plotters/coord/ranged3d/
projection.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
use std::f64::consts::PI;
use std::ops::Mul;

/// The projection matrix which is used to project the 3D space to the 2D display panel
#[derive(Clone, Debug, Copy)]
pub struct ProjectionMatrix([[f64; 4]; 4]);

impl AsRef<[[f64; 4]; 4]> for ProjectionMatrix {
    fn as_ref(&self) -> &[[f64; 4]; 4] {
        &self.0
    }
}

impl AsMut<[[f64; 4]; 4]> for ProjectionMatrix {
    fn as_mut(&mut self) -> &mut [[f64; 4]; 4] {
        &mut self.0
    }
}

impl From<[[f64; 4]; 4]> for ProjectionMatrix {
    fn from(data: [[f64; 4]; 4]) -> Self {
        ProjectionMatrix(data)
    }
}

impl Default for ProjectionMatrix {
    fn default() -> Self {
        ProjectionMatrix::rotate(PI, 0.0, 0.0)
    }
}

impl Mul<ProjectionMatrix> for ProjectionMatrix {
    type Output = ProjectionMatrix;
    fn mul(self, other: ProjectionMatrix) -> ProjectionMatrix {
        let mut ret = ProjectionMatrix::zero();
        for r in 0..4 {
            for c in 0..4 {
                for k in 0..4 {
                    ret.0[r][c] += other.0[r][k] * self.0[k][c];
                }
            }
        }
        ret.normalize();
        ret
    }
}

impl Mul<(i32, i32, i32)> for ProjectionMatrix {
    type Output = (i32, i32);
    fn mul(self, (x, y, z): (i32, i32, i32)) -> (i32, i32) {
        let (x, y, z) = (x as f64, y as f64, z as f64);
        let m = self.0;
        (
            (x * m[0][0] + y * m[0][1] + z * m[0][2] + m[0][3]) as i32,
            (x * m[1][0] + y * m[1][1] + z * m[1][2] + m[1][3]) as i32,
        )
    }
}

impl Mul<(f64, f64, f64)> for ProjectionMatrix {
    type Output = (i32, i32);
    fn mul(self, (x, y, z): (f64, f64, f64)) -> (i32, i32) {
        let m = self.0;
        (
            (x * m[0][0] + y * m[0][1] + z * m[0][2] + m[0][3]) as i32,
            (x * m[1][0] + y * m[1][1] + z * m[1][2] + m[1][3]) as i32,
        )
    }
}

impl ProjectionMatrix {
    /// Returns the identity matrix
    pub fn one() -> Self {
        ProjectionMatrix([
            [1.0, 0.0, 0.0, 0.0],
            [0.0, 1.0, 0.0, 0.0],
            [0.0, 0.0, 1.0, 0.0],
            [0.0, 0.0, 0.0, 1.0],
        ])
    }
    /// Returns the zero maxtrix
    pub fn zero() -> Self {
        ProjectionMatrix([[0.0; 4]; 4])
    }
    /// Returns the matrix which shift the coordinate
    pub fn shift(x: f64, y: f64, z: f64) -> Self {
        ProjectionMatrix([
            [1.0, 0.0, 0.0, x],
            [0.0, 1.0, 0.0, y],
            [0.0, 0.0, 1.0, z],
            [0.0, 0.0, 0.0, 1.0],
        ])
    }
    /// Returns the matrix which rotates the coordinate
    pub fn rotate(x: f64, y: f64, z: f64) -> Self {
        let (c, b, a) = (x, y, z);
        ProjectionMatrix([
            [
                a.cos() * b.cos(),
                a.cos() * b.sin() * c.sin() - a.sin() * c.cos(),
                a.cos() * b.sin() * c.cos() + a.sin() * c.sin(),
                0.0,
            ],
            [
                a.sin() * b.cos(),
                a.sin() * b.sin() * c.sin() + a.cos() * c.cos(),
                a.sin() * b.sin() * c.cos() - a.cos() * c.sin(),
                0.0,
            ],
            [-b.sin(), b.cos() * c.sin(), b.cos() * c.cos(), 0.0],
            [0.0, 0.0, 0.0, 1.0],
        ])
    }
    /// Returns the matrix that applies a scale factor
    pub fn scale(factor: f64) -> Self {
        ProjectionMatrix([
            [1.0, 0.0, 0.0, 0.0],
            [0.0, 1.0, 0.0, 0.0],
            [0.0, 0.0, 1.0, 0.0],
            [0.0, 0.0, 0.0, 1.0 / factor],
        ])
    }
    /// Normalize the matrix, this will make the metric unit to 1
    pub fn normalize(&mut self) {
        if self.0[3][3] > 1e-20 {
            for r in 0..4 {
                for c in 0..4 {
                    self.0[r][c] /= self.0[3][3];
                }
            }
        }
    }

    /// Get the distance of the point in guest coordinate from the screen in pixels
    pub fn projected_depth(&self, (x, y, z): (i32, i32, i32)) -> i32 {
        let r = &self.0[2];
        (r[0] * x as f64 + r[1] * y as f64 + r[2] * z as f64 + r[3]) as i32
    }
}

/// The helper struct to build a projection matrix
#[derive(Copy, Clone)]
pub struct ProjectionMatrixBuilder {
    pub yaw: f64,
    pub pitch: f64,
    pub scale: f64,
    pivot_before: (i32, i32, i32),
    pivot_after: (i32, i32),
}

impl ProjectionMatrixBuilder {
    pub fn new() -> Self {
        Self {
            yaw: 0.5,
            pitch: 0.15,
            scale: 1.0,
            pivot_after: (0, 0),
            pivot_before: (0, 0, 0),
        }
    }

    /// Set the pivot point, which means the 3D coordinate "before" should be mapped into
    /// the 2D coordinatet "after"
    pub fn set_pivot(&mut self, before: (i32, i32, i32), after: (i32, i32)) -> &mut Self {
        self.pivot_before = before;
        self.pivot_after = after;
        self
    }

    /// Build the matrix based on the configuration
    pub fn into_matrix(self) -> ProjectionMatrix {
        let mut ret = if self.pivot_before == (0, 0, 0) {
            ProjectionMatrix::default()
        } else {
            let (x, y, z) = self.pivot_before;
            ProjectionMatrix::shift(-x as f64, -y as f64, -z as f64) * ProjectionMatrix::default()
        };

        if self.yaw.abs() > 1e-20 {
            ret = ret * ProjectionMatrix::rotate(0.0, self.yaw, 0.0);
        }

        if self.pitch.abs() > 1e-20 {
            ret = ret * ProjectionMatrix::rotate(self.pitch, 0.0, 0.0);
        }

        if (self.scale - 1.0).abs() > 1e-20 {
            ret = ret * ProjectionMatrix::scale(self.scale);
        }

        if self.pivot_after != (0, 0) {
            let (x, y) = self.pivot_after;
            ret = ret * ProjectionMatrix::shift(x as f64, y as f64, 0.0);
        }

        ret
    }
}