differential_dataflow/collection.rs
1//! Types and traits associated with collections of data.
2//!
3//! The `Collection` type is differential dataflow's core abstraction for an updatable pile of data.
4//!
5//! Most differential dataflow programs are "collection-oriented", in the sense that they transform
6//! one collection into another, using operators defined on collections. This contrasts with a more
7//! imperative programming style, in which one might iterate through the contents of a collection
8//! manually. The higher-level of programming allows differential dataflow to provide efficient
9//! implementations, and to support efficient incremental updates to the collections.
10
11use std::hash::Hash;
12
13use timely::Container;
14use timely::Data;
15use timely::progress::Timestamp;
16use timely::order::Product;
17use timely::dataflow::scopes::{Child, child::Iterative};
18use timely::dataflow::Scope;
19use timely::dataflow::operators::*;
20use timely::dataflow::StreamCore;
21
22use crate::difference::{Semigroup, Abelian, Multiply};
23use crate::lattice::Lattice;
24use crate::hashable::Hashable;
25
26/// A mutable collection of values of type `D`
27///
28/// The `Collection` type is the core abstraction in differential dataflow programs. As you write your
29/// differential dataflow computation, you write as if the collection is a static dataset to which you
30/// apply functional transformations, creating new collections. Once your computation is written, you
31/// are able to mutate the collection (by inserting and removing elements); differential dataflow will
32/// propagate changes through your functional computation and report the corresponding changes to the
33/// output collections.
34///
35/// Each collection has three generic parameters. The parameter `G` is for the scope in which the
36/// collection exists; as you write more complicated programs you may wish to introduce nested scopes
37/// (e.g. for iteration) and this parameter tracks the scope (for timely dataflow's benefit). The `D`
38/// parameter is the type of data in your collection, for example `String`, or `(u32, Vec<Option<()>>)`.
39/// The `R` parameter represents the types of changes that the data undergo, and is most commonly (and
40/// defaults to) `isize`, representing changes to the occurrence count of each record.
41#[derive(Clone)]
42pub struct Collection<G: Scope, D, R = isize, C = Vec<(D, <G as ScopeParent>::Timestamp, R)>> {
43 /// The underlying timely dataflow stream.
44 ///
45 /// This field is exposed to support direct timely dataflow manipulation when required, but it is
46 /// not intended to be the idiomatic way to work with the collection.
47 ///
48 /// The timestamp in the data is required to always be at least the timestamp _of_ the data, in
49 /// the timely-dataflow sense. If this invariant is not upheld, differential operators may behave
50 /// unexpectedly.
51 pub inner: timely::dataflow::StreamCore<G, C>,
52 /// Phantom data for unreferenced `D` and `R` types.
53 phantom: std::marker::PhantomData<(D, R)>,
54}
55
56impl<G: Scope, D, R, C> Collection<G, D, R, C> {
57 /// Creates a new Collection from a timely dataflow stream.
58 ///
59 /// This method seems to be rarely used, with the `as_collection` method on streams being a more
60 /// idiomatic approach to convert timely streams to collections. Also, the `input::Input` trait
61 /// provides a `new_collection` method which will create a new collection for you without exposing
62 /// the underlying timely stream at all.
63 ///
64 /// This stream should satisfy the timestamp invariant as documented on [Collection]; this
65 /// method does not check it.
66 pub fn new(stream: StreamCore<G, C>) -> Collection<G, D, R, C> {
67 Collection { inner: stream, phantom: std::marker::PhantomData }
68 }
69}
70impl<G: Scope, D, R, C: Container + Clone + 'static> Collection<G, D, R, C> {
71 /// Creates a new collection accumulating the contents of the two collections.
72 ///
73 /// Despite the name, differential dataflow collections are unordered. This method is so named because the
74 /// implementation is the concatenation of the stream of updates, but it corresponds to the addition of the
75 /// two collections.
