1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! Optimizer implementation for `SELECT` statements.
use std::fmt::Debug;
use std::sync::Arc;
use std::time::{Duration, Instant};
use mz_compute_types::dataflows::IndexDesc;
use mz_compute_types::plan::Plan;
use mz_compute_types::ComputeInstanceId;
use mz_expr::{MirRelationExpr, MirScalarExpr, OptimizedMirRelationExpr, RowSetFinishing};
use mz_ore::soft_assert_or_log;
use mz_repr::explain::trace_plan;
use mz_repr::{GlobalId, RelationType, Timestamp};
use mz_sql::optimizer_metrics::OptimizerMetrics;
use mz_sql::plan::HirRelationExpr;
use mz_sql::session::metadata::SessionMetadata;
use mz_transform::dataflow::DataflowMetainfo;
use mz_transform::normalize_lets::normalize_lets;
use mz_transform::typecheck::{empty_context, SharedContext as TypecheckContext};
use mz_transform::{StatisticsOracle, TransformCtx};
use timely::progress::Antichain;
use tracing::debug_span;
use crate::catalog::Catalog;
use crate::coord::peek::{create_fast_path_plan, PeekDataflowPlan, PeekPlan};
use crate::optimize::dataflows::{
prep_relation_expr, prep_scalar_expr, ComputeInstanceSnapshot, DataflowBuilder, EvalTime,
ExprPrepStyle,
};
use crate::optimize::{
optimize_mir_local, trace_plan, MirDataflowDescription, Optimize, OptimizeMode,
OptimizerConfig, OptimizerError,
};
use crate::TimestampContext;
pub struct Optimizer {
/// A typechecking context to use throughout the optimizer pipeline.
typecheck_ctx: TypecheckContext,
/// A snapshot of the catalog state.
catalog: Arc<Catalog>,
/// A snapshot of the cluster that will run the dataflows.
compute_instance: ComputeInstanceSnapshot,
/// Optional row-set finishing to be applied to the final result.
finishing: RowSetFinishing,
/// A transient GlobalId to be used when constructing the dataflow.
select_id: GlobalId,
/// A transient GlobalId to be used when constructing a PeekPlan.
index_id: GlobalId,
/// Optimizer config.
config: OptimizerConfig,
/// Optimizer metrics.
metrics: OptimizerMetrics,
/// The time spent performing optimization so far.
duration: Duration,
}
impl Optimizer {
pub fn new(
catalog: Arc<Catalog>,
compute_instance: ComputeInstanceSnapshot,
finishing: RowSetFinishing,
select_id: GlobalId,
index_id: GlobalId,
config: OptimizerConfig,
metrics: OptimizerMetrics,
) -> Self {
Self {
typecheck_ctx: empty_context(),
catalog,
compute_instance,
finishing,
select_id,
index_id,
config,
metrics,
duration: Default::default(),
}
}
pub fn cluster_id(&self) -> ComputeInstanceId {
self.compute_instance.instance_id()
}
pub fn finishing(&self) -> &RowSetFinishing {
&self.finishing
}
pub fn select_id(&self) -> GlobalId {
self.select_id
}
pub fn index_id(&self) -> GlobalId {
self.index_id
}
pub fn config(&self) -> &OptimizerConfig {
&self.config
}
pub fn metrics(&self) -> &OptimizerMetrics {
&self.metrics
}
pub fn duration(&self) -> Duration {
self.duration
}
}
// A bogey `Debug` implementation that hides fields. This is needed to make the
// `event!` call in `sequence_peek_stage` not emit a lot of data.
//
// For now, we skip almost all fields, but we might revisit that bit if it turns
// out that we really need those for debugging purposes.
impl Debug for Optimizer {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("OptimizePeek")
.field("config", &self.config)
.finish_non_exhaustive()
}
}
/// Marker type for [`LocalMirPlan`] representing an optimization result without
/// context.
pub struct Unresolved;
/// The (sealed intermediate) result after HIR ⇒ MIR lowering and decorrelation
/// and local MIR optimization.
#[derive(Clone)]
pub struct LocalMirPlan<T = Unresolved> {
expr: MirRelationExpr,
df_meta: DataflowMetainfo,
context: T,
}
/// Marker type for [`LocalMirPlan`] structs representing an optimization result
/// with attached environment context required for the next optimization stage.
pub struct Resolved<'s> {
timestamp_ctx: TimestampContext<Timestamp>,
stats: Box<dyn StatisticsOracle>,
session: &'s dyn SessionMetadata,
}
/// The (final) result after
///
/// 1. embedding a [`LocalMirPlan`] into a `DataflowDescription`,
/// 2. transitively inlining referenced views,
/// 3. timestamp resolution,
/// 4. optimizing the resulting `DataflowDescription` with `MIR` plans.
