mz_persist/
workload.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.

//! A configurable data generator for benchmarking.

use std::cmp;
use std::env::{self, VarError};
use std::io::Write;
use std::mem::size_of;

use mz_ore::cast::CastFrom;
use mz_persist_types::Codec64;

use crate::indexed::columnar::{ColumnarRecords, ColumnarRecordsBuilder};
use crate::metrics::ColumnarMetrics;

/// A configurable data generator for benchmarking.
#[derive(Clone, Debug)]
pub struct DataGenerator {
    /// The total number of records to produce.
    pub record_count: usize,
    /// The number of "goodput" bytes to make each record.
    pub record_size_bytes: usize,
    /// The maximum number of records included in a generated batch of records.
    pub batch_max_count: usize,
    // TODO: unique: bool,
    key_buf: Vec<u8>,
    val_buf: Vec<u8>,
}

const RECORD_SIZE_BYTES_KEY: &str = "MZ_PERSIST_RECORD_SIZE_BYTES";
const RECORD_COUNT_KEY: &str = "MZ_PERSIST_RECORD_COUNT";
const BATCH_MAX_COUNT_KEY: &str = "MZ_PERSIST_BATCH_MAX_COUNT";

const RECORD_SIZE_BYTES_KEY_SMALL: &str = "MZ_PERSIST_RECORD_SIZE_BYTES_SMALL";
const RECORD_COUNT_KEY_SMALL: &str = "MZ_PERSIST_RECORD_COUNT_SMALL";
const BATCH_MAX_COUNT_KEY_SMALL: &str = "MZ_PERSIST_BATCH_MAX_COUNT_SMALL";

// Selected arbitrarily as representative of production record sizes.
const DEFAULT_RECORD_SIZE_BYTES: usize = 64;
// Selected arbitrarily to make ~8MiB batches.
const DEFAULT_BATCH_MAX_COUNT: usize = (8 * 1024 * 1024) / DEFAULT_RECORD_SIZE_BYTES;
// Manually tuned once to be the smallest value such that (1) we hit max
// throughput on the end_to_end benchmark and (2) goodput_pretty produces a
// round-ish number.
const DEFAULT_RECORD_COUNT: usize = 819_200;

// Selected arbitrarily as representative of production record sizes.
const DEFAULT_RECORD_SIZE_BYTES_SMALL: usize = 1024;
// Selected to produce a small number of batches with default settings.
const DEFAULT_BATCH_MAX_COUNT_SMALL: usize = DEFAULT_RECORD_COUNT_SMALL / 8;
// Selected arbitrarily to make ~64KiB of data.
const DEFAULT_RECORD_COUNT_SMALL: usize = (64 * 1024) / DEFAULT_RECORD_SIZE_BYTES_SMALL;

const TS_DIFF_GOODPUT_SIZE: usize = size_of::<u64>() + size_of::<i64>();

fn read_env_usize(key: &str, default: usize) -> usize {
    match env::var(key) {
        Ok(x) => x
            .parse()
            .map_err(|err| format!("invalid value for {}: {}", key, err))
            .unwrap(),
        Err(VarError::NotPresent) => default,
        Err(err) => panic!("invalid value for {}: {}", key, err),
    }
}

impl Default for DataGenerator {
    fn default() -> Self {
        let record_count = read_env_usize(RECORD_COUNT_KEY, DEFAULT_RECORD_COUNT);
        let record_size_bytes = read_env_usize(RECORD_SIZE_BYTES_KEY, DEFAULT_RECORD_SIZE_BYTES);
        let batch_max_count = read_env_usize(BATCH_MAX_COUNT_KEY, DEFAULT_BATCH_MAX_COUNT);

        eprintln!(
            "{}={} {}={} {}={}",
            RECORD_COUNT_KEY,
            record_count,
            RECORD_SIZE_BYTES_KEY,
            record_size_bytes,
            BATCH_MAX_COUNT_KEY,
            batch_max_count,
        );
        DataGenerator::new(record_count, record_size_bytes, batch_max_count)
    }
}

impl DataGenerator {
    /// Returns a new [DataGenerator].
    pub fn new(record_count: usize, record_size_bytes: usize, batch_max_count: usize) -> Self {
        // NB: Strict greater so we have at least one byte for key.
        assert!(record_size_bytes > TS_DIFF_GOODPUT_SIZE);
        assert!(batch_max_count > 0);
        DataGenerator {
            record_count,
            record_size_bytes,
            batch_max_count,
            key_buf: Vec::new(),
            val_buf: Vec::new(),
        }
    }