76 ///
77 /// # Examples
78 ///
79 /// ```
80 /// use differential_dataflow::input::Input;
81 ///
82 /// ::timely::example(|scope| {
83 ///
84 /// let data = scope.new_collection_from(1 .. 10).1;
85 ///
86 /// let odds = data.filter(|x| x % 2 == 1);
87 /// let evens = data.filter(|x| x % 2 == 0);
88 ///
89 /// odds.concat(&evens)
90 /// .assert_eq(&data);
91 /// });
92 /// ```
93 pub fn concat(&self, other: &Self) -> Self {
94 self.inner
95 .concat(&other.inner)
96 .as_collection()
97 }
98 /// Creates a new collection accumulating the contents of the two collections.
99 ///
100 /// Despite the name, differential dataflow collections are unordered. This method is so named because the
101 /// implementation is the concatenation of the stream of updates, but it corresponds to the addition of the
102 /// two collections.
103 ///
104 /// # Examples
105 ///
106 /// ```
107 /// use differential_dataflow::input::Input;
108 ///
109 /// ::timely::example(|scope| {
110 ///
111 /// let data = scope.new_collection_from(1 .. 10).1;
112 ///
113 /// let odds = data.filter(|x| x % 2 == 1);
114 /// let evens = data.filter(|x| x % 2 == 0);
115 ///
116 /// odds.concatenate(Some(evens))
117 /// .assert_eq(&data);
118 /// });
119 /// ```
120 pub fn concatenate<I>(&self, sources: I) -> Self
121 where
122 I: IntoIterator<Item=Self>
123 {
124 self.inner
125 .concatenate(sources.into_iter().map(|x| x.inner))
126 .as_collection()
127 }
128 // Brings a Collection into a nested region.
129 ///
130 /// This method is a specialization of `enter` to the case where the nested scope is a region.
131 /// It removes the need for an operator that adjusts the timestamp.
132 pub fn enter_region<'a>(&self, child: &Child<'a, G, <G as ScopeParent>::Timestamp>) -> Collection<Child<'a, G, <G as ScopeParent>::Timestamp>, D, R, C> {
133 self.inner
134 .enter(child)
135 .as_collection()
136 }
137 /// Applies a supplied function to each batch of updates.
138 ///
139 /// This method is analogous to `inspect`, but operates on batches and reveals the timestamp of the
140 /// timely dataflow capability associated with the batch of updates. The observed batching depends
141 /// on how the system executes, and may vary run to run.
142 ///
143 /// # Examples
144 ///
145 /// ```
146 /// use differential_dataflow::input::Input;
147 ///
148 /// ::timely::example(|scope| {
149 /// scope.new_collection_from(1 .. 10).1
150 /// .map_in_place(|x| *x *= 2)
151 /// .filter(|x| x % 2 == 1)
152 /// .inspect_container(|event| println!("event: {:?}", event));
153 /// });
154 /// ```
155 pub fn inspect_container<F>(&self, func: F) -> Self
156 where F: FnMut(Result<(&G::Timestamp, &C), &[G::Timestamp]>)+'static {
157 self.inner
158 .inspect_container(func)
159 .as_collection()
160 }
161 /// Attaches a timely dataflow probe to the output of a Collection.
162 ///
163 /// This probe is used to determine when the state of the Collection has stabilized and can
164 /// be read out.
165 pub fn probe(&self) -> probe::Handle<G::Timestamp> {
166 self.inner
167 .probe()
168 }
169 /// Attaches a timely dataflow probe to the output of a Collection.
170 ///
171 /// This probe is used to determine when the state of the Collection has stabilized and all updates observed.
172 /// In addition, a probe is also often use to limit the number of rounds of input in flight at any moment; a
173 /// computation can wait until the probe has caught up to the input before introducing more rounds of data, to
174 /// avoid swamping the system.
