plotters/coord/ranged3d/
projection.rs

1use std::f64::consts::PI;
2use std::ops::Mul;
3
4/// The projection matrix which is used to project the 3D space to the 2D display panel
5#[derive(Clone, Debug, Copy)]
6pub struct ProjectionMatrix([[f64; 4]; 4]);
7
8impl AsRef<[[f64; 4]; 4]> for ProjectionMatrix {
9    fn as_ref(&self) -> &[[f64; 4]; 4] {
10        &self.0
11    }
12}
13
14impl AsMut<[[f64; 4]; 4]> for ProjectionMatrix {
15    fn as_mut(&mut self) -> &mut [[f64; 4]; 4] {
16        &mut self.0
17    }
18}
19
20impl From<[[f64; 4]; 4]> for ProjectionMatrix {
21    fn from(data: [[f64; 4]; 4]) -> Self {
22        ProjectionMatrix(data)
23    }
24}
25
26impl Default for ProjectionMatrix {
27    fn default() -> Self {
28        ProjectionMatrix::rotate(PI, 0.0, 0.0)
29    }
30}
31
32impl Mul<ProjectionMatrix> for ProjectionMatrix {
33    type Output = ProjectionMatrix;
34    fn mul(self, other: ProjectionMatrix) -> ProjectionMatrix {
35        let mut ret = ProjectionMatrix::zero();
36        for r in 0..4 {
37            for c in 0..4 {
38                for k in 0..4 {
39                    ret.0[r][c] += other.0[r][k] * self.0[k][c];
40                }
41            }
42        }
43        ret.normalize();
44        ret
45    }
46}
47
48impl Mul<(i32, i32, i32)> for ProjectionMatrix {
49    type Output = (i32, i32);
50    fn mul(self, (x, y, z): (i32, i32, i32)) -> (i32, i32) {
51        let (x, y, z) = (x as f64, y as f64, z as f64);
52        let m = self.0;
53        (
54            (x * m[0][0] + y * m[0][1] + z * m[0][2] + m[0][3]) as i32,
55            (x * m[1][0] + y * m[1][1] + z * m[1][2] + m[1][3]) as i32,
56        )
57    }
58}
59
60impl Mul<(f64, f64, f64)> for ProjectionMatrix {
61    type Output = (i32, i32);
62    fn mul(self, (x, y, z): (f64, f64, f64)) -> (i32, i32) {
63        let m = self.0;
64        (
65            (x * m[0][0] + y * m[0][1] + z * m[0][2] + m[0][3]) as i32,
66            (x * m[1][0] + y * m[1][1] + z * m[1][2] + m[1][3]) as i32,
67        )
68    }
69}
70
71impl ProjectionMatrix {
72    /// Returns the identity matrix
73    pub fn one() -> Self {
74        ProjectionMatrix([
75            [1.0, 0.0, 0.0, 0.0],
76            [0.0, 1.0, 0.0, 0.0],
77            [0.0, 0.0, 1.0, 0.0],
78            [0.0, 0.0, 0.0, 1.0],
79        ])
80    }
81    /// Returns the zero maxtrix
82    pub fn zero() -> Self {
83        ProjectionMatrix([[0.0; 4]; 4])
84    }
85    /// Returns the matrix which shift the coordinate
86    pub fn shift(x: f64, y: f64, z: f64) -> Self {
87        ProjectionMatrix([
88            [1.0, 0.0, 0.0, x],
89            [0.0, 1.0, 0.0, y],
90            [0.0, 0.0, 1.0, z],
91            [0.0, 0.0, 0.0, 1.0],
92        ])
93    }
94    /// Returns the matrix which rotates the coordinate
95    #[allow(clippy::many_single_char_names)]
96    pub fn rotate(x: f64, y: f64, z: f64) -> Self {
97        let (c, b, a) = (x, y, z);
98        ProjectionMatrix([
99            [
100                a.cos() * b.cos(),
101                a.cos() * b.sin() * c.sin() - a.sin() * c.cos(),
102                a.cos() * b.sin() * c.cos() + a.sin() * c.sin(),
103                0.0,
104            ],
105            [
106                a.sin() * b.cos(),
107                a.sin() * b.sin() * c.sin() + a.cos() * c.cos(),
108                a.sin() * b.sin() * c.cos() - a.cos() * c.sin(),
