lexical_parse_float/lemire.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
//! Implementation of the Eisel-Lemire algorithm.
//!
//! This is adapted from [fast-float-rust](https://github.com/aldanor/fast-float-rust),
//! a port of [fast_float](https://github.com/fastfloat/fast_float) to Rust.
#![cfg(not(feature = "compact"))]
#![doc(hidden)]
use crate::float::{ExtendedFloat80, LemireFloat};
use crate::number::Number;
use crate::shared;
use crate::table::{LARGEST_POWER_OF_FIVE, POWER_OF_FIVE_128, SMALLEST_POWER_OF_FIVE};
/// Ensure truncation of digits doesn't affect our computation, by doing 2
/// passes.
#[must_use]
#[inline(always)]
pub fn lemire<F: LemireFloat>(num: &Number, lossy: bool) -> ExtendedFloat80 {
// If significant digits were truncated, then we can have rounding error
// only if `mantissa + 1` produces a different result. We also avoid
// redundantly using the Eisel-Lemire algorithm if it was unable to
// correctly round on the first pass.
let mut fp = compute_float::<F>(num.exponent, num.mantissa, lossy);
if !lossy
&& num.many_digits
&& fp.exp >= 0
&& fp != compute_float::<F>(num.exponent, num.mantissa + 1, false)
{
// Need to re-calculate, since the previous values are rounded
// when the slow path algorithm expects a normalized extended float.
fp = compute_error::<F>(num.exponent, num.mantissa);
}
fp
}
/// Compute a float using an extended-precision representation.
///
/// Fast conversion of a the significant digits and decimal exponent
/// a float to a extended representation with a binary float. This
/// algorithm will accurately parse the vast majority of cases,
/// and uses a 128-bit representation (with a fallback 192-bit
/// representation).
///
/// This algorithm scales the exponent by the decimal exponent
/// using pre-computed powers-of-5, and calculates if the
/// representation can be unambiguously rounded to the nearest
/// machine float. Near-halfway cases are not handled here,
/// and are represented by a negative, biased binary exponent.
///
/// The algorithm is described in detail in "Daniel Lemire, Number Parsing
/// at a Gigabyte per Second" in section 5, "Fast Algorithm", and
/// section 6, "Exact Numbers And Ties", available online:
/// <https://arxiv.org/abs/2101.11408.pdf>.
#[must_use]
#[allow(clippy::missing_inline_in_public_items)] // reason="public for testing only"
pub fn compute_float<F: LemireFloat>(q: i64, mut w: u64, lossy: bool) -> ExtendedFloat80 {
let fp_zero = ExtendedFloat80 {
mant: 0,
exp: 0,
};
let fp_inf = ExtendedFloat80 {
mant: 0,
exp: F::INFINITE_POWER,
};
// Short-circuit if the value can only be a literal 0 or infinity.
if w == 0 || q < F::SMALLEST_POWER_OF_TEN as i64 {
return fp_zero;
} else if q > F::LARGEST_POWER_OF_TEN as i64 {
return fp_inf;
}
// Normalize our significant digits, so the most-significant bit is set.
let lz = w.leading_zeros() as i32;
w <<= lz;
let (lo, hi) = compute_product_approx(q, w, F::MANTISSA_SIZE as usize + 3);
if !lossy && lo == 0xFFFF_FFFF_FFFF_FFFF {
// If we have failed to approximate `w x 5^-q` with our 128-bit value.
// Since the addition of 1 could lead to an overflow which could then
// round up over the half-way point, this can lead to improper rounding
// of a float.
//
// However, this can only occur if `q ∈ [-27, 55]`. The upper bound of q
// is 55 because `5^55 < 2^128`, however, this can only happen if `5^q > 2^64`,
// since otherwise the product can be represented in 64-bits, producing
// an exact result. For negative exponents, rounding-to-even can
// only occur if `5^-q < 2^64`.
//
// For detailed explanations of rounding for negative exponents, see
// <https://arxiv.org/pdf/2101.11408.pdf#section.9.1>. For detailed
// explanations of rounding for positive exponents, see
// <https://arxiv.org/pdf/2101.11408.pdf#section.8>.
let inside_safe_exponent = (-27..=55).contains(&q);
if !inside_safe_exponent {
return compute_error_scaled::<F>(q, hi, lz);
}
}
let upperbit = (hi >> 63) as i32;
let mut mantissa = hi >> (upperbit + 64 - F::MANTISSA_SIZE - 3);
let mut power2 = power(q as i32) + upperbit - lz - F::MINIMUM_EXPONENT;
if power2 <= 0 {
if -power2 + 1 >= 64 {
// Have more than 64 bits below the minimum exponent, must be 0.
return fp_zero;
}
// Have a subnormal value.
mantissa >>= -power2 + 1;
mantissa += mantissa & 1;
mantissa >>= 1;
power2 = (mantissa >= (1_u64 << F::MANTISSA_SIZE)) as i32;
return ExtendedFloat80 {
mant: mantissa,
exp: power2,
};
}
// Need to handle rounding ties. Normally, we need to round up,
// but if we fall right in between and and we have an even basis, we
// need to round down.
//
// This will only occur if:
// 1. The lower 64 bits of the 128-bit representation is 0. IE, `5^q` fits in
// single 64-bit word.
// 2. The least-significant bit prior to truncated mantissa is odd.
// 3. All the bits truncated when shifting to mantissa bits + 1 are 0.
//
// Or, we may fall between two floats: we are exactly halfway.
if lo <= 1
&& q >= F::MIN_EXPONENT_ROUND_TO_EVEN as i64
&& q <= F::MAX_EXPONENT_ROUND_TO_EVEN as i64
&& mantissa & 3 == 1
&& (mantissa << (upperbit + 64 - F::MANTISSA_SIZE - 3)) == hi
{
// Zero the lowest bit, so we don't round up.
mantissa &= !1_u64;
}
// Round-to-even, then shift the significant digits into place.
mantissa += mantissa & 1;
mantissa >>= 1;
if mantissa >= (2_u64 << F::MANTISSA_SIZE) {
// Rounding up overflowed, so the carry bit is set. Set the
// mantissa to 1 (only the implicit, hidden bit is set) and
// increase the exponent.
mantissa = 1_u64 << F::MANTISSA_SIZE;
power2 += 1;
}
// Zero out the hidden bit.
mantissa &= !(1_u64 << F::MANTISSA_SIZE);
if power2 >= F::INFINITE_POWER {
// Exponent is above largest normal value, must be infinite.
return fp_inf;
}
ExtendedFloat80 {
mant: mantissa,
exp: power2,
}
}
/// Fallback algorithm to calculate the non-rounded representation.
/// This calculates the extended representation, and then normalizes
/// the resulting representation, so the high bit is set.
#[must_use]
#[inline(always)]
pub fn compute_error<F: LemireFloat>(q: i64, mut w: u64) -> ExtendedFloat80 {
let lz = w.leading_zeros() as i32;
w <<= lz;
let hi = compute_product_approx(q, w, F::MANTISSA_SIZE as usize + 3).1;
compute_error_scaled::<F>(q, hi, lz)
}
/// Compute the error from a mantissa scaled to the exponent.
#[must_use]
#[inline(always)]
pub const fn compute_error_scaled<F: LemireFloat>(q: i64, mut w: u64, lz: i32) -> ExtendedFloat80 {
// Want to normalize the float, but this is faster than ctlz on most
// architectures.
let hilz = (w >> 63) as i32 ^ 1;
w <<= hilz;
let power2 = power(q as i32) + F::EXPONENT_BIAS - hilz - lz - 62;
ExtendedFloat80 {
mant: w,
exp: power2 + shared::INVALID_FP,
}
}
/// Calculate a base 2 exponent from a decimal exponent.
/// This uses a pre-computed integer approximation for
/// log2(10), where 217706 / 2^16 is accurate for the
/// entire range of non-finite decimal exponents.
#[inline(always)]
const fn power(q: i32) -> i32 {
(q.wrapping_mul(152_170 + 65536) >> 16) + 63
}
#[inline(always)]
const fn full_multiplication(a: u64, b: u64) -> (u64, u64) {
let r = (a as u128) * (b as u128);
(r as u64, (r >> 64) as u64)
}
// This will compute or rather approximate `w * 5**q` and return a pair of
// 64-bit words approximating the result, with the "high" part corresponding to
// the most significant bits and the low part corresponding to the least
// significant bits.
fn compute_product_approx(q: i64, w: u64, precision: usize) -> (u64, u64) {
debug_assert!(q >= SMALLEST_POWER_OF_FIVE as i64, "must be within our required pow5 range");
debug_assert!(q <= LARGEST_POWER_OF_FIVE as i64, "must be within our required pow5 range");
debug_assert!(precision <= 64, "requires a 64-bit or smaller float");
let mask = if precision < 64 {
0xFFFF_FFFF_FFFF_FFFF_u64 >> precision
} else {
0xFFFF_FFFF_FFFF_FFFF_u64
};
// `5^q < 2^64`, then the multiplication always provides an exact value.
// That means whenever we need to round ties to even, we always have
// an exact value.
let index = (q - SMALLEST_POWER_OF_FIVE as i64) as usize;
let (lo5, hi5) = POWER_OF_FIVE_128[index];
// Only need one multiplication as long as there is 1 zero but
// in the explicit mantissa bits, +1 for the hidden bit, +1 to
// determine the rounding direction, +1 for if the computed
// product has a leading zero.
let (mut first_lo, mut first_hi) = full_multiplication(w, lo5);
if first_hi & mask == mask {
// Need to do a second multiplication to get better precision
// for the lower product. This will always be exact
// where q is < 55, since 5^55 < 2^128. If this wraps,
// then we need to need to round up the hi product.
let (_, second_hi) = full_multiplication(w, hi5);
first_lo = first_lo.wrapping_add(second_hi);
if second_hi > first_lo {
first_hi += 1;
}
}
(first_lo, first_hi)
}