criterion/stats/univariate/kde/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
//! Kernel density estimation

pub mod kernel;

use self::kernel::Kernel;
use crate::stats::float::Float;
use crate::stats::univariate::Sample;
#[cfg(feature = "rayon")]
use rayon::prelude::*;

/// Univariate kernel density estimator
pub struct Kde<'a, A, K>
where
    A: Float,
    K: Kernel<A>,
{
    bandwidth: A,
    kernel: K,
    sample: &'a Sample<A>,
}

impl<'a, A, K> Kde<'a, A, K>
where
    A: 'a + Float,
    K: Kernel<A>,
{
    /// Creates a new kernel density estimator from the `sample`, using a kernel and estimating
    /// the bandwidth using the method `bw`
    pub fn new(sample: &'a Sample<A>, kernel: K, bw: Bandwidth) -> Kde<'a, A, K> {
        Kde {
            bandwidth: bw.estimate(sample),
            kernel,
            sample,
        }
    }

    /// Returns the bandwidth used by the estimator
    pub fn bandwidth(&self) -> A {
        self.bandwidth
    }

    /// Maps the KDE over `xs`
    ///
    /// - Multihreaded
    pub fn map(&self, xs: &[A]) -> Box<[A]> {
        #[cfg(feature = "rayon")]
        let iter = xs.par_iter();

        #[cfg(not(feature = "rayon"))]
        let iter = xs.iter();

        iter.map(|&x| self.estimate(x))
            .collect::<Vec<_>>()
            .into_boxed_slice()
    }

    /// Estimates the probability density of `x`
    pub fn estimate(&self, x: A) -> A {
        let _0 = A::cast(0);
        let slice = self.sample;
        let h = self.bandwidth;
        let n = A::cast(slice.len());

        let sum = slice
            .iter()
            .fold(_0, |acc, &x_i| acc + self.kernel.evaluate((x - x_i) / h));

        sum / (h * n)
    }
}

/// Method to estimate the bandwidth
pub enum Bandwidth {
    /// Use Silverman's rule of thumb to estimate the bandwidth from the sample
    Silverman,
}

impl Bandwidth {
    fn estimate<A: Float>(self, sample: &Sample<A>) -> A {
        match self {
            Bandwidth::Silverman => {
                let factor = A::cast(4. / 3.);
                let exponent = A::cast(1. / 5.);
                let n = A::cast(sample.len());
                let sigma = sample.std_dev(None);

                sigma * (factor / n).powf(exponent)
            }
        }
    }
}

#[cfg(test)]
macro_rules! test {
    ($ty:ident) => {
        mod $ty {
            use approx::relative_eq;
            use quickcheck::quickcheck;
            use quickcheck::TestResult;

            use crate::stats::univariate::kde::kernel::Gaussian;
            use crate::stats::univariate::kde::{Bandwidth, Kde};
            use crate::stats::univariate::Sample;

            // The [-inf inf] integral of the estimated PDF should be one
            quickcheck! {
                fn integral(size: u8, start: u8) -> TestResult {
                    let size = size as usize;
                    let start = start as usize;
                    const DX: $ty = 1e-3;

                    if let Some(v) = crate::stats::test::vec::<$ty>(size, start) {
                        let slice = &v[start..];
                        let data = Sample::new(slice);
                        let kde = Kde::new(data, Gaussian, Bandwidth::Silverman);
                        let h = kde.bandwidth();
                        // NB Obviously a [-inf inf] integral is not feasible, but this range works
                        // quite well
                        let (a, b) = (data.min() - 5. * h, data.max() + 5. * h);

                        let mut acc = 0.;
                        let mut x = a;
                        let mut y = kde.estimate(a);

                        while x < b {
                            acc += DX * y / 2.;

                            x += DX;
                            y = kde.estimate(x);

                            acc += DX * y / 2.;
                        }

                        TestResult::from_bool(relative_eq!(acc, 1., epsilon = 2e-5))
                    } else {
                        TestResult::discard()
                    }
                }
            }
        }
    };
}

#[cfg(test)]
mod test {
    test!(f32);
    test!(f64);
}