semver/identifier.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
// This module implements Identifier, a short-optimized string allowed to
// contain only the ASCII characters hyphen, dot, 0-9, A-Z, a-z.
//
// As of mid-2021, the distribution of pre-release lengths on crates.io is:
//
// length count length count length count
// 0 355929 11 81 24 2
// 1 208 12 48 25 6
// 2 236 13 55 26 10
// 3 1909 14 25 27 4
// 4 1284 15 15 28 1
// 5 1742 16 35 30 1
// 6 3440 17 9 31 5
// 7 5624 18 6 32 1
// 8 1321 19 12 36 2
// 9 179 20 2 37 379
// 10 65 23 11
//
// and the distribution of build metadata lengths is:
//
// length count length count length count
// 0 364445 8 7725 18 1
// 1 72 9 16 19 1
// 2 7 10 85 20 1
// 3 28 11 17 22 4
// 4 9 12 10 26 1
// 5 68 13 9 27 1
// 6 73 14 10 40 5
// 7 53 15 6
//
// Therefore it really behooves us to be able to use the entire 8 bytes of a
// pointer for inline storage. For both pre-release and build metadata there are
// vastly more strings with length exactly 8 bytes than the sum over all lengths
// longer than 8 bytes.
//
// To differentiate the inline representation from the heap allocated long
// representation, we'll allocate heap pointers with 2-byte alignment so that
// they are guaranteed to have an unset least significant bit. Then in the repr
// we store for pointers, we rotate a 1 into the most significant bit of the
// most significant byte, which is never set for an ASCII byte.
//
// Inline repr:
//
// 0xxxxxxx 0xxxxxxx 0xxxxxxx 0xxxxxxx 0xxxxxxx 0xxxxxxx 0xxxxxxx 0xxxxxxx
//
// Heap allocated repr:
//
// 1ppppppp pppppppp pppppppp pppppppp pppppppp pppppppp pppppppp pppppppp 0
// ^ most significant bit least significant bit of orig ptr, rotated out ^
//
// Since the most significant bit doubles as a sign bit for the similarly sized
// signed integer type, the CPU has an efficient instruction for inspecting it,
// meaning we can differentiate between an inline repr and a heap allocated repr
// in one instruction. Effectively an inline repr always looks like a positive
// i64 while a heap allocated repr always looks like a negative i64.
//
// For the inline repr, we store \0 padding on the end of the stored characters,
// and thus the string length is readily determined efficiently by a cttz (count
// trailing zeros) or bsf (bit scan forward) instruction.
//
// For the heap allocated repr, the length is encoded as a base-128 varint at
// the head of the allocation.
//
// Empty strings are stored as an all-1 bit pattern, corresponding to -1i64.
// Consequently the all-0 bit pattern is never a legal representation in any
// repr, leaving it available as a niche for downstream code. For example this
// allows size_of::<Version>() == size_of::<Option<Version>>().
use crate::alloc::alloc::{alloc, dealloc, handle_alloc_error, Layout};
use core::isize;
use core::mem;
use core::num::{NonZeroU64, NonZeroUsize};
use core::ptr::{self, NonNull};
use core::slice;
use core::str;
use core::usize;
const PTR_BYTES: usize = mem::size_of::<NonNull<u8>>();
// If pointers are already 8 bytes or bigger, then 0. If pointers are smaller
// than 8 bytes, then Identifier will contain a byte array to raise its size up
// to 8 bytes total.
const TAIL_BYTES: usize = 8 * (PTR_BYTES < 8) as usize - PTR_BYTES * (PTR_BYTES < 8) as usize;
#[repr(C, align(8))]
pub(crate) struct Identifier {
head: NonNull<u8>,
tail: [u8; TAIL_BYTES],
}
impl Identifier {
pub(crate) const fn empty() -> Self {
// This is a separate constant because unsafe function calls are not
// allowed in a const fn body, only in a const, until later rustc than
// what we support.
const HEAD: NonNull<u8> = unsafe { NonNull::new_unchecked(!0 as *mut u8) };
// `mov rax, -1`
Identifier {
head: HEAD,
tail: [!0; TAIL_BYTES],
}
}
// SAFETY: string must be ASCII and not contain \0 bytes.
pub(crate) unsafe fn new_unchecked(string: &str) -> Self {
let len = string.len();
debug_assert!(len <= isize::MAX as usize);
match len as u64 {
0 => Self::empty(),
1..=8 => {
let mut bytes = [0u8; mem::size_of::<Identifier>()];
// SAFETY: string is big enough to read len bytes, bytes is big
// enough to write len bytes, and they do not overlap.
unsafe { ptr::copy_nonoverlapping(string.as_ptr(), bytes.as_mut_ptr(), len) };
// SAFETY: the head field is nonzero because the input string
// was at least 1 byte of ASCII and did not contain \0.
unsafe { mem::transmute::<[u8; mem::size_of::<Identifier>()], Identifier>(bytes) }
}
9..=0xff_ffff_ffff_ffff => {
// SAFETY: len is in a range that does not contain 0.
let size = bytes_for_varint(unsafe { NonZeroUsize::new_unchecked(len) }) + len;
let align = 2;
// On 32-bit and 16-bit architecture, check for size overflowing
// isize::MAX. Making an allocation request bigger than this to
// the allocator is considered UB. All allocations (including
// static ones) are limited to isize::MAX so we're guaranteed
// len <= isize::MAX, and we know bytes_for_varint(len) <= 5
// because 128**5 > isize::MAX, which means the only problem
// that can arise is when isize::MAX - 5 <= len <= isize::MAX.
// This is pretty much guaranteed to be malicious input so we
// don't need to care about returning a good error message.
if mem::size_of::<usize>() < 8 {
let max_alloc = usize::MAX / 2 - align;
assert!(size <= max_alloc);
}
// SAFETY: align is not zero, align is a power of two, and
// rounding size up to align does not overflow isize::MAX.
let layout = unsafe { Layout::from_size_align_unchecked(size, align) };
// SAFETY: layout's size is nonzero.
let ptr = unsafe { alloc(layout) };
if ptr.is_null() {
handle_alloc_error(layout);
}
let mut write = ptr;
let mut varint_remaining = len;
while varint_remaining > 0 {
// SAFETY: size is bytes_for_varint(len) bytes + len bytes.
// This is writing the first bytes_for_varint(len) bytes.
unsafe { ptr::write(write, varint_remaining as u8 | 0x80) };
varint_remaining >>= 7;
// SAFETY: still in bounds of the same allocation.
write = unsafe { write.add(1) };
}
// SAFETY: size is bytes_for_varint(len) bytes + len bytes. This
// is writing to the last len bytes.
unsafe { ptr::copy_nonoverlapping(string.as_ptr(), write, len) };
Identifier {
head: ptr_to_repr(ptr),
tail: [0; TAIL_BYTES],
}
}
0x100_0000_0000_0000..=0xffff_ffff_ffff_ffff => {
unreachable!("please refrain from storing >64 petabytes of text in semver version");
}
#[cfg(no_exhaustive_int_match)] // rustc <1.33
_ => unreachable!(),
}
}
pub(crate) fn is_empty(&self) -> bool {
// `cmp rdi, -1` -- basically: `repr as i64 == -1`
let empty = Self::empty();
let is_empty = self.head == empty.head && self.tail == empty.tail;
// The empty representation does nothing on Drop. We can't let this one
// drop normally because `impl Drop for Identifier` calls is_empty; that
// would be an infinite recursion.
mem::forget(empty);
is_empty
}
fn is_inline(&self) -> bool {
// `test rdi, rdi` -- basically: `repr as i64 >= 0`
self.head.as_ptr() as usize >> (PTR_BYTES * 8 - 1) == 0
}
fn is_empty_or_inline(&self) -> bool {
// `cmp rdi, -2` -- basically: `repr as i64 > -2`
self.is_empty() || self.is_inline()
}
pub(crate) fn as_str(&self) -> &str {
if self.is_empty() {
""
} else if self.is_inline() {
// SAFETY: repr is in the inline representation.
unsafe { inline_as_str(self) }
} else {
// SAFETY: repr is in the heap allocated representation.
unsafe { ptr_as_str(&self.head) }
}
}
}
impl Clone for Identifier {
fn clone(&self) -> Self {
if self.is_empty_or_inline() {
Identifier {
head: self.head,
tail: self.tail,
}
} else {
let ptr = repr_to_ptr(self.head);
// SAFETY: ptr is one of our own heap allocations.
let len = unsafe { decode_len(ptr) };
let size = bytes_for_varint(len) + len.get();
let align = 2;
// SAFETY: align is not zero, align is a power of two, and rounding
// size up to align does not overflow isize::MAX. This is just
// duplicating a previous allocation where all of these guarantees
// were already made.
let layout = unsafe { Layout::from_size_align_unchecked(size, align) };
// SAFETY: layout's size is nonzero.
let clone = unsafe { alloc(layout) };
if clone.is_null() {
handle_alloc_error(layout);
}
// SAFETY: new allocation cannot overlap the previous one (this was
// not a realloc). The argument ptrs are readable/writeable
// respectively for size bytes.
unsafe { ptr::copy_nonoverlapping(ptr, clone, size) }
Identifier {
head: ptr_to_repr(clone),
tail: [0; TAIL_BYTES],
}
}
}
}
impl Drop for Identifier {
fn drop(&mut self) {
if self.is_empty_or_inline() {
return;
}
let ptr = repr_to_ptr_mut(self.head);
// SAFETY: ptr is one of our own heap allocations.
let len = unsafe { decode_len(ptr) };
let size = bytes_for_varint(len) + len.get();
let align = 2;
// SAFETY: align is not zero, align is a power of two, and rounding
// size up to align does not overflow isize::MAX. These guarantees were
// made when originally allocating this memory.
let layout = unsafe { Layout::from_size_align_unchecked(size, align) };
// SAFETY: ptr was previously allocated by the same allocator with the
// same layout.
unsafe { dealloc(ptr, layout) }
}
}
impl PartialEq for Identifier {
fn eq(&self, rhs: &Self) -> bool {
if self.is_empty_or_inline() {
// Fast path (most common)
self.head == rhs.head && self.tail == rhs.tail
} else if rhs.is_empty_or_inline() {
false
} else {
// SAFETY: both reprs are in the heap allocated representation.
unsafe { ptr_as_str(&self.head) == ptr_as_str(&rhs.head) }
}
}
}
unsafe impl Send for Identifier {}
unsafe impl Sync for Identifier {}
// We use heap pointers that are 2-byte aligned, meaning they have an
// insignificant 0 in the least significant bit. We take advantage of that
// unneeded bit to rotate a 1 into the most significant bit to make the repr
// distinguishable from ASCII bytes.
fn ptr_to_repr(original: *mut u8) -> NonNull<u8> {
// `mov eax, 1`
// `shld rax, rdi, 63`
let modified = (original as usize | 1).rotate_right(1);
// `original + (modified - original)`, but being mindful of provenance.
let diff = modified.wrapping_sub(original as usize);
let modified = original.wrapping_add(diff);
// SAFETY: the most significant bit of repr is known to be set, so the value
// is not zero.
unsafe { NonNull::new_unchecked(modified) }
}
// Shift out the 1 previously placed into the most significant bit of the least
// significant byte. Shift in a low 0 bit to reconstruct the original 2-byte
// aligned pointer.
fn repr_to_ptr(modified: NonNull<u8>) -> *const u8 {
// `lea rax, [rdi + rdi]`
let modified = modified.as_ptr();
let original = (modified as usize) << 1;
// `modified + (original - modified)`, but being mindful of provenance.
let diff = original.wrapping_sub(modified as usize);
modified.wrapping_add(diff)
}
fn repr_to_ptr_mut(repr: NonNull<u8>) -> *mut u8 {
repr_to_ptr(repr) as *mut u8
}
// Compute the length of the inline string, assuming the argument is in short
// string representation. Short strings are stored as 1 to 8 nonzero ASCII
// bytes, followed by \0 padding for the remaining bytes.
//
// SAFETY: the identifier must indeed be in the inline representation.
unsafe fn inline_len(repr: &Identifier) -> NonZeroUsize {
// SAFETY: Identifier's layout is align(8) and at least size 8. We're doing
// an aligned read of the first 8 bytes from it. The bytes are not all zero
// because inline strings are at least 1 byte long and cannot contain \0.
let repr = unsafe { ptr::read(repr as *const Identifier as *const NonZeroU64) };
// Rustc >=1.53 has intrinsics for counting zeros on a non-zeroable integer.
// On many architectures these are more efficient than counting on ordinary
// zeroable integers (bsf vs cttz). On rustc <1.53 without those intrinsics,
// we count zeros in the u64 rather than the NonZeroU64.
#[cfg(no_nonzero_bitscan)]
let repr = repr.get();
#[cfg(target_endian = "little")]
let zero_bits_on_string_end = repr.leading_zeros();
#[cfg(target_endian = "big")]
let zero_bits_on_string_end = repr.trailing_zeros();
let nonzero_bytes = 8 - zero_bits_on_string_end as usize / 8;
// SAFETY: repr is nonzero, so it has at most 63 zero bits on either end,
// thus at least one nonzero byte.
unsafe { NonZeroUsize::new_unchecked(nonzero_bytes) }
}
// SAFETY: repr must be in the inline representation, i.e. at least 1 and at
// most 8 nonzero ASCII bytes padded on the end with \0 bytes.
unsafe fn inline_as_str(repr: &Identifier) -> &str {
let ptr = repr as *const Identifier as *const u8;
let len = unsafe { inline_len(repr) }.get();
// SAFETY: we are viewing the nonzero ASCII prefix of the inline repr's
// contents as a slice of bytes. Input/output lifetimes are correctly
// associated.
let slice = unsafe { slice::from_raw_parts(ptr, len) };
// SAFETY: the string contents are known to be only ASCII bytes, which are
// always valid UTF-8.
unsafe { str::from_utf8_unchecked(slice) }
}
// Decode varint. Varints consist of between one and eight base-128 digits, each
// of which is stored in a byte with most significant bit set. Adjacent to the
// varint in memory there is guaranteed to be at least 9 ASCII bytes, each of
// which has an unset most significant bit.
//
// SAFETY: ptr must be one of our own heap allocations, with the varint header
// already written.
unsafe fn decode_len(ptr: *const u8) -> NonZeroUsize {
// SAFETY: There is at least one byte of varint followed by at least 9 bytes
// of string content, which is at least 10 bytes total for the allocation,
// so reading the first two is no problem.
let [first, second] = unsafe { ptr::read(ptr as *const [u8; 2]) };
if second < 0x80 {
// SAFETY: the length of this heap allocated string has been encoded as
// one base-128 digit, so the length is at least 9 and at most 127. It
// cannot be zero.
unsafe { NonZeroUsize::new_unchecked((first & 0x7f) as usize) }
} else {
return unsafe { decode_len_cold(ptr) };
// Identifiers 128 bytes or longer. This is not exercised by any crate
// version currently published to crates.io.
#[cold]
#[inline(never)]
unsafe fn decode_len_cold(mut ptr: *const u8) -> NonZeroUsize {
let mut len = 0;
let mut shift = 0;
loop {
// SAFETY: varint continues while there are bytes having the
// most significant bit set, i.e. until we start hitting the
// ASCII string content with msb unset.
let byte = unsafe { *ptr };
if byte < 0x80 {
// SAFETY: the string length is known to be 128 bytes or
// longer.
return unsafe { NonZeroUsize::new_unchecked(len) };
}
// SAFETY: still in bounds of the same allocation.
ptr = unsafe { ptr.add(1) };
len += ((byte & 0x7f) as usize) << shift;
shift += 7;
}
}
}
}
// SAFETY: repr must be in the heap allocated representation, with varint header
// and string contents already written.
unsafe fn ptr_as_str(repr: &NonNull<u8>) -> &str {
let ptr = repr_to_ptr(*repr);
let len = unsafe { decode_len(ptr) };
let header = bytes_for_varint(len);
let slice = unsafe { slice::from_raw_parts(ptr.add(header), len.get()) };
// SAFETY: all identifier contents are ASCII bytes, which are always valid
// UTF-8.
unsafe { str::from_utf8_unchecked(slice) }
}
// Number of base-128 digits required for the varint representation of a length.
fn bytes_for_varint(len: NonZeroUsize) -> usize {
#[cfg(no_nonzero_bitscan)] // rustc <1.53
let len = len.get();
let usize_bits = mem::size_of::<usize>() * 8;
let len_bits = usize_bits - len.leading_zeros() as usize;
(len_bits + 6) / 7
}