lexical_parse_float/
lemire.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
//! Implementation of the Eisel-Lemire algorithm.
//!
//! This is adapted from [fast-float-rust](https://github.com/aldanor/fast-float-rust),
//! a port of [fast_float](https://github.com/fastfloat/fast_float) to Rust.

#![cfg(not(feature = "compact"))]
#![doc(hidden)]

use crate::float::{ExtendedFloat80, LemireFloat};
use crate::number::Number;
use crate::shared;
use crate::table::{LARGEST_POWER_OF_FIVE, POWER_OF_FIVE_128, SMALLEST_POWER_OF_FIVE};

/// Ensure truncation of digits doesn't affect our computation, by doing 2
/// passes.
#[must_use]
#[inline(always)]
pub fn lemire<F: LemireFloat>(num: &Number, lossy: bool) -> ExtendedFloat80 {
    // If significant digits were truncated, then we can have rounding error
    // only if `mantissa + 1` produces a different result. We also avoid
    // redundantly using the Eisel-Lemire algorithm if it was unable to
    // correctly round on the first pass.
    let mut fp = compute_float::<F>(num.exponent, num.mantissa, lossy);
    if !lossy
        && num.many_digits
        && fp.exp >= 0
        && fp != compute_float::<F>(num.exponent, num.mantissa + 1, false)
    {
        // Need to re-calculate, since the previous values are rounded
        // when the slow path algorithm expects a normalized extended float.
        fp = compute_error::<F>(num.exponent, num.mantissa);
    }
    fp
}

/// Compute a float using an extended-precision representation.
///
/// Fast conversion of a the significant digits and decimal exponent
/// a float to a extended representation with a binary float. This
/// algorithm will accurately parse the vast majority of cases,
/// and uses a 128-bit representation (with a fallback 192-bit
/// representation).
///
/// This algorithm scales the exponent by the decimal exponent
/// using pre-computed powers-of-5, and calculates if the
/// representation can be unambiguously rounded to the nearest
/// machine float. Near-halfway cases are not handled here,
/// and are represented by a negative, biased binary exponent.
///
/// The algorithm is described in detail in "Daniel Lemire, Number Parsing
/// at a Gigabyte per Second" in section 5, "Fast Algorithm", and
/// section 6, "Exact Numbers And Ties", available online:
/// <https://arxiv.org/abs/2101.11408.pdf>.
#[must_use]
#[allow(clippy::missing_inline_in_public_items)] // reason="public for testing only"
pub fn compute_float<F: LemireFloat>(q: i64, mut w: u64, lossy: bool) -> ExtendedFloat80 {
    let fp_zero = ExtendedFloat80 {
        mant: 0,
        exp: 0,
    };
    let fp_inf = ExtendedFloat80 {
        mant: 0,
        exp: F::INFINITE_POWER,
    };

    // Short-circuit if the value can only be a literal 0 or infinity.
    if w == 0 || q < F::SMALLEST_POWER_OF_TEN as i64 {
        return fp_zero;
    } else if q > F::LARGEST_POWER_OF_TEN as i64 {
        return fp_inf;
    }
    // Normalize our significant digits, so the most-significant bit is set.
    let lz = w.leading_zeros() as i32;
    w <<= lz;
    let (lo, hi) = compute_product_approx(q, w, F::MANTISSA_SIZE as usize + 3);
    if !lossy && lo == 0xFFFF_FFFF_FFFF_FFFF {
        // If we have failed to approximate `w x 5^-q` with our 128-bit value.
        // Since the addition of 1 could lead to an overflow which could then
        // round up over the half-way point, this can lead to improper rounding
        // of a float.
        //
        // However, this can only occur if `q ∈ [-27, 55]`. The upper bound of q
        // is 55 because `5^55 < 2^128`, however, this can only happen if `5^q > 2^64`,
        // since otherwise the product can be represented in 64-bits, producing
        // an exact result. For negative exponents, rounding-to-even can
        // only occur if `5^-q < 2^64`.
        //
        // For detailed explanations of rounding for negative exponents, see
        // <https://arxiv.org/pdf/2101.11408.pdf#section.9.1>. For detailed
        // explanations of rounding for positive exponents, see
        // <https://arxiv.org/pdf/2101.11408.pdf#section.8>.
        let inside_safe_exponent = (-27..=55).contains(&q);
        if !inside_safe_exponent {
            return compute_error_scaled::<F>(q, hi, lz);
        }
    }
    let upperbit = (hi >> 63) as i32;
    let mut mantissa = hi >> (upperbit + 64 - F::MANTISSA_SIZE - 3);
    let mut power2 = power(q as i32) + upperbit - lz - F::MINIMUM_EXPONENT;
    if power2 <= 0 {
        if -power2 + 1 >= 64 {
            // Have more than 64 bits below the minimum exponent, must be 0.
            return fp_zero;
        }
        // Have a subnormal value.
        mantissa >>= -power2 + 1;
        mantissa += mantissa & 1;
        mantissa >>= 1;
        power2 = (mantissa >= (1_u64 << F::MANTISSA_SIZE)) as i32;
        return ExtendedFloat80 {
            mant: mantissa,
            exp: power2,
        };
    }
    // Need to handle rounding ties. Normally, we need to round up,
    // but if we fall right in between and and we have an even basis, we
    // need to round down.
    //
    // This will only occur if:
    //  1. The lower 64 bits of the 128-bit representation is 0. IE, `5^q` fits in
    //     single 64-bit word.
    //  2. The least-significant bit prior to truncated mantissa is odd.
    //  3. All the bits truncated when shifting to mantissa bits + 1 are 0.
    //
    // Or, we may fall between two floats: we are exactly halfway.
    if lo <= 1
        && q >= F::MIN_EXPONENT_ROUND_TO_EVEN as i64
        && q <= F::MAX_EXPONENT_ROUND_TO_EVEN as i64
        && mantissa & 3 == 1
        && (mantissa << (upperbit + 64 - F::MANTISSA_SIZE - 3)) == hi
    {
        // Zero the lowest bit, so we don't round up.
        mantissa &= !1_u64;
    }
    // Round-to-even, then shift the significant digits into place.
    mantissa += mantissa & 1;
    mantissa >>= 1;
    if mantissa >= (2_u64 << F::MANTISSA_SIZE) {
        // Rounding up overflowed, so the carry bit is set. Set the
        // mantissa to 1 (only the implicit, hidden bit is set) and
        // increase the exponent.
        mantissa = 1_u64 << F::MANTISSA_SIZE;
        power2 += 1;
    }
    // Zero out the hidden bit.
    mantissa &= !(1_u64 << F::MANTISSA_SIZE);
    if power2 >= F::INFINITE_POWER {
        // Exponent is above largest normal value, must be infinite.
        return fp_inf;
    }
    ExtendedFloat80 {
        mant: mantissa,
        exp: power2,
    }
}

