hibitset/iter/
parallel.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
use rayon::iter::plumbing::{bridge_unindexed, Folder, UnindexedConsumer, UnindexedProducer};
use rayon::iter::ParallelIterator;

use iter::{BitIter, BitSetLike, Index, BITS, LAYERS};
use util::average_ones;

/// A `ParallelIterator` over a [`BitSetLike`] structure.
///
/// [`BitSetLike`]: ../../trait.BitSetLike.html
#[derive(Debug)]
pub struct BitParIter<T>(T, u8);

impl<T> BitParIter<T> {
    /// Creates a new `BitParIter`. You usually don't call this function
    /// but just [`.par_iter()`] on a bit set.
    ///
    /// Default layer split amount is 3.
    ///
    /// [`.par_iter()`]: ../../trait.BitSetLike.html#method.par_iter
    pub fn new(set: T) -> Self {
        BitParIter(set, 3)
    }

    /// Sets how many layers are split when forking.
    ///
    /// # Examples
    ///
    /// ```
    /// # extern crate rayon;
    /// # extern crate hibitset;
    /// # use hibitset::{BitSet, BitSetLike};
    /// # use rayon::iter::ParallelIterator;
    /// # fn main() {
    /// let mut bitset = BitSet::new();
    /// bitset.par_iter()
    ///     .layers_split(2)
    ///     .count();
    /// # }
    /// ```
    ///
    /// The value should be in range [1, 3]
    ///
    /// | splits | largest smallest unit of work |
    /// |--------|-------------------------------|
    /// | 1      | usize_bits<sup>3</sup>        |
    /// | 2      | usize_bits<sup>2</sup>        |
    /// | 3      | usize_bits                    |
    ///
    pub fn layers_split(mut self, layers: u8) -> Self {
        assert!(layers >= 1);
        assert!(layers <= 3);
        self.1 = layers;
        self
    }
}

impl<T> ParallelIterator for BitParIter<T>
where
    T: BitSetLike + Send + Sync,
{
    type Item = Index;

    fn drive_unindexed<C>(self, consumer: C) -> C::Result
    where
        C: UnindexedConsumer<Self::Item>,
    {
        bridge_unindexed(BitProducer((&self.0).iter(), self.1), consumer)
    }
}

/// Allows splitting and internally iterating through `BitSet`.
///
/// Usually used internally by `BitParIter`.
#[derive(Debug)]
pub struct BitProducer<'a, T: 'a + Send + Sync>(pub BitIter<&'a T>, pub u8);

impl<'a, T: 'a + Send + Sync> UnindexedProducer for BitProducer<'a, T>
where
    T: BitSetLike,
{
    type Item = Index;

