1use std::f64::consts::PI;
2use std::ops::Mul;
3
4#[derive(Clone, Debug, Copy)]
6pub struct ProjectionMatrix([[f64; 4]; 4]);
7
8impl AsRef<[[f64; 4]; 4]> for ProjectionMatrix {
9 fn as_ref(&self) -> &[[f64; 4]; 4] {
10 &self.0
11 }
12}
13
14impl AsMut<[[f64; 4]; 4]> for ProjectionMatrix {
15 fn as_mut(&mut self) -> &mut [[f64; 4]; 4] {
16 &mut self.0
17 }
18}
19
20impl From<[[f64; 4]; 4]> for ProjectionMatrix {
21 fn from(data: [[f64; 4]; 4]) -> Self {
22 ProjectionMatrix(data)
23 }
24}
25
26impl Default for ProjectionMatrix {
27 fn default() -> Self {
28 ProjectionMatrix::rotate(PI, 0.0, 0.0)
29 }
30}
31
32impl Mul<ProjectionMatrix> for ProjectionMatrix {
33 type Output = ProjectionMatrix;
34 fn mul(self, other: ProjectionMatrix) -> ProjectionMatrix {
35 let mut ret = ProjectionMatrix::zero();
36 for r in 0..4 {
37 for c in 0..4 {
38 for k in 0..4 {
39 ret.0[r][c] += other.0[r][k] * self.0[k][c];
40 }
41 }
42 }
43 ret.normalize();
44 ret
45 }
46}
47
48impl Mul<(i32, i32, i32)> for ProjectionMatrix {
49 type Output = (i32, i32);
50 fn mul(self, (x, y, z): (i32, i32, i32)) -> (i32, i32) {
51 let (x, y, z) = (x as f64, y as f64, z as f64);
52 let m = self.0;
53 (
54 (x * m[0][0] + y * m[0][1] + z * m[0][2] + m[0][3]) as i32,
55 (x * m[1][0] + y * m[1][1] + z * m[1][2] + m[1][3]) as i32,
56 )
57 }
58}
59
60impl Mul<(f64, f64, f64)> for ProjectionMatrix {
61 type Output = (i32, i32);
62 fn mul(self, (x, y, z): (f64, f64, f64)) -> (i32, i32) {
63 let m = self.0;
64 (
65 (x * m[0][0] + y * m[0][1] + z * m[0][2] + m[0][3]) as i32,
66 (x * m[1][0] + y * m[1][1] + z * m[1][2] + m[1][3]) as i32,
67 )
68 }
69}
70
71impl ProjectionMatrix {
72 pub fn one() -> Self {
74 ProjectionMatrix([
75 [1.0, 0.0, 0.0, 0.0],
76 [0.0, 1.0, 0.0, 0.0],
77 [0.0, 0.0, 1.0, 0.0],
78 [0.0, 0.0, 0.0, 1.0],
79 ])
80 }
81 pub fn zero() -> Self {
83 ProjectionMatrix([[0.0; 4]; 4])
84 }
85 pub fn shift(x: f64, y: f64, z: f64) -> Self {
87 ProjectionMatrix([
88 [1.0, 0.0, 0.0, x],
89 [0.0, 1.0, 0.0, y],
90 [0.0, 0.0, 1.0, z],
91 [0.0, 0.0, 0.0, 1.0],
92 ])
93 }
94 pub fn rotate(x: f64, y: f64, z: f64) -> Self {
96 let (c, b, a) = (x, y, z);
97 ProjectionMatrix([
98 [
99 a.cos() * b.cos(),
100 a.cos() * b.sin() * c.sin() - a.sin() * c.cos(),
101 a.cos() * b.sin() * c.cos() + a.sin() * c.sin(),
102 0.0,
103 ],
104 [
105 a.sin() * b.cos(),
106 a.sin() * b.sin() * c.sin() + a.cos() * c.cos(),
107 a.sin() * b.sin() * c.cos() - a.cos() * c.sin(),
108 0.0,
109 ],
110 [-b.sin(), b.cos() * c.sin(), b.cos() * c.cos(), 0.0],
111 [0.0, 0.0, 0.0, 1.0],
112 ])
113 }
114 pub fn scale(factor: f64) -> Self {
116 ProjectionMatrix([
117 [1.0, 0.0, 0.0, 0.0],
118 [0.0, 1.0, 0.0, 0.0],
119 [0.0, 0.0, 1.0, 0.0],
120 [0.0, 0.0, 0.0, 1.0 / factor],
121 ])
122 }
123 pub fn normalize(&mut self) {
125 if self.0[3][3] > 1e-20 {
126 for r in 0..4 {
127 for c in 0..4 {
128 self.0[r][c] /= self.0[3][3];
129 }
130 }
131 }
132 }
133
134 pub fn projected_depth(&self, (x, y, z): (i32, i32, i32)) -> i32 {
136 let r = &self.0[2];
137 (r[0] * x as f64 + r[1] * y as f64 + r[2] * z as f64 + r[3]) as i32
138 }
139}
140
141#[derive(Copy, Clone)]
143pub struct ProjectionMatrixBuilder {
144 pub yaw: f64,
145 pub pitch: f64,
146 pub scale: f64,
147 pivot_before: (i32, i32, i32),
148 pivot_after: (i32, i32),
149}
150
151impl ProjectionMatrixBuilder {
152 pub fn new() -> Self {
153 Self {
154 yaw: 0.5,
155 pitch: 0.15,
156 scale: 1.0,
157 pivot_after: (0, 0),
158 pivot_before: (0, 0, 0),
159 }
160 }
161
162 pub fn set_pivot(&mut self, before: (i32, i32, i32), after: (i32, i32)) -> &mut Self {
165 self.pivot_before = before;
166 self.pivot_after = after;
167 self
168 }
169
170 pub fn into_matrix(self) -> ProjectionMatrix {
172 let mut ret = if self.pivot_before == (0, 0, 0) {
173 ProjectionMatrix::default()
174 } else {
175 let (x, y, z) = self.pivot_before;
176 ProjectionMatrix::shift(-x as f64, -y as f64, -z as f64) * ProjectionMatrix::default()
177 };
178
179 if self.yaw.abs() > 1e-20 {
180 ret = ret * ProjectionMatrix::rotate(0.0, self.yaw, 0.0);
181 }
182
183 if self.pitch.abs() > 1e-20 {
184 ret = ret * ProjectionMatrix::rotate(self.pitch, 0.0, 0.0);
185 }
186
187 if (self.scale - 1.0).abs() > 1e-20 {
188 ret = ret * ProjectionMatrix::scale(self.scale);
189 }
190
191 if self.pivot_after != (0, 0) {
192 let (x, y) = self.pivot_after;
193 ret = ret * ProjectionMatrix::shift(x as f64, y as f64, 0.0);
194 }
195
196 ret
197 }
198}