/// 5. MIR ⇒ LIR lowering, and
/// 6. optimizing the resulting `DataflowDescription` with `LIR` plans.
#[derive(Debug)]
pub struct GlobalLirPlan {
peek_plan: PeekPlan,
df_meta: DataflowMetainfo,
typ: RelationType,
}
impl Optimize<HirRelationExpr> for Optimizer {
type To = LocalMirPlan;
fn optimize(&mut self, expr: HirRelationExpr) -> Result<Self::To, OptimizerError> {
let time = Instant::now();
// Trace the pipeline input under `optimize/raw`.
trace_plan!(at: "raw", &expr);
// HIR ⇒ MIR lowering and decorrelation
let expr = expr.lower(&self.config, Some(&self.metrics))?;
// MIR ⇒ MIR optimization (local)
let mut df_meta = DataflowMetainfo::default();
let mut transform_ctx = TransformCtx::local(
&self.config.features,
&self.typecheck_ctx,
&mut df_meta,
Some(&self.metrics),
);
let expr = optimize_mir_local(expr, &mut transform_ctx)?.into_inner();
self.duration += time.elapsed();
// Return the (sealed) plan at the end of this optimization step.
Ok(LocalMirPlan {
expr,
df_meta,
context: Unresolved,
})
}
}
impl LocalMirPlan<Unresolved> {
/// Produces the [`LocalMirPlan`] with [`Resolved`] contextual information
/// required for the next stage.
pub fn resolve(
self,
timestamp_ctx: TimestampContext<Timestamp>,
session: &dyn SessionMetadata,
stats: Box<dyn StatisticsOracle>,
) -> LocalMirPlan<Resolved> {
LocalMirPlan {
expr: self.expr,
df_meta: self.df_meta,
context: Resolved {
timestamp_ctx,
session,
stats,
},
}
}
}
impl<'s> Optimize<LocalMirPlan<Resolved<'s>>> for Optimizer {
type To = GlobalLirPlan;
fn optimize(&mut self, plan: LocalMirPlan<Resolved<'s>>) -> Result<Self::To, OptimizerError> {
let time = Instant::now();
let LocalMirPlan {
expr,
mut df_meta,
context:
Resolved {
timestamp_ctx,
stats,
session,
},
} = plan;
let expr = OptimizedMirRelationExpr(expr);
// We create a dataflow and optimize it, to determine if we can avoid building it.
// This can happen if the result optimizes to a constant, or to a `Get` expression
// around a maintained arrangement.
let typ = expr.typ();
let key = typ
.default_key()
.iter()
.map(|k| MirScalarExpr::Column(*k))
.collect();
// The assembled dataflow contains a view and an index of that view.
let mut df_builder = {
let catalog = self.catalog.state();
let compute = self.compute_instance.clone();
DataflowBuilder::new(catalog, compute).with_config(&self.config)
};
let debug_name = format!("oneshot-select-{}", self.select_id);
let mut df_desc = MirDataflowDescription::new(debug_name.to_string());
df_builder.import_view_into_dataflow(
&self.select_id,
&expr,
&mut df_desc,
&self.config.features,
)?;
df_builder.maybe_reoptimize_imported_views(&mut df_desc, &self.config)?;
// Resolve all unmaterializable function calls except mz_now(), because
// we don't yet have a timestamp.
let style = ExprPrepStyle::OneShot {
logical_time: EvalTime::Deferred,
session,
catalog_state: self.catalog.state(),
};
df_desc.visit_children(
|r| prep_relation_expr(r, style),
|s| prep_scalar_expr(s, style),
)?;
// TODO: Instead of conditioning here we should really
// reconsider how to render multi-plan peek dataflows. The main
// difficulty here is rendering the optional finishing bit.
if self.config.mode != OptimizeMode::Explain {
df_desc.export_index(
self.index_id,
IndexDesc {
on_id: self.select_id,
key,
},
typ.clone(),
);
}
// Set the `as_of` and `until` timestamps for the dataflow.
df_desc.set_as_of(timestamp_ctx.antichain());
// Use the opportunity to name an `until` frontier that will prevent
// work we needn't perform. By default, `until` will be
// `Antichain::new()`, which prevents no updates and is safe.
