1, 2, 0, 1, 2, 0, 1, 2, 3, 4, 0, 2, 0]
        );
        assert_eq!(dict.values().len(), 5);
    }

    #[test]
    #[should_panic(expected = "DictionaryKeyOverflowError")]
    fn test_primitive_dictionary_overflow() {
        let mut builder =
            PrimitiveDictionaryBuilder::<UInt8Type, UInt32Type>::with_capacity(257, 257);
        // 256 unique keys.
        for i in 0..256 {
            builder.append(i + 1000).unwrap();
        }
        // Special error if the key overflows (256th entry)
        builder.append(1257).unwrap();
    }

    #[test]
    fn test_primitive_dictionary_with_builders() {
        let keys_builder = PrimitiveBuilder::<Int32Type>::new();
        let values_builder = Decimal128Builder::new().with_data_type(DataType::Decimal128(1, 2));
        let mut builder =
            PrimitiveDictionaryBuilder::<Int32Type, Decimal128Type>::new_from_empty_builders(
                keys_builder,
                values_builder,
            );
        let dict_array = builder.finish();
        assert_eq!(dict_array.value_type(), DataType::Decimal128(1, 2));
        assert_eq!(
            dict_array.data_type(),
            &DataType::Dictionary(
                Box::new(DataType::Int32),
                Box::new(DataType::Decimal128(1, 2)),
            )
        );
    }
}