    /// How the splitting is done:
    ///
    /// 1) First the highest layer that has at least one set bit
    ///    is searched.
    ///
    /// 2) If the layer that was found, has only one bit that's set,
    ///    it's cleared. After that the correct prefix for the cleared
    ///    bit is figured out and the descending is continued.
    ///
    /// 3) If the layer that was found, has more than one bit that's set,
    ///    a mask is created that splits it's set bits as close to half
    ///    as possible.
    ///    After creating the mask the layer is masked by either the mask
    ///    or it's complement constructing two distinct producers which
    ///    are then returned.
    ///
    /// 4) If there isn't any layers that have more than one set bit,
    ///    splitting doesn't happen.
    ///
    /// The actual iteration is performed by the sequential iterator
    /// `BitIter` which internals are modified by this splitting
    ///  algorithm.
    ///
    /// This splitting strategy should split work evenly if the set bits
    /// are distributed close to uniformly random.
    /// As the strategy only looks one layer at the time, if there are subtrees
    /// that have lots of work and sibling subtrees that have little of work,
    /// then it will produce non-optimal splittings.
    fn split(mut self) -> (Self, Option<Self>) {
        let splits = self.1;
        let other = {
            let mut handle_level = |level: usize| {
                if self.0.masks[level] == 0 {
                    // Skip the empty layers
                    None
                } else {
                    // Top levels prefix is zero because there is nothing before it
                    let level_prefix = self.0.prefix.get(level).cloned().unwrap_or(0);
                    let first_bit = self.0.masks[level].trailing_zeros();
                    average_ones(self.0.masks[level])
                        .and_then(|average_bit| {
                            let mask = (1 << average_bit) - 1;
                            let mut other = BitProducer(
                                BitIter::new(self.0.set, [0; LAYERS], [0; LAYERS - 1]),
                                splits,
                            );
                            // The `other` is the more significant half of the mask
                            other.0.masks[level] = self.0.masks[level] & !mask;
                            other.0.prefix[level - 1] = (level_prefix | average_bit as u32) << BITS;
                            // The upper portion of the prefix is maintained, because the `other`
                            // will iterate the same subtree as the `self` does
                            other.0.prefix[level..].copy_from_slice(&self.0.prefix[level..]);
                            // And the `self` is the less significant one
                            self.0.masks[level] &= mask;
                            self.0.prefix[level - 1] = (level_prefix | first_bit) << BITS;
                            Some(other)
                        })
                        .or_else(|| {
                            // Because there is only one bit left we descend to it
                            let idx = level_prefix as usize | first_bit as usize;
                            self.0.prefix[level - 1] = (idx as u32) << BITS;
                            // The level that is descended from doesn't have anything
                            // interesting so it can be skipped in the future.
                            self.0.masks[level] = 0;
                            self.0.masks[level - 1] = self.0.set.get_from_layer(level - 1, idx);
                            None
                        })
                }
            };
            let top_layer = LAYERS - 1;
            let mut h = handle_level(top_layer);
            for i in 1..splits {
                h = h.or_else(|| handle_level(top_layer - i as usize));
            }
            h
        };
        (self, other)
    }

    fn fold_with<F>(self, folder: F) -> F
    where
        F: Folder<Self::Item>,
    {
        folder.consume_iter(self.0)
    }
}

#[cfg(test)]
mod test_bit_producer {
    use rayon::iter::plumbing::UnindexedProducer;

    use super::BitProducer;
    use iter::BitSetLike;
    use util::BITS;

    fn test_splitting(split_levels: u8) {
        fn visit<T>(mut us: BitProducer<T>, d: usize, i: usize, mut trail: String, c: &mut usize)
        where
            T: Send + Sync + BitSetLike,
        {
            if d == 0 {
                assert!(us.split().1.is_none(), "{}", trail);
                *c += 1;
            } else {
                for j in 1..(i + 1) {
                    let (new_us, them) = us.split();
                    us = new_us;
                    let them = them.expect(&trail);
                    let mut trail = trail.clone();
                    trail.push_str(&i.to_string());
                    visit(them, d, i - j, trail, c);
                }
                trail.push_str("u");
                visit(us, d - 1, BITS, trail, c);
            }
        }

        let usize_bits = ::std::mem::size_of::<usize>() * 8;

        let mut c = ::BitSet::new();
        for i in 0..(usize_bits.pow(3) * 2) {
            assert!(!c.add(i as u32));
        }

        let us = BitProducer((&c).iter(), split_levels);
        let (us, them) = us.split();

        let mut count = 0;
        visit(
            us,
            split_levels as usize - 1,
            BITS,
            "u".to_owned(),
            &mut count,
        );
        visit(
            them.expect("Splitting top level"),
            split_levels as usize - 1,
            BITS,
            "t".to_owned(),
            &mut count,
        );
        assert_eq!(usize_bits.pow(split_levels as u32 - 1) * 2, count);
    }

    #[test]
    fn max_3_splitting_of_two_top_bits() {
        test_splitting(3);
    }

    #[test]
    fn max_2_splitting_of_two_top_bits() {
        test_splitting(2);
    }

    #[test]
    fn max_1_splitting_of_two_top_bits() {
        test_splitting(1);
    }
}