//
// If `timestamp_ctx.antichain()` is empty, `timestamp_ctx.timestamp()`
// will return `None` and we use the default (empty) `until`. Otherwise,
// we expect to be able to set `until = as_of + 1` without an overflow, unless
// we query at the maximum timestamp. In this case, the default empty `until`
// is the correct choice.
if let Some(until) = timestamp_ctx
.timestamp()
.and_then(Timestamp::try_step_forward)
{
df_desc.until = Antichain::from_elem(until);
}
// Construct TransformCtx for global optimization.
let mut transform_ctx = TransformCtx::global(
&df_builder,
&*stats,
&self.config.features,
&self.typecheck_ctx,
&mut df_meta,
Some(&self.metrics),
);
// Let's already try creating a fast path plan. If successful, we don't need to run the
// whole optimizer pipeline, but just a tiny subset of it. (But we'll need to run
// `create_fast_path_plan` later again, because, e.g., running `LiteralConstraints` is still
// ahead of us.)
let use_fast_path_optimizer = match create_fast_path_plan(
&mut df_desc,
self.select_id,
Some(&self.finishing),
self.config.features.persist_fast_path_limit,
) {
Ok(maybe_fast_path_plan) => maybe_fast_path_plan.is_some(),
Err(OptimizerError::UnsafeMfpPlan) => {
// This is expected, in that `create_fast_path_plan` can choke on `mz_now`, which we
// haven't removed yet.
false
}
Err(e) => {
return Err(e);
}
};
// Run global optimization.
mz_transform::optimize_dataflow(&mut df_desc, &mut transform_ctx, use_fast_path_optimizer)?;
if self.config.mode == OptimizeMode::Explain {
// Collect the list of indexes used by the dataflow at this point.
trace_plan!(at: "global", &df_meta.used_indexes(&df_desc));
}
// Get the single timestamp representing the `as_of` time.
let as_of = df_desc
.as_of
.clone()
.expect("as_of antichain")
.into_option()
.expect("unique as_of element");
// Resolve all unmaterializable function calls including mz_now().
let style = ExprPrepStyle::OneShot {
logical_time: EvalTime::Time(as_of),
session,
catalog_state: self.catalog.state(),
};
df_desc.visit_children(
|r| prep_relation_expr(r, style),
|s| prep_scalar_expr(s, style),
)?;
// TODO: use the following code once we can be sure that the
// index_exports always exist.
//
// let typ = self.df_desc
// .index_exports
// .first_key_value()
// .map(|(_key, (_desc, typ))| typ.clone())
// .expect("GlobalMirPlan type");
let peek_plan = match create_fast_path_plan(
&mut df_desc,
self.select_id,
Some(&self.finishing),
self.config.features.persist_fast_path_limit,
)? {
Some(plan) if !self.config.no_fast_path => {
if self.config.mode == OptimizeMode::Explain {
// Trace the `used_indexes` for the FastPathPlan.
debug_span!(target: "optimizer", "fast_path").in_scope(|| {
// Fast path plans come with an updated finishing.
let finishing = if !self.finishing.is_trivial(typ.arity()) {
Some(&self.finishing)
} else {
None
};
trace_plan(&plan.used_indexes(finishing));
});
}
// Trace the FastPathPlan.
trace_plan!(at: "fast_path", &plan);
// Trace the pipeline output under `optimize`.
trace_plan(&plan);
// Build the PeekPlan
PeekPlan::FastPath(plan)
}
_ => {
soft_assert_or_log!(
!use_fast_path_optimizer || self.config.no_fast_path,
"The fast_path_optimizer shouldn't make a fast path plan slow path."
);
// Ensure all expressions are normalized before finalizing.
for build in df_desc.objects_to_build.iter_mut() {
normalize_lets(&mut build.plan.0, &self.config.features)?
}
// Finalize the dataflow. This includes:
// - MIR ⇒ LIR lowering
// - LIR ⇒ LIR transforms
let df_desc = Plan::finalize_dataflow(df_desc, &self.config.features)?;
// Trace the pipeline output under `optimize`.
trace_plan(&df_desc);
// Build the PeekPlan
PeekPlan::SlowPath(PeekDataflowPlan::new(df_desc, self.index_id(), &typ))
}
};
self.duration += time.elapsed();
let label = match &peek_plan {
PeekPlan::FastPath(_) => "peek:fast_path",
PeekPlan::SlowPath(_) => "peek:slow_path",
};
self.metrics
.observe_e2e_optimization_time(label, self.duration);
Ok(GlobalLirPlan {
peek_plan,
df_meta,
typ,
})
}
}
impl GlobalLirPlan {
/// Unwraps the parts of the final result of the optimization pipeline.
pub fn unapply(self) -> (PeekPlan, DataflowMetainfo, RelationType) {
(self.peek_plan, self.df_meta, self.typ)
}
}