plotters/coord/ranged3d/
projection.rs

1use std::f64::consts::PI;
2use std::ops::Mul;
3
4/// The projection matrix which is used to project the 3D space to the 2D display panel
5#[derive(Clone, Debug, Copy)]
6pub struct ProjectionMatrix([[f64; 4]; 4]);
7
8impl AsRef<[[f64; 4]; 4]> for ProjectionMatrix {
9    fn as_ref(&self) -> &[[f64; 4]; 4] {
10        &self.0
11    }
12}
13
14impl AsMut<[[f64; 4]; 4]> for ProjectionMatrix {
15    fn as_mut(&mut self) -> &mut [[f64; 4]; 4] {
16        &mut self.0
17    }
18}
19
20impl From<[[f64; 4]; 4]> for ProjectionMatrix {
21    fn from(data: [[f64; 4]; 4]) -> Self {
22        ProjectionMatrix(data)
23    }
24}
25
26impl Default for ProjectionMatrix {
27    fn default() -> Self {
28        ProjectionMatrix::rotate(PI, 0.0, 0.0)
29    }
30}
31
32impl Mul<ProjectionMatrix> for ProjectionMatrix {
33    type Output = ProjectionMatrix;
34    fn mul(self, other: ProjectionMatrix) -> ProjectionMatrix {
35        let mut ret = ProjectionMatrix::zero();
36        for r in 0..4 {
37            for c in 0..4 {
38                for k in 0..4 {
39                    ret.0[r][c] += other.0[r][k] * self.0[k][c];
40                }
41            }
42        }
43        ret.normalize();
44        ret
45    }
46}
47
48impl Mul<(i32, i32, i32)> for ProjectionMatrix {
49    type Output = (i32, i32);
50    fn mul(self, (x, y, z): (i32, i32, i32)) -> (i32, i32) {
51        let (x, y, z) = (x as f64, y as f64, z as f64);
52        let m = self.0;
53        (
54            (x * m[0][0] + y * m[0][1] + z * m[0][2] + m[0][3]) as i32,
55            (x * m[1][0] + y * m[1][1] + z * m[1][2] + m[1][3]) as i32,
56        )
57    }
58}
59
60impl Mul<(f64, f64, f64)> for ProjectionMatrix {
61    type Output = (i32, i32);
62    fn mul(self, (x, y, z): (f64, f64, f64)) -> (i32, i32) {
63        let m = self.0;
64        (
65            (x * m[0][0] + y * m[0][1] + z * m[0][2] + m[0][3]) as i32,
66            (x * m[1][0] + y * m[1][1] + z * m[1][2] + m[1][3]) as i32,
67        )
68    }
69}
70
71impl ProjectionMatrix {
72    /// Returns the identity matrix
73    pub fn one() -> Self {
74        ProjectionMatrix([
75            [1.0, 0.0, 0.0, 0.0],
76            [0.0, 1.0, 0.0, 0.0],
77            [0.0, 0.0, 1.0, 0.0],
78            [0.0, 0.0, 0.0, 1.0],
79        ])
80    }
81    /// Returns the zero maxtrix
82    pub fn zero() -> Self {
83        ProjectionMatrix([[0.0; 4]; 4])
84    }
85    /// Returns the matrix which shift the coordinate
86    pub fn shift(x: f64, y: f64, z: f64) -> Self {
87        ProjectionMatrix([
88            [1.0, 0.0, 0.0, x],
89            [0.0, 1.0, 0.0, y],
90            [0.0, 0.0, 1.0, z],
91            [0.0, 0.0, 0.0, 1.0],
92        ])
93    }
94    /// Returns the matrix which rotates the coordinate
95    pub fn rotate(x: f64, y: f64, z: f64) -> Self {
96        let (c, b, a) = (x, y, z);
97        ProjectionMatrix([
98            [
99                a.cos() * b.cos(),
100                a.cos() * b.sin() * c.sin() - a.sin() * c.cos(),
101                a.cos() * b.sin() * c.cos() + a.sin() * c.sin(),
102                0.0,
103            ],
104            [
105                a.sin() * b.cos(),
106                a.sin() * b.sin() * c.sin() + a.cos() * c.cos(),
107                a.sin() * b.sin() * c.cos() - a.cos() * c.sin(),
108                0.0,
109            ],
110            [-b.sin(), b.cos() * c.sin(), b.cos() * c.cos(), 0.0],
111            [0.0, 0.0, 0.0, 1.0],
112        ])
113    }
114    /// Returns the matrix that applies a scale factor
115    pub fn scale(factor: f64) -> Self {
116        ProjectionMatrix([
117            [1.0, 0.0, 0.0, 0.0],
118            [0.0, 1.0, 0.0, 0.0],
119            [0.0, 0.0, 1.0, 0.0],
120            [0.0, 0.0, 0.0, 1.0 / factor],
121        ])
122    }
123    /// Normalize the matrix, this will make the metric unit to 1
124    pub fn normalize(&mut self) {
125        if self.0[3][3] > 1e-20 {
126            for r in 0..4 {
127                for c in 0..4 {
128                    self.0[r][c] /= self.0[3][3];
129                }
130            }
131        }
132    }
133
134    /// Get the distance of the point in guest coordinate from the screen in pixels
135    pub fn projected_depth(&self, (x, y, z): (i32, i32, i32)) -> i32 {
136        let r = &self.0[2];
137        (r[0] * x as f64 + r[1] * y as f64 + r[2] * z as f64 + r[3]) as i32
138    }
139}
140
141/// The helper struct to build a projection matrix
142#[derive(Copy, Clone)]
143pub struct ProjectionMatrixBuilder {
144    pub yaw: f64,
145    pub pitch: f64,
146    pub scale: f64,
147    pivot_before: (i32, i32, i32),
148    pivot_after: (i32, i32),
149}
150
151impl ProjectionMatrixBuilder {
152    pub fn new() -> Self {
153        Self {
154            yaw: 0.5,
155            pitch: 0.15,
156            scale: 1.0,
157            pivot_after: (0, 0),
158            pivot_before: (0, 0, 0),
159        }
160    }
161
162    /// Set the pivot point, which means the 3D coordinate "before" should be mapped into
163    /// the 2D coordinatet "after"
164    pub fn set_pivot(&mut self, before: (i32, i32, i32), after: (i32, i32)) -> &mut Self {
165        self.pivot_before = before;
166        self.pivot_after = after;
167        self
168    }
169
170    /// Build the matrix based on the configuration
171    pub fn into_matrix(self) -> ProjectionMatrix {
172        let mut ret = if self.pivot_before == (0, 0, 0) {
173            ProjectionMatrix::default()
174        } else {
175            let (x, y, z) = self.pivot_before;
176            ProjectionMatrix::shift(-x as f64, -y as f64, -z as f64) * ProjectionMatrix::default()
177        };
178
179        if self.yaw.abs() > 1e-20 {
180            ret = ret * ProjectionMatrix::rotate(0.0, self.yaw, 0.0);
181        }
182
183        if self.pitch.abs() > 1e-20 {
184            ret = ret * ProjectionMatrix::rotate(self.pitch, 0.0, 0.0);
185        }
186
187        if (self.scale - 1.0).abs() > 1e-20 {
188            ret = ret * ProjectionMatrix::scale(self.scale);
189        }
190
191        if self.pivot_after != (0, 0) {
192            let (x, y) = self.pivot_after;
193            ret = ret * ProjectionMatrix::shift(x as f64, y as f64, 0.0);
194        }
195
196        ret
197    }
198}