175 pub fn probe_with(&self, handle: &probe::Handle<G::Timestamp>) -> Self {
176 Self::new(self.inner.probe_with(handle))
177 }
178 /// The scope containing the underlying timely dataflow stream.
179 pub fn scope(&self) -> G {
180 self.inner.scope()
181 }
182
183 /// Creates a new collection whose counts are the negation of those in the input.
184 ///
185 /// This method is most commonly used with `concat` to get those element in one collection but not another.
186 /// However, differential dataflow computations are still defined for all values of the difference type `R`,
187 /// including negative counts.
188 ///
189 /// # Examples
190 ///
191 /// ```
192 /// use differential_dataflow::input::Input;
193 ///
194 /// ::timely::example(|scope| {
195 ///
196 /// let data = scope.new_collection_from(1 .. 10).1;
197 ///
198 /// let odds = data.filter(|x| x % 2 == 1);
199 /// let evens = data.filter(|x| x % 2 == 0);
200 ///
201 /// odds.negate()
202 /// .concat(&data)
203 /// .assert_eq(&evens);
204 /// });
205 /// ```
206 // TODO: Removing this function is possible, but breaks existing callers of `negate` who expect
207 // an inherent method on `Collection`.
208 pub fn negate(&self) -> Collection<G, D, R, C> where StreamCore<G, C>: crate::operators::Negate<G, C> {
209 crate::operators::Negate::negate(&self.inner).as_collection()
210 }
211}
212
213impl<G: Scope, D: Clone+'static, R: Clone+'static> Collection<G, D, R> {
214 /// Creates a new collection by applying the supplied function to each input element.
215 ///
216 /// # Examples
217 ///
218 /// ```
219 /// use differential_dataflow::input::Input;
220 ///
221 /// ::timely::example(|scope| {
222 /// scope.new_collection_from(1 .. 10).1
223 /// .map(|x| x * 2)
224 /// .filter(|x| x % 2 == 1)
225 /// .assert_empty();
226 /// });
227 /// ```
228 pub fn map<D2, L>(&self, mut logic: L) -> Collection<G, D2, R>
229 where D2: Data,
230 L: FnMut(D) -> D2 + 'static
231 {
232 self.inner
233 .map(move |(data, time, delta)| (logic(data), time, delta))
234 .as_collection()
235 }
236 /// Creates a new collection by applying the supplied function to each input element.
237 ///
238 /// Although the name suggests in-place mutation, this function does not change the source collection,
239 /// but rather re-uses the underlying allocations in its implementation. The method is semantically
240 /// equivalent to `map`, but can be more efficient.
241 ///
242 /// # Examples
243 ///
244 /// ```
245 /// use differential_dataflow::input::Input;
246 ///
247 /// ::timely::example(|scope| {
248 /// scope.new_collection_from(1 .. 10).1
249 /// .map_in_place(|x| *x *= 2)
250 /// .filter(|x| x % 2 == 1)
251 /// .assert_empty();
252 /// });
253 /// ```
254 pub fn map_in_place<L>(&self, mut logic: L) -> Collection<G, D, R>
255 where L: FnMut(&mut D) + 'static {
256 self.inner
257 .map_in_place(move |&mut (ref mut data, _, _)| logic(data))
258 .as_collection()
259 }
260 /// Creates a new collection by applying the supplied function to each input element and accumulating the results.
261 ///
262 /// This method extracts an iterator from each input element, and extracts the full contents of the iterator. Be
263 /// warned that if the iterators produce substantial amounts of data, they are currently fully drained before
264 /// attempting to consolidate the results.
