1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
//! An unsafe columnar arena for owned data.
//!
//! This library contains types and traits that allow one to collect
//! types with owned data but is backed by relatively few allocations.
//! The catch is that collected instances can only be used by reference,
//! as they are not valid owned data (their pointers do not point to
//! allocations that can be returned to the allocator).
//!
//! # Safety
//!
//! This crate is wildly unsafe, on account of it uses the `unsafe`
//! keyword and Rust's safety is not yet clearly enough specified
//! for me to make any stronger statements than that.
/// A type that can absorb owned data from type `T`.
///
/// This type will ensure that absorbed data remain valid as long as the
/// instance itself is valid. Responsible users will couple the lifetime
/// of this instance with that of *all* instances it returns from `copy`.
pub trait Region : Default {
/// The type of item the region contains.
type Item;
/// Add a new element to the region.
///
/// The argument will be copied in to the region and returned as an
/// owned instance. It is unsafe to unwrap and then drop the result.
///
/// # Safety
///
/// It is unsