plotters/drawing/
area.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
use crate::coord::cartesian::{Cartesian2d, MeshLine};
use crate::coord::ranged1d::{KeyPointHint, Ranged};
use crate::coord::{CoordTranslate, Shift};
use crate::element::{CoordMapper, Drawable, PointCollection};
use crate::style::text_anchor::{HPos, Pos, VPos};
use crate::style::{Color, SizeDesc, TextStyle};

/// The abstraction of a drawing area
use plotters_backend::{BackendCoord, DrawingBackend, DrawingErrorKind};

use std::borrow::Borrow;
use std::cell::RefCell;
use std::error::Error;
use std::iter::{once, repeat};
use std::ops::Range;
use std::rc::Rc;

/// The representation of the rectangle in backend canvas
#[derive(Clone, Debug)]
pub struct Rect {
    x0: i32,
    y0: i32,
    x1: i32,
    y1: i32,
}

impl Rect {
    /// Split the rectangle into a few smaller rectangles
    fn split<'a, BPI: IntoIterator<Item = &'a i32> + 'a>(
        &'a self,
        break_points: BPI,
        vertical: bool,
    ) -> impl Iterator<Item = Rect> + 'a {
        let (mut x0, mut y0) = (self.x0, self.y0);
        let (full_x, full_y) = (self.x1, self.y1);
        break_points
            .into_iter()
            .chain(once(if vertical { &self.y1 } else { &self.x1 }))
            .map(move |&p| {
                let x1 = if vertical { full_x } else { p };
                let y1 = if vertical { p } else { full_y };
                let ret = Rect { x0, y0, x1, y1 };

                if vertical {
                    y0 = y1
                } else {
                    x0 = x1;
                }

                ret
            })
    }

    /// Evenly split the rectangle to a row * col mesh
    fn split_evenly<'a>(&'a self, (row, col): (usize, usize)) -> impl Iterator<Item = Rect> + 'a {
        fn compute_evenly_split(from: i32, to: i32, n: usize, idx: usize) -> i32 {
            let size = (to - from) as usize;
            from + idx as i32 * (size / n) as i32 + idx.min(size % n) as i32
        }
        (0..row)
            .map(move |x| repeat(x).zip(0..col))
            .flatten()
            .map(move |(ri, ci)| Self {
                y0: compute_evenly_split(self.y0, self.y1, row, ri),
                y1: compute_evenly_split(self.y0, self.y1, row, ri + 1),
                x0: compute_evenly_split(self.x0, self.x1, col, ci),
                x1: compute_evenly_split(self.x0, self.x1, col, ci + 1),
            })
    }

    fn split_grid(
        &self,
        x_breaks: impl Iterator<Item = i32>,
        y_breaks: impl Iterator<Item = i32>,
    ) -> impl Iterator<Item = Rect> {
        let mut xs = vec![self.x0, self.x1];
        let mut ys = vec![self.y0, self.y1];
        xs.extend(x_breaks.map(|v| v + self.x0));
        ys.extend(y_breaks.map(|v| v + self.y0));

        xs.sort();
        ys.sort();

        let xsegs: Vec<_> = xs
            .iter()
            .zip(xs.iter().skip(1))
            .map(|(a, b)| (*a, *b))
            .collect();
        let ysegs: Vec<_> = ys
            .iter()
            .zip(ys.iter().skip(1))
            .map(|(a, b)| (*a, *b))
            .collect();

        ysegs
            .into_iter()
            .map(move |(y0, y1)| {
                xsegs
                    .clone()
                    .into_iter()
                    .map(move |(x0, x1)| Self { x0, y0, x1, y1 })
            })
            .flatten()
    }

    /// Make the coordinate in the range of the rectangle
    pub fn truncate(&self, p: (i32, i32)) -> (i32, i32) {
        (p.0.min(self.x1).max(self.x0), p.1.min(self.y1).max(self.y0))
    }
}

/// The abstraction of a drawing area. Plotters uses drawing area as the fundamental abstraction for the
/// high level drawing API. The major functionality provided by the drawing area is
///     1. Layout specification - Split the parent drawing area into sub-drawing-areas
///     2. Coordinate Translation - Allows guest coordinate system attached and used for drawing.
///     3. Element based drawing - drawing area provides the environment the element can be drawn onto it.
pub struct DrawingArea<DB: DrawingBackend, CT: CoordTranslate> {
    backend: Rc<RefCell<DB>>,
    rect: Rect,
    coord: CT,
}

impl<DB: DrawingBackend, CT: CoordTranslate + Clone> Clone for DrawingArea<DB, CT> {
    fn clone(&self) -> Self {
        Self {
            backend: self.backend.clone(),
            rect: self.rect.clone(),
            coord: self.coord.clone(),
        }
    }
}

/// The error description of any drawing area API
#[derive(Debug)]
pub enum DrawingAreaErrorKind<E: Error + Send + Sync> {
    /// The error is due to drawing backend failure
    BackendError(DrawingErrorKind<E>),
    /// We are not able to get the mutable reference of the backend,
    /// which indicates the drawing backend is current used by other
    /// drawing operation
    SharingError,
    /// The error caused by invalid layout
    LayoutError,
}

impl<E: Error + Send + Sync> std::fmt::Display for DrawingAreaErrorKind<E> {
    fn fmt(&self, fmt: &mut std::fmt::Formatter) -> Result<(), std::fmt::Error> {
        match self {
            DrawingAreaErrorKind::BackendError(e) => write!(fmt, "backend error: {}", e),
            DrawingAreaErrorKind::SharingError => {
                write!(fmt, "Multiple backend operation in progress")
            }
            DrawingAreaErrorKind::LayoutError => write!(fmt, "Bad layout"),
        }
    }
}

impl<E: Error + Send + Sync> Error for DrawingAreaErrorKind<E> {}

#[allow(type_alias_bounds)]
type DrawingAreaError<T: DrawingBackend> = DrawingAreaErrorKind<T::ErrorType>;

impl<DB: DrawingBackend> From<DB> for DrawingArea<DB, Shift> {
    fn from(backend: DB) -> Self {
        Self::with_rc_cell(Rc::new(RefCell::new(backend)))
    }
}

impl<'a, DB: DrawingBackend> From<&'a Rc<RefCell<DB>>> for DrawingArea<DB, Shift> {
    fn from(backend: &'a Rc<RefCell<DB>>) -> Self {
        Self::with_rc_cell(backend.clone())
    }
}

/// A type which can be converted into a root drawing area
pub trait IntoDrawingArea: DrawingBackend + Sized {
    /// Convert the type into a root drawing area
    fn into_drawing_area(self) -> DrawingArea<Self, Shift>;
}

impl<T: DrawingBackend> IntoDrawingArea for T {
    fn into_drawing_area(self) -> DrawingArea<T, Shift> {
        self.into()
    }
}

impl<DB: DrawingBackend, X: Ranged, Y: Ranged> DrawingArea<DB, Cartesian2d<X, Y>> {
    /// Draw the mesh on a area
    pub fn draw_mesh<DrawFunc, YH: KeyPointHint, XH: KeyPointHint>(
        &self,
        mut draw_func: DrawFunc,
        y_count_max: YH,
        x_count_max: XH,
    ) -> Result<(), DrawingAreaErrorKind<DB::ErrorType>>
    where
        DrawFunc: FnMut(&mut DB, MeshLine<X, Y>) -> Result<(), DrawingErrorKind<DB::ErrorType>>,
    {
        self.backend_ops(move |b| {
            self.coord
                .draw_mesh(y_count_max, x_count_max, |line| draw_func(b, line))
        })
    }

    /// Get the range of X of the guest coordinate for current drawing area
    pub fn get_x_range(&self) -> Range<X::ValueType> {
        self.coord.get_x_range()
    }

    /// Get the range of Y of the guest coordinate for current drawing area
    pub fn get_y_range(&self) -> Range<Y::ValueType> {
        self.coord.get_y_range()
    }

    pub fn get_x_axis_pixel_range(&self) -> Range<i32> {
        self.coord.get_x_axis_pixel_range()
    }

    pub fn get_y_axis_pixel_range(&self) -> Range<i32> {
        self.coord.get_y_axis_pixel_range()
    }
}

impl<DB: DrawingBackend, CT: CoordTranslate> DrawingArea<DB, CT> {
    /// Get the left upper conner of this area in the drawing backend
    pub fn get_base_pixel(&self) -> BackendCoord {
        (self.rect.x0, self.rect.y0)
    }

    /// Strip the applied coordinate specification and returns a shift-based drawing area
    pub fn strip_coord_spec(&self) -> DrawingArea<DB, Shift> {
        DrawingArea {
            rect: self.rect.clone(),
            backend: self.backend.clone(),
            coord: Shift((self.rect.x0, self.rect.y0)),
        }
    }

    pub fn use_screen_coord(&self) -> DrawingArea<DB, Shift> {
        DrawingArea {
            rect: self.rect.clone(),
            backend: self.backend.clone(),
            coord: Shift((0, 0)),
        }
    }

    /// Get the area dimension in pixel
    pub fn dim_in_pixel(&self) -> (u32, u32) {
        (
            (self.rect.x1 - self.rect.x0) as u32,
            (self.rect.y1 - self.rect.y0) as u32,
        )
    }

    /// Compute the relative size based on the drawing area's height
    pub fn relative_to_height(&self, p: f64) -> f64 {
        f64::from((self.rect.y1 - self.rect.y0).max(0)) * (p.min(1.0).max(0.0))
    }

    /// Compute the relative size based on the drawing area's width
    pub fn relative_to_width(&self, p: f64) -> f64 {
        f64::from((self.rect.x1 - self.rect.x0).max(0)) * (p.min(1.0).max(0.0))
    }

    /// Get the pixel range of this area
    pub fn get_pixel_range(&self) -> (Range<i32>, Range<i32>) {
        (self.rect.x0..self.rect.x1, self.rect.y0..self.rect.y1)
    }

    /// Perform operation on the drawing backend
    fn backend_ops<R, O: FnOnce(&mut DB) -> Result<R, DrawingErrorKind<DB::ErrorType>>>(
        &self,
        ops: O,
    ) -> Result<R, DrawingAreaError<DB>> {
        if let Ok(mut db) = self.backend.try_borrow_mut() {
            db.ensure_prepared()
                .map_err(DrawingAreaErrorKind::BackendError)?;
            ops(&mut db).map_err(DrawingAreaErrorKind::BackendError)
        } else {
            Err(DrawingAreaErrorKind::SharingError)
        }
    }

    /// Fill the entire drawing area with a color
    pub fn fill<ColorType: Color>(&self, color: &ColorType) -> Result<(), DrawingAreaError<DB>> {
        self.backend_ops(|backend| {
            backend.draw_rect(
                (self.rect.x0, self.rect.y0),
                (self.rect.x1 - 1, self.rect.y1 - 1),
                &color.to_backend_color(),
                true,
            )
        })
    }

    /// Draw a single pixel
    pub fn draw_pixel<ColorType: Color>(
        &self,
        pos: CT::From,
        color: &ColorType,
    ) -> Result<(), DrawingAreaError<DB>> {
        let pos = self.coord.translate(&pos);
        self.backend_ops(|b| b.draw_pixel(pos, color.to_backend_color()))
    }

    /// Present all the pending changes to the backend
    pub fn present(&self) -> Result<(), DrawingAreaError<DB>> {
        self.backend_ops(|b| b.present())
    }

    /// Draw an high-level element
    pub fn draw<'a, E, B>(&self, element: &'a E) -> Result<(), DrawingAreaError<DB>>
    where
        B: CoordMapper,
        &'a E: PointCollection<'a, CT::From, B>,
        E: Drawable<DB, B>,
    {
        let backend_coords = element.point_iter().into_iter().map(|p| {
            let b = p.borrow();
            B::map(&self.coord, b, &self.rect)
        });
        self.backend_ops(move |b| element.draw(backend_coords, b, self.dim_in_pixel()))
    }

    /// Map coordinate to the backend coordinate
    pub fn map_coordinate(&self, coord: &CT::From) -> BackendCoord {
        self.coord.translate(coord)
    }

    /// Estimate the dimension of the text if drawn on this drawing area.
    /// We can't get this directly from the font, since the drawing backend may or may not
    /// follows the font configuration. In terminal, the font family will be dropped.
    /// So the size of the text is drawing area related.
    ///
    /// - `text`: The text we want to estimate
    /// - `font`: The font spec in which we want to draw the text
    /// - **return**: The size of the text if drawn on this area
    pub fn estimate_text_size(
        &self,
        text: &str,
        style: &TextStyle,
    ) -> Result<(u32, u32), DrawingAreaError<DB>> {
        self.backend_ops(move |b| b.estimate_text_size(text, style))
    }
}

impl<DB: DrawingBackend> DrawingArea<DB, Shift> {
    fn with_rc_cell(backend: Rc<RefCell<DB>>) -> Self {
        let (x1, y1) = RefCell::borrow(backend.borrow()).get_size();
        Self {
            rect: Rect {
                x0: 0,
                y0: 0,
                x1: x1 as i32,
                y1: y1 as i32,
            },
            backend,
            coord: Shift((0, 0)),
        }
    }

    /// Shrink the region, note all the locations are in guest coordinate
    pub fn shrink<A: SizeDesc, B: SizeDesc, C: SizeDesc, D: SizeDesc>(
        mut self,
        left_upper: (A, B),
        dimension: (C, D),
    ) -> DrawingArea<DB, Shift> {
        let left_upper = (left_upper.0.in_pixels(&self), left_upper.1.in_pixels(&self));
        let dimension = (dimension.0.in_pixels(&self), dimension.1.in_pixels(&self));
        self.rect.x0 = self.rect.x1.min(self.rect.x0 + left_upper.0);
        self.rect.y0 = self.rect.y1.min(self.rect.y0 + left_upper.1);

        self.rect.x1 = self.rect.x0.max(self.rect.x0 + dimension.0);
        self.rect.y1 = self.rect.y0.max(self.rect.y0 + dimension.1);

        self.coord = Shift((self.rect.x0, self.rect.y0));

        self
    }

    /// Apply a new coord transformation object and returns a new drawing area
    pub fn apply_coord_spec<CT: CoordTranslate>(&self, coord_spec: CT) -> DrawingArea<DB, CT> {
        DrawingArea {
            rect: self.rect.clone(),
            backend: self.backend.clone(),
            coord: coord_spec,
        }
    }

    /// Create a margin for the given drawing area and returns the new drawing area
    pub fn margin<ST: SizeDesc, SB: SizeDesc, SL: SizeDesc, SR: SizeDesc>(
        &self,
        top: ST,
        bottom: SB,
        left: SL,
        right: SR,
    ) -> DrawingArea<DB, Shift> {
        let left = left.in_pixels(self);
        let right = right.in_pixels(self);
        let top = top.in_pixels(self);
        let bottom = bottom.in_pixels(self);
        DrawingArea {
            rect: Rect {
                x0: self.rect.x0 + left,
                y0: self.rect.y0 + top,
                x1: self.rect.x1 - right,
                y1: self.rect.y1 - bottom,
            },
            backend: self.backend.clone(),
            coord: Shift((self.rect.x0 + left, self.rect.y0 + top)),
        }
    }

    /// Split the drawing area vertically
    pub fn split_vertically<S: SizeDesc>(&self, y: S) -> (Self, Self) {
        let y = y.in_pixels(self);
        let split_point = [y + self.rect.y0];
        let mut ret = self.rect.split(split_point.iter(), true).map(|rect| Self {
            rect: rect.clone(),
            backend: self.backend.clone(),
            coord: Shift((rect.x0, rect.y0)),
        });

        (ret.next().unwrap(), ret.next().unwrap())
    }

    /// Split the drawing area horizontally
    pub fn split_horizontally<S: SizeDesc>(&self, x: S) -> (Self, Self) {
        let x = x.in_pixels(self);
        let split_point = [x + self.rect.x0];
        let mut ret = self.rect.split(split_point.iter(), false).map(|rect| Self {
            rect: rect.clone(),
            backend: self.backend.clone(),
            coord: Shift((rect.x0, rect.y0)),
        });

        (ret.next().unwrap(), ret.next().unwrap())
    }

    /// Split the drawing area evenly
    pub fn split_evenly(&self, (row, col): (usize, usize)) -> Vec<Self> {
        self.rect
            .split_evenly((row, col))
            .map(|rect| Self {
                rect: rect.clone(),
                backend: self.backend.clone(),
                coord: Shift((rect.x0, rect.y0)),
            })
            .collect()
    }

    /// Split the drawing area into a grid with specified breakpoints on both X axis and Y axis
    pub fn split_by_breakpoints<
        XSize: SizeDesc,
        YSize: SizeDesc,
        XS: AsRef<[XSize]>,
        YS: AsRef<[YSize]>,
    >(
        &self,
        xs: XS,
        ys: YS,
    ) -> Vec<Self> {
        self.rect
            .split_grid(
                xs.as_ref().iter().map(|x| x.in_pixels(self)),
                ys.as_ref().iter().map(|x| x.in_pixels(self)),
            )
            .map(|rect| Self {
                rect: rect.clone(),
                backend: self.backend.clone(),
                coord: Shift((rect.x0, rect.y0)),
            })
            .collect()
    }

    /// Draw a title of the drawing area and return the remaining drawing area
    pub fn titled<'a, S: Into<TextStyle<'a>>>(
        &self,
        text: &str,
        style: S,
    ) -> Result<Self, DrawingAreaError<DB>> {
        let style = style.into();

        let x_padding = (self.rect.x1 - self.rect.x0) / 2;

        let (_, text_h) = self.estimate_text_size(text, &style)?;
        let y_padding = (text_h / 2).min(5) as i32;

        let style = &style.pos(Pos::new(HPos::Center, VPos::Top));

        self.backend_ops(|b| {
            b.draw_text(
                text,
                style,
                (self.rect.x0 + x_padding, self.rect.y0 + y_padding),
            )
        })?;

        Ok(Self {
            rect: Rect {
                x0: self.rect.x0,
                y0: self.rect.y0 + y_padding * 2 + text_h as i32,
                x1: self.rect.x1,
                y1: self.rect.y1,
            },
            backend: self.backend.clone(),
            coord: Shift((self.rect.x0, self.rect.y0 + y_padding * 2 + text_h as i32)),
        })
    }

    /// Draw text on the drawing area
    pub fn draw_text(
        &self,
        text: &str,
        style: &TextStyle,
        pos: BackendCoord,
    ) -> Result<(), DrawingAreaError<DB>> {
        self.backend_ops(|b| b.draw_text(text, style, (pos.0 + self.rect.x0, pos.1 + self.rect.y0)))
    }
}

impl<DB: DrawingBackend, CT: CoordTranslate> DrawingArea<DB, CT> {
    pub fn into_coord_spec(self) -> CT {
        self.coord
    }

    pub fn as_coord_spec(&self) -> &CT {
        &self.coord
    }

    pub fn as_coord_spec_mut(&mut self) -> &mut CT {
        &mut self.coord
    }
}

#[cfg(test)]
mod drawing_area_tests {
    use crate::{create_mocked_drawing_area, prelude::*};
    #[test]
    fn test_filling() {
        let drawing_area = create_mocked_drawing_area(1024, 768, |m| {
            m.check_draw_rect(|c, _, f, u, d| {
                assert_eq!(c, WHITE.to_rgba());
                assert_eq!(f, true);
                assert_eq!(u, (0, 0));
                assert_eq!(d, (1023, 767));
            });

            m.drop_check(|b| {
                assert_eq!(b.num_draw_rect_call, 1);
                assert_eq!(b.draw_count, 1);
            });
        });

        drawing_area.fill(&WHITE).expect("Drawing Failure");
    }

    #[test]
    fn test_split_evenly() {
        let colors = vec![
            &RED, &BLUE, &YELLOW, &WHITE, &BLACK, &MAGENTA, &CYAN, &BLUE, &RED,
        ];
        let drawing_area = create_mocked_drawing_area(902, 900, |m| {
            for col in 0..3 {
                for row in 0..3 {
                    let colors = colors.clone();
                    m.check_draw_rect(move |c, _, f, u, d| {
                        assert_eq!(c, colors[col * 3 + row].to_rgba());
                        assert_eq!(f, true);
                        assert_eq!(u, (300 * row as i32 + 2.min(row) as i32, 300 * col as i32));
                        assert_eq!(
                            d,
                            (
                                300 + 300 * row as i32 + 2.min(row + 1) as i32 - 1,
                                300 + 300 * col as i32 - 1
                            )
                        );
                    });
                }
            }
            m.drop_check(|b| {
                assert_eq!(b.num_draw_rect_call, 9);
                assert_eq!(b.draw_count, 9);
            });
        });

        drawing_area
            .split_evenly((3, 3))
            .iter_mut()
            .zip(colors.iter())
            .for_each(|(d, c)| {
                d.fill(*c).expect("Drawing Failure");
            });
    }

    #[test]
    fn test_split_horizontally() {
        let drawing_area = create_mocked_drawing_area(1024, 768, |m| {
            m.check_draw_rect(|c, _, f, u, d| {
                assert_eq!(c, RED.to_rgba());
                assert_eq!(f, true);
                assert_eq!(u, (0, 0));
                assert_eq!(d, (345 - 1, 768 - 1));
            });

            m.check_draw_rect(|c, _, f, u, d| {
                assert_eq!(c, BLUE.to_rgba());
                assert_eq!(f, true);
                assert_eq!(u, (345, 0));
                assert_eq!(d, (1024 - 1, 768 - 1));
            });

            m.drop_check(|b| {
                assert_eq!(b.num_draw_rect_call, 2);
                assert_eq!(b.draw_count, 2);
            });
        });

        let (left, right) = drawing_area.split_horizontally(345);
        left.fill(&RED).expect("Drawing Error");
        right.fill(&BLUE).expect("Drawing Error");
    }

    #[test]
    fn test_split_vertically() {
        let drawing_area = create_mocked_drawing_area(1024, 768, |m| {
            m.check_draw_rect(|c, _, f, u, d| {
                assert_eq!(c, RED.to_rgba());
                assert_eq!(f, true);
                assert_eq!(u, (0, 0));
                assert_eq!(d, (1024 - 1, 345 - 1));
            });

            m.check_draw_rect(|c, _, f, u, d| {
                assert_eq!(c, BLUE.to_rgba());
                assert_eq!(f, true);
                assert_eq!(u, (0, 345));
                assert_eq!(d, (1024 - 1, 768 - 1));
            });

            m.drop_check(|b| {
                assert_eq!(b.num_draw_rect_call, 2);
                assert_eq!(b.draw_count, 2);
            });
        });

        let (left, right) = drawing_area.split_vertically(345);
        left.fill(&RED).expect("Drawing Error");
        right.fill(&BLUE).expect("Drawing Error");
    }

    #[test]
    fn test_split_grid() {
        let colors = vec![
            &RED, &BLUE, &YELLOW, &WHITE, &BLACK, &MAGENTA, &CYAN, &BLUE, &RED,
        ];
        let breaks: [i32; 5] = [100, 200, 300, 400, 500];

        for nxb in 0..=5 {
            for nyb in 0..=5 {
                let drawing_area = create_mocked_drawing_area(1024, 768, |m| {
                    for row in 0..=nyb {
                        for col in 0..=nxb {
                            let get_bp = |full, limit, id| {
                                (if id == 0 {
                                    0
                                } else if id > limit {
                                    full
                                } else {
                                    breaks[id as usize - 1]
                                }) as i32
                            };

                            let expected_u = (get_bp(1024, nxb, col), get_bp(768, nyb, row));
                            let expected_d = (
                                get_bp(1024, nxb, col + 1) - 1,
                                get_bp(768, nyb, row + 1) - 1,
                            );
                            let expected_color =
                                colors[(row * (nxb + 1) + col) as usize % colors.len()];

                            m.check_draw_rect(move |c, _, f, u, d| {
                                assert_eq!(c, expected_color.to_rgba());
                                assert_eq!(f, true);
                                assert_eq!(u, expected_u);
                                assert_eq!(d, expected_d);
                            });
                        }
                    }

                    m.drop_check(move |b| {
                        assert_eq!(b.num_draw_rect_call, ((nxb + 1) * (nyb + 1)) as u32);
                        assert_eq!(b.draw_count, ((nyb + 1) * (nxb + 1)) as u32);
                    });
                });

                let result = drawing_area
                    .split_by_breakpoints(&breaks[0..nxb as usize], &breaks[0..nyb as usize]);
                for i in 0..result.len() {
                    result[i]
                        .fill(colors[i % colors.len()])
                        .expect("Drawing Error");
                }
            }
        }
    }
    #[test]
    fn test_titled() {
        let drawing_area = create_mocked_drawing_area(1024, 768, |m| {
            m.check_draw_text(|c, font, size, _pos, text| {
                assert_eq!(c, BLACK.to_rgba());
                assert_eq!(font, "serif");
                assert_eq!(size, 30.0);
                assert_eq!("This is the title", text);
            });
            m.check_draw_rect(|c, _, f, u, d| {
                assert_eq!(c, WHITE.to_rgba());
                assert_eq!(f, true);
                assert_eq!(u.0, 0);
                assert!(u.1 > 0);
                assert_eq!(d, (1024 - 1, 768 - 1));
            });
            m.drop_check(|b| {
                assert_eq!(b.num_draw_text_call, 1);
                assert_eq!(b.num_draw_rect_call, 1);
                assert_eq!(b.draw_count, 2);
            });
        });

        drawing_area
            .titled("This is the title", ("serif", 30))
            .unwrap()
            .fill(&WHITE)
            .unwrap();
    }