/// Fallback algorithm to calculate the non-rounded representation.
/// This calculates the extended representation, and then normalizes
/// the resulting representation, so the high bit is set.
#[must_use]
#[inline(always)]
pub fn compute_error<F: LemireFloat>(q: i64, mut w: u64) -> ExtendedFloat80 {
    let lz = w.leading_zeros() as i32;
    w <<= lz;
    let hi = compute_product_approx(q, w, F::MANTISSA_SIZE as usize + 3).1;
    compute_error_scaled::<F>(q, hi, lz)
}

/// Compute the error from a mantissa scaled to the exponent.
#[must_use]
#[inline(always)]
pub const fn compute_error_scaled<F: LemireFloat>(q: i64, mut w: u64, lz: i32) -> ExtendedFloat80 {
    // Want to normalize the float, but this is faster than ctlz on most
    // architectures.
    let hilz = (w >> 63) as i32 ^ 1;
    w <<= hilz;
    let power2 = power(q as i32) + F::EXPONENT_BIAS - hilz - lz - 62;

    ExtendedFloat80 {
        mant: w,
        exp: power2 + shared::INVALID_FP,
    }
}

/// Calculate a base 2 exponent from a decimal exponent.
/// This uses a pre-computed integer approximation for
/// log2(10), where 217706 / 2^16 is accurate for the
/// entire range of non-finite decimal exponents.
#[inline(always)]
const fn power(q: i32) -> i32 {
    (q.wrapping_mul(152_170 + 65536) >> 16) + 63
}

#[inline(always)]
const fn full_multiplication(a: u64, b: u64) -> (u64, u64) {
    let r = (a as u128) * (b as u128);
    (r as u64, (r >> 64) as u64)
}

// This will compute or rather approximate `w * 5**q` and return a pair of
// 64-bit words approximating the result, with the "high" part corresponding to
// the most significant bits and the low part corresponding to the least
// significant bits.
fn compute_product_approx(q: i64, w: u64, precision: usize) -> (u64, u64) {
    debug_assert!(q >= SMALLEST_POWER_OF_FIVE as i64, "must be within our required pow5 range");
    debug_assert!(q <= LARGEST_POWER_OF_FIVE as i64, "must be within our required pow5 range");
    debug_assert!(precision <= 64, "requires a 64-bit or smaller float");

    let mask = if precision < 64 {
        0xFFFF_FFFF_FFFF_FFFF_u64 >> precision
    } else {
        0xFFFF_FFFF_FFFF_FFFF_u64
    };

    // `5^q < 2^64`, then the multiplication always provides an exact value.
    // That means whenever we need to round ties to even, we always have
    // an exact value.
    let index = (q - SMALLEST_POWER_OF_FIVE as i64) as usize;
    let (lo5, hi5) = POWER_OF_FIVE_128[index];
    // Only need one multiplication as long as there is 1 zero but
    // in the explicit mantissa bits, +1 for the hidden bit, +1 to
    // determine the rounding direction, +1 for if the computed
    // product has a leading zero.
    let (mut first_lo, mut first_hi) = full_multiplication(w, lo5);
    if first_hi & mask == mask {
        // Need to do a second multiplication to get better precision
        // for the lower product. This will always be exact
        // where q is < 55, since 5^55 < 2^128. If this wraps,
        // then we need to need to round up the hi product.
        let (_, second_hi) = full_multiplication(w, hi5);
        first_lo = first_lo.wrapping_add(second_hi);
        if second_hi > first_lo {
            first_hi += 1;
        }
    }
    (first_lo, first_hi)
}