265 ///
266 /// # Examples
267 ///
268 /// ```
269 /// use differential_dataflow::input::Input;
270 ///
271 /// ::timely::example(|scope| {
272 /// scope.new_collection_from(1 .. 10).1
273 /// .flat_map(|x| 0 .. x);
274 /// });
275 /// ```
276 pub fn flat_map<I, L>(&self, mut logic: L) -> Collection<G, I::Item, R>
277 where G::Timestamp: Clone,
278 I: IntoIterator,
279 I::Item: Data,
280 L: FnMut(D) -> I + 'static {
281 self.inner
282 .flat_map(move |(data, time, delta)| logic(data).into_iter().map(move |x| (x, time.clone(), delta.clone())))
283 .as_collection()
284 }
285 /// Creates a new collection containing those input records satisfying the supplied predicate.
286 ///
287 /// # Examples
288 ///
289 /// ```
290 /// use differential_dataflow::input::Input;
291 ///
292 /// ::timely::example(|scope| {
293 /// scope.new_collection_from(1 .. 10).1
294 /// .map(|x| x * 2)
295 /// .filter(|x| x % 2 == 1)
296 /// .assert_empty();
297 /// });
298 /// ```
299 pub fn filter<L>(&self, mut logic: L) -> Collection<G, D, R>
300 where L: FnMut(&D) -> bool + 'static {
301 self.inner
302 .filter(move |(data, _, _)| logic(data))
303 .as_collection()
304 }
305 /// Replaces each record with another, with a new difference type.
306 ///
307 /// This method is most commonly used to take records containing aggregatable data (e.g. numbers to be summed)
308 /// and move the data into the difference component. This will allow differential dataflow to update in-place.
309 ///
310 /// # Examples
311 ///
312 /// ```
313 /// use differential_dataflow::input::Input;
314 ///
315 /// ::timely::example(|scope| {
316 ///
317 /// let nums = scope.new_collection_from(0 .. 10).1;
318 /// let x1 = nums.flat_map(|x| 0 .. x);
319 /// let x2 = nums.map(|x| (x, 9 - x))
320 /// .explode(|(x,y)| Some((x,y)));
321 ///
322 /// x1.assert_eq(&x2);
323 /// });
324 /// ```
325 pub fn explode<D2, R2, I, L>(&self, mut logic: L) -> Collection<G, D2, <R2 as Multiply<R>>::Output>
326 where D2: Data,
327 R2: Semigroup+Multiply<R>,
328 <R2 as Multiply<R>>::Output: Semigroup+'static,
329 I: IntoIterator<Item=(D2,R2)>,
330 L: FnMut(D)->I+'static,
331 {
332 self.inner
333 .flat_map(move |(x, t, d)| logic(x).into_iter().map(move |(x,d2)| (x, t.clone(), d2.multiply(&d))))
334 .as_collection()
335 }
336
337 /// Joins each record against a collection defined by the function `logic`.
338 ///
339 /// This method performs what is essentially a join with the collection of records `(x, logic(x))`.
340 /// Rather than materialize this second relation, `logic` is applied to each record and the appropriate
341 /// modifications made to the results, namely joining timestamps and multiplying differences.
342 ///
343 /// #Examples
344 ///
345 /// ```
346 /// use differential_dataflow::input::Input;
347 ///
348 /// ::timely::example(|scope| {
349 /// // creates `x` copies of `2*x` from time `3*x` until `4*x`,
350 /// // for x from 0 through 9.
351 /// scope.new_collection_from(0 .. 10isize).1
352 /// .join_function(|x|
353 /// // data time diff
354 /// vec![(2*x, (3*x) as u64, x),
355 /// (2*x, (4*x) as u64, -x)]
356 /// );
357 /// });
358 /// ```
359 pub fn join_function<D2, R2, I, L>(&self, mut logic: L) -> Collection<G, D2, <R2 as Multiply<R>>::Output>
360 where G::Timestamp: Lattice,
361 D2: Data,
362 R2: Semigroup+Multiply<R>,
363 <R2 as Multiply<R>>::Output: Semigroup+'static,
364 I: IntoIterator<Item=(D2,G::Timestamp,R2)>,
365 L: FnMut(D)->I+'static,
366 {
367 self.inner
368 .flat_map(move |(x, t, d)| logic(x).into_iter().map(move |(x,t2,d2)| (x, t.join(&t2), d2.multiply(&d))))
369 .as_collection()
370 }
371
372 /// Brings a Collection into a nested scope.