    /// Returns a new [DataGenerator] specifically for testing small data volumes.
    pub fn small() -> Self {
        let record_count_small = read_env_usize(RECORD_COUNT_KEY_SMALL, DEFAULT_RECORD_COUNT_SMALL);
        let record_size_bytes_small =
            read_env_usize(RECORD_SIZE_BYTES_KEY_SMALL, DEFAULT_RECORD_SIZE_BYTES_SMALL);
        let batch_max_count_small =
            read_env_usize(BATCH_MAX_COUNT_KEY_SMALL, DEFAULT_BATCH_MAX_COUNT_SMALL);

        eprintln!(
            "{}={} {}={} {}={}",
            RECORD_COUNT_KEY_SMALL,
            record_count_small,
            RECORD_SIZE_BYTES_KEY_SMALL,
            record_size_bytes_small,
            BATCH_MAX_COUNT_KEY_SMALL,
            batch_max_count_small,
        );
        DataGenerator::new(
            record_count_small,
            record_size_bytes_small,
            batch_max_count_small,
        )
    }

    /// Returns the number of "goodput" bytes represented by the entire dataset
    /// produced by this generator.
    pub fn goodput_bytes(&self) -> u64 {
        u64::cast_from(self.record_count * self.record_size_bytes)
    }

    /// Returns a more easily human readable version of [Self::goodput_bytes].
    pub fn goodput_pretty(&self) -> String {
        let goodput_bytes = self.goodput_bytes();
        const KIB: u64 = 1024;
        const MIB: u64 = 1024 * KIB;
        const GIB: u64 = 1024 * MIB;
        if goodput_bytes >= 10 * GIB {
            format!("{}GiB", goodput_bytes / GIB)
        } else if goodput_bytes >= 10 * MIB {
            format!("{}MiB", goodput_bytes / MIB)
        } else if goodput_bytes >= 10 * KIB {
            format!("{}KiB", goodput_bytes / KIB)
        } else {
            format!("{}B", goodput_bytes)
        }
    }

    /// Generates the requested batch of records.
    pub fn gen_batch(&mut self, batch_idx: usize) -> Option<ColumnarRecords> {
        let batch_start = self.batch_max_count * batch_idx;
        let batch_end = cmp::min(batch_start + self.batch_max_count, self.record_count);
        if batch_start >= batch_end {
            return None;
        }
        let items = batch_end - batch_start;
        let mut batch = ColumnarRecordsBuilder::with_capacity(
            items,
            (self.record_size_bytes - TS_DIFF_GOODPUT_SIZE) * items,
            0,
        );
        for record_idx in batch_start..batch_end {
            let (kv, t, d) = self.gen_record(record_idx);
            assert!(
                batch.push((kv, Codec64::encode(&t), Codec64::encode(&d))),
                "generator exceeded batch size; smaller batches needed"
            );
        }
        Some(batch.finish(&ColumnarMetrics::disconnected()))
    }

    fn gen_record(&mut self, record_idx: usize) -> ((&[u8], &[u8]), u64, i64) {
        assert!(record_idx < self.record_count);
        assert!(self.record_size_bytes > TS_DIFF_GOODPUT_SIZE);

        self.key_buf.clear();
        let key_len = self.record_size_bytes - TS_DIFF_GOODPUT_SIZE;
        if self.key_buf.capacity() < key_len {
            self.key_buf.reserve(key_len);
        }
        // This format `record_idx` as an integer and, if necessary, left-pads
        // it with 0s to be `key_len` chars long.
        write!(&mut self.key_buf, "{:01$}", record_idx, key_len)
            .expect("write to Vec is infallible");
        self.key_buf.truncate(key_len);
        assert_eq!(self.key_buf.len(), key_len);

        self.val_buf.clear();

        let ts = u64::cast_from(record_idx);
        let diff = 1;
        ((&self.key_buf, &self.val_buf), ts, diff)
    }

    /// Returns an [Iterator] of all records in batches.
    pub fn batches(&self) -> DataGeneratorBatchIter {
        DataGeneratorBatchIter {
            config: self.clone(),
            batch_idx: 0,
        }
    }

    /// Returns an [Iterator] of all records.
    pub fn records(&self) -> impl Iterator<Item = ((Vec<u8>, Vec<u8>), u64, i64)> {
        let mut config = self.clone();
        (0..self.record_count).map(move |record_idx| {
            let ((k, v), t, d) = config.gen_record(record_idx);
            ((k.to_vec(), v.to_vec()), t, d)
        })
    }
}

/// An implementation of [Iterator] for [DataGenerator].
#[derive(Debug)]
pub struct DataGeneratorBatchIter {
    config: DataGenerator,
    batch_idx: usize,
}

impl Iterator for DataGeneratorBatchIter {
    type Item = ColumnarRecords;

    fn next(&mut self) -> Option<Self::Item> {
        let batch_idx = self.batch_idx;
        self.batch_idx += 1;
        self.config.gen_batch(batch_idx)
    }
}

/// Encodes the given data into a flat buffer that is exactly
/// `data.goodput_bytes()` long.
pub fn flat_blob(data: &DataGenerator) -> Vec<u8> {
    let mut buf = Vec::with_capacity(usize::cast_from(data.goodput_bytes()));
    for batch in data.batches() {
        for ((k, v), t, d) in batch.iter() {
            buf.extend_from_slice(k);
            buf.extend_from_slice(v);
            buf.extend_from_slice(&t);
            buf.extend_from_slice(&d);
        }
    }
    assert_eq!(buf.len(), usize::cast_from(data.goodput_bytes()));
    buf
}

#[cfg(test)]
mod tests {
    use super::*;

    #[mz_ore::test]
    fn size_invariants() {
        fn testcase(c: DataGenerator) {
            let (mut actual_len, mut actual_goodput_bytes) = (0, 0);
            for batch in c.batches() {
                for ((k, v), _, _) in batch.iter() {
                    actual_len += 1;
                    actual_goodput_bytes += k.len() + v.len() + TS_DIFF_GOODPUT_SIZE;
                }
            }
            assert_eq!(actual_len, c.record_count);
            assert_eq!(actual_goodput_bytes, usize::cast_from(c.goodput_bytes()));
        }

        testcase(DataGenerator::new(1, 32, 1));
        testcase(DataGenerator::new(1, 32, 100));
        testcase(DataGenerator::new(100, 32, 7));
        testcase(DataGenerator::new(1000, 32, 100));
    }

    #[mz_ore::test]
    fn goodput_pretty() {
        fn testcase(bytes: usize) -> String {
            DataGenerator::new(1, bytes, 1).goodput_pretty()
        }

        assert_eq!(testcase(33), "33B");
        assert_eq!(testcase(10 * 1024 - 1), "10239B");
        assert_eq!(testcase(10 * 1024), "10KiB");
        assert_eq!(testcase(10 * 1024 * 1024 - 1), "10239KiB");
        assert_eq!(testcase(10 * 1024 * 1024), "10MiB");
        assert_eq!(testcase(10 * 1024 * 1024 * 1024 - 1), "10239MiB");
        assert_eq!(testcase(10 * 1024 * 1024 * 1024), "10GiB");
        assert_eq!(testcase(10 * 1024 * 1024 * 1024 * 1024 - 1), "10239GiB");
        assert_eq!(testcase(10 * 1024 * 1024 * 1024 * 1024), "10240GiB"); // No TiB
    }
}