    #[test]
    fn test_margin() {
        let drawing_area = create_mocked_drawing_area(1024, 768, |m| {
            m.check_draw_rect(|c, _, f, u, d| {
                assert_eq!(c, WHITE.to_rgba());
                assert_eq!(f, true);
                assert_eq!(u, (3, 1));
                assert_eq!(d, (1024 - 4 - 1, 768 - 2 - 1));
            });

            m.drop_check(|b| {
                assert_eq!(b.num_draw_rect_call, 1);
                assert_eq!(b.draw_count, 1);
            });
        });

        drawing_area
            .margin(1, 2, 3, 4)
            .fill(&WHITE)
            .expect("Drawing Failure");
    }

    #[test]
    fn test_ranges() {
        let drawing_area = create_mocked_drawing_area(1024, 768, |_m| {})
            .apply_coord_spec(Cartesian2d::<
            crate::coord::types::RangedCoordi32,
            crate::coord::types::RangedCoordu32,
        >::new(-100..100, 0..200, (0..1024, 0..768)));

        let x_range = drawing_area.get_x_range();
        assert_eq!(x_range, -100..100);

        let y_range = drawing_area.get_y_range();
        assert_eq!(y_range, 0..200);
    }

    #[test]
    fn test_relative_size() {
        let drawing_area = create_mocked_drawing_area(1024, 768, |_m| {});

        assert_eq!(102.4, drawing_area.relative_to_width(0.1));
        assert_eq!(384.0, drawing_area.relative_to_height(0.5));

        assert_eq!(1024.0, drawing_area.relative_to_width(1.3));
        assert_eq!(768.0, drawing_area.relative_to_height(1.5));

        assert_eq!(0.0, drawing_area.relative_to_width(-0.2));
        assert_eq!(0.0, drawing_area.relative_to_height(-0.5));
    }

    #[test]
    fn test_relative_split() {
        let drawing_area = create_mocked_drawing_area(1000, 1200, |m| {
            let mut counter = 0;
            m.check_draw_rect(move |c, _, f, u, d| {
                assert_eq!(f, true);

                match counter {
                    0 => {
                        assert_eq!(c, RED.to_rgba());
                        assert_eq!(u, (0, 0));
                        assert_eq!(d, (300 - 1, 600 - 1));
                    }
                    1 => {
                        assert_eq!(c, BLUE.to_rgba());
                        assert_eq!(u, (300, 0));
                        assert_eq!(d, (1000 - 1, 600 - 1));
                    }
                    2 => {
                        assert_eq!(c, GREEN.to_rgba());
                        assert_eq!(u, (0, 600));
                        assert_eq!(d, (300 - 1, 1200 - 1));
                    }
                    3 => {
                        assert_eq!(c, WHITE.to_rgba());
                        assert_eq!(u, (300, 600));
                        assert_eq!(d, (1000 - 1, 1200 - 1));
                    }
                    _ => panic!("Too many draw rect"),
                }

                counter += 1;
            });

            m.drop_check(|b| {
                assert_eq!(b.num_draw_rect_call, 4);
                assert_eq!(b.draw_count, 4);
            });
        });

        let split =
            drawing_area.split_by_breakpoints([(30).percent_width()], [(50).percent_height()]);

        split[0].fill(&RED).unwrap();
        split[1].fill(&BLUE).unwrap();
        split[2].fill(&GREEN).unwrap();
        split[3].fill(&WHITE).unwrap();
    }

    #[test]
    fn test_relative_shrink() {
        let drawing_area = create_mocked_drawing_area(1000, 1200, |m| {
            m.check_draw_rect(move |_, _, _, u, d| {
                assert_eq!((100, 100), u);
                assert_eq!((300 - 1, 700 - 1), d);
            });

            m.drop_check(|b| {
                assert_eq!(b.num_draw_rect_call, 1);
                assert_eq!(b.draw_count, 1);
            });
        })
        .shrink(((10).percent_width(), 100), (200, (50).percent_height()));

        drawing_area.fill(&RED).unwrap();
    }
}