373 ///
374 /// # Examples
375 ///
376 /// ```
377 /// use timely::dataflow::Scope;
378 /// use differential_dataflow::input::Input;
379 ///
380 /// ::timely::example(|scope| {
381 ///
382 /// let data = scope.new_collection_from(1 .. 10).1;
383 ///
384 /// let result = scope.region(|child| {
385 /// data.enter(child)
386 /// .leave()
387 /// });
388 ///
389 /// data.assert_eq(&result);
390 /// });
391 /// ```
392 pub fn enter<'a, T>(&self, child: &Child<'a, G, T>) -> Collection<Child<'a, G, T>, D, R>
393 where
394 T: Refines<<G as ScopeParent>::Timestamp>,
395 {
396 self.inner
397 .enter(child)
398 .map(|(data, time, diff)| (data, T::to_inner(time), diff))
399 .as_collection()
400 }
401
402 /// Brings a Collection into a nested scope, at varying times.
403 ///
404 /// The `initial` function indicates the time at which each element of the Collection should appear.
405 ///
406 /// # Examples
407 ///
408 /// ```
409 /// use timely::dataflow::Scope;
410 /// use differential_dataflow::input::Input;
411 ///
412 /// ::timely::example(|scope| {
413 ///
414 /// let data = scope.new_collection_from(1 .. 10).1;
415 ///
416 /// let result = scope.iterative::<u64,_,_>(|child| {
417 /// data.enter_at(child, |x| *x)
418 /// .leave()
419 /// });
420 ///
421 /// data.assert_eq(&result);
422 /// });
423 /// ```
424 pub fn enter_at<'a, T, F>(&self, child: &Iterative<'a, G, T>, mut initial: F) -> Collection<Iterative<'a, G, T>, D, R>
425 where
426 T: Timestamp+Hash,
427 F: FnMut(&D) -> T + Clone + 'static,
428 G::Timestamp: Hash,
429 {
430 self.inner
431 .enter(child)
432 .map(move |(data, time, diff)| {
433 let new_time = Product::new(time, initial(&data));
434 (data, new_time, diff)
435 })
436 .as_collection()
437 }
438
439 /// Delays each difference by a supplied function.
440 ///
441 /// It is assumed that `func` only advances timestamps; this is not verified, and things may go horribly
442 /// wrong if that assumption is incorrect. It is also critical that `func` be monotonic: if two times are
443 /// ordered, they should have the same order or compare equal once `func` is applied to them (this
444 /// is because we advance the timely capability with the same logic, and it must remain `less_equal`
445 /// to all of the data timestamps).
446 pub fn delay<F>(&self, func: F) -> Collection<G, D, R>
447 where F: FnMut(&G::Timestamp) -> G::Timestamp + Clone + 'static {
448
449 let mut func1 = func.clone();
450 let mut func2 = func.clone();
451
452 self.inner
453 .delay_batch(move |x| func1(x))
454 .map_in_place(move |x| x.1 = func2(&x.1))
455 .as_collection()
456 }
457
458 /// Applies a supplied function to each update.
459 ///
460 /// This method is most commonly used to report information back to the user, often for debugging purposes.
461 /// Any function can be used here, but be warned that the incremental nature of differential dataflow does
462 /// not guarantee that it will be called as many times as you might expect.
463 ///
464 /// The `(data, time, diff)` triples indicate a change `diff` to the frequency of `data` which takes effect
465 /// at the logical time `time`. When times are totally ordered (for example, `usize`), these updates reflect
466 /// the changes along the sequence of collections. For partially ordered times, the mathematics are more
467 /// interesting and less intuitive, unfortunately.