109                0.0,
110            ],
111            [-b.sin(), b.cos() * c.sin(), b.cos() * c.cos(), 0.0],
112            [0.0, 0.0, 0.0, 1.0],
113        ])
114    }
115    /// Returns the matrix that applies a scale factor
116    pub fn scale(factor: f64) -> Self {
117        ProjectionMatrix([
118            [1.0, 0.0, 0.0, 0.0],
119            [0.0, 1.0, 0.0, 0.0],
120            [0.0, 0.0, 1.0, 0.0],
121            [0.0, 0.0, 0.0, 1.0 / factor],
122        ])
123    }
124    /// Normalize the matrix, this will make the metric unit to 1
125    pub fn normalize(&mut self) {
126        if self.0[3][3] > 1e-20 {
127            for r in 0..4 {
128                for c in 0..4 {
129                    self.0[r][c] /= self.0[3][3];
130                }
131            }
132        }
133    }
134
135    /// Get the distance of the point in guest coordinate from the screen in pixels
136    pub fn projected_depth(&self, (x, y, z): (i32, i32, i32)) -> i32 {
137        let r = &self.0[2];
138        (r[0] * x as f64 + r[1] * y as f64 + r[2] * z as f64 + r[3]) as i32
139    }
140}
141
142/// The helper struct to build a projection matrix
143#[derive(Copy, Clone)]
144pub struct ProjectionMatrixBuilder {
145    /// Specifies the yaw of the 3D coordinate system
146    pub yaw: f64,
147    /// Specifies the pitch of the 3D coordinate system
148    pub pitch: f64,
149    /// Specifies the scale of the 3D coordinate system
150    pub scale: f64,
151    pivot_before: (i32, i32, i32),
152    pivot_after: (i32, i32),
153}
154
155impl Default for ProjectionMatrixBuilder {
156    fn default() -> Self {
157        Self {
158            yaw: 0.5,
159            pitch: 0.15,
160            scale: 1.0,
161            pivot_after: (0, 0),
162            pivot_before: (0, 0, 0),
163        }
164    }
165}
166
167impl ProjectionMatrixBuilder {
168    /// Creates a new, default projection matrix builder object.
169    pub fn new() -> Self {
170        Self::default()
171    }
172
173    /// Set the pivot point, which means the 3D coordinate "before" should be mapped into
174    /// the 2D coordinatet "after"
175    pub fn set_pivot(&mut self, before: (i32, i32, i32), after: (i32, i32)) -> &mut Self {
176        self.pivot_before = before;
177        self.pivot_after = after;
178        self
179    }
180
181    /// Build the matrix based on the configuration
182    pub fn into_matrix(self) -> ProjectionMatrix {
183        let mut ret = if self.pivot_before == (0, 0, 0) {
184            ProjectionMatrix::default()
185        } else {
186            let (x, y, z) = self.pivot_before;
187            ProjectionMatrix::shift(-x as f64, -y as f64, -z as f64) * ProjectionMatrix::default()
188        };
189
190        if self.yaw.abs() > 1e-20 {
191            ret = ret * ProjectionMatrix::rotate(0.0, self.yaw, 0.0);
192        }
193
194        if self.pitch.abs() > 1e-20 {
195            ret = ret * ProjectionMatrix::rotate(self.pitch, 0.0, 0.0);
196        }
197
198        if (self.scale - 1.0).abs() > 1e-20 {
199            ret = ret * ProjectionMatrix::scale(self.scale);
200        }
201
202        if self.pivot_after != (0, 0) {
203            let (x, y) = self.pivot_after;
204            ret = ret * ProjectionMatrix::shift(x as f64, y as f64, 0.0);
205        }
206
207        ret
208    }
209}