468 ///
469 /// # Examples
470 ///
471 /// ```
472 /// use differential_dataflow::input::Input;
473 ///
474 /// ::timely::example(|scope| {
475 /// scope.new_collection_from(1 .. 10).1
476 /// .map_in_place(|x| *x *= 2)
477 /// .filter(|x| x % 2 == 1)
478 /// .inspect(|x| println!("error: {:?}", x));
479 /// });
480 /// ```
481 pub fn inspect<F>(&self, func: F) -> Collection<G, D, R>
482 where F: FnMut(&(D, G::Timestamp, R))+'static {
483 self.inner
484 .inspect(func)
485 .as_collection()
486 }
487 /// Applies a supplied function to each batch of updates.
488 ///
489 /// This method is analogous to `inspect`, but operates on batches and reveals the timestamp of the
490 /// timely dataflow capability associated with the batch of updates. The observed batching depends
491 /// on how the system executes, and may vary run to run.
492 ///
493 /// # Examples
494 ///
495 /// ```
496 /// use differential_dataflow::input::Input;
497 ///
498 /// ::timely::example(|scope| {
499 /// scope.new_collection_from(1 .. 10).1
500 /// .map_in_place(|x| *x *= 2)
501 /// .filter(|x| x % 2 == 1)
502 /// .inspect_batch(|t,xs| println!("errors @ {:?}: {:?}", t, xs));
503 /// });
504 /// ```
505 pub fn inspect_batch<F>(&self, mut func: F) -> Collection<G, D, R>
506 where F: FnMut(&G::Timestamp, &[(D, G::Timestamp, R)])+'static {
507 self.inner
508 .inspect_batch(move |time, data| func(time, data))
509 .as_collection()
510 }
511
512 /// Assert if the collection is ever non-empty.
513 ///
514 /// Because this is a dataflow fragment, the test is only applied as the computation is run. If the computation
515 /// is not run, or not run to completion, there may be un-exercised times at which the collection could be
516 /// non-empty. Typically, a timely dataflow computation runs to completion on drop, and so clean exit from a
517 /// program should indicate that this assertion never found cause to complain.
518 ///
519 /// # Examples
520 ///
521 /// ```
522 /// use differential_dataflow::input::Input;
523 ///
524 /// ::timely::example(|scope| {
525 /// scope.new_collection_from(1 .. 10).1
526 /// .map(|x| x * 2)
527 /// .filter(|x| x % 2 == 1)
528 /// .assert_empty();
529 /// });
530 /// ```
531 pub fn assert_empty(&self)
532 where D: crate::ExchangeData+Hashable,
533 R: crate::ExchangeData+Hashable + Semigroup,
534 G::Timestamp: Lattice+Ord,
535 {
536 self.consolidate()
537 .inspect(|x| panic!("Assertion failed: non-empty collection: {:?}", x));
538 }
539}
540
541use timely::dataflow::scopes::ScopeParent;
542use timely::progress::timestamp::Refines;
543
544/// Methods requiring a nested scope.
545impl<'a, G: Scope, T: Timestamp, D: Clone+'static, R: Clone+'static> Collection<Child<'a, G, T>, D, R>
546where
547 T: Refines<<G as ScopeParent>::Timestamp>,
548{
549 /// Returns the final value of a Collection from a nested scope to its containing scope.
550 ///
551 /// # Examples
552 ///
553 /// ```
554 /// use timely::dataflow::Scope;
555 /// use differential_dataflow::input::Input;
556 ///
557 /// ::timely::example(|scope| {
558 ///
559 /// let data = scope.new_collection_from(1 .. 10).1;
560 ///
561 /// let result = scope.region(|child| {
562 /// data.enter(child)
563 /// .leave()
564 /// });
565 ///
566 /// data.assert_eq(&result);
567 /// });
568 /// ```
569 pub fn leave(&self) -> Collection<G, D, R> {
570 self.inner
571 .leave()
572 .map(|(data, time, diff)| (data, time.to_outer(), diff))
573 .as_collection()
574 }
575}
576
577/// Methods requiring a region as the scope.
578impl<G: Scope, D, R, C: Container+Data> Collection<Child<'_, G, G::Timestamp>, D, R, C>
579{
580 /// Returns the value of a Collection from a nested region to its containing scope.
581 ///
582 /// This method is a specialization of `leave` to the case that of a nested region.
583 /// It removes the need for an operator that adjusts the timestamp.
584 pub fn leave_region(&self) -> Collection<G, D, R, C> {
585 self.inner
586 .leave()
587 .as_collection()
588 }
589}
590
591/// Methods requiring an Abelian difference, to support negation.
592impl<G: Scope, D: Clone+'static, R: Abelian+'static> Collection<G, D, R> where G::Timestamp: Data {
593 /// Assert if the collections are ever different.
594 ///
595 /// Because this is a dataflow fragment, the test is only applied as the computation is run. If the computation
596 /// is not run, or not run to completion, there may be un-exercised times at which the collections could vary.
597 /// Typically, a timely dataflow computation runs to completion on drop, and so clean exit from a program should
598 /// indicate that this assertion never found cause to complain.
599 ///
600 /// # Examples
601 ///
602 /// ```
603 /// use differential_dataflow::input::Input;
604 ///
605 /// ::timely::example(|scope| {
606 ///
607 /// let data = scope.new_collection_from(1 .. 10).1;
608 ///
609 /// let odds = data.filter(|x| x % 2 == 1);
610 /// let evens = data.filter(|x| x % 2 == 0);
611 ///
612 /// odds.concat(&evens)
613 /// .assert_eq(&data);
614 /// });
615 /// ```
616 pub fn assert_eq(&self, other: &Self)
617 where D: crate::ExchangeData+Hashable,
618 R: crate::ExchangeData+Hashable,
619 G::Timestamp: Lattice+Ord
620 {
621 self.negate()
622 .concat(other)
623 .assert_empty();
624 }
625}
626
627/// Conversion to a differential dataflow Collection.
628pub trait AsCollection<G: Scope, D, R, C> {
629 /// Converts the type to a differential dataflow collection.
630 fn as_collection(&self) -> Collection<G, D, R, C>;
631}
632
633impl<G: Scope, D, R, C: Clone> AsCollection<G, D, R, C> for StreamCore<G, C> {
634 /// Converts the type to a differential dataflow collection.
635 ///
636 /// By calling this method, you guarantee that the timestamp invariant (as documented on
637 /// [Collection]) is upheld. This method will not check it.
638 fn as_collection(&self) -> Collection<G, D, R, C> {
639 Collection::<G,D,R,C>::new(self.clone())
640 }
641}
642
643/// Concatenates multiple collections.
644///
645/// This method has the effect of a sequence of calls to `concat`, but it does
646/// so in one operator rather than a chain of many operators.
647///
648/// # Examples
649///
650/// ```
651/// use differential_dataflow::input::Input;
652///
653/// ::timely::example(|scope| {
654///
655/// let data = scope.new_collection_from(1 .. 10).1;
656///
657/// let odds = data.filter(|x| x % 2 == 1);
658/// let evens = data.filter(|x| x % 2 == 0);
659///
660/// differential_dataflow::collection::concatenate(scope, vec![odds, evens])
661/// .assert_eq(&data);
662/// });
663/// ```
664pub fn concatenate<G, D, R, C, I>(scope: &mut G, iterator: I) -> Collection<G, D, R, C>
665where
666 G: Scope,
667 D: Data,
668 R: Semigroup+'static,
669 C: Container + Clone + 'static,
670 I: IntoIterator<Item=Collection<G, D, R, C>>,
671{
672 scope
673 .concatenate(iterator.into_iter().map(|x| x.inner))
674 .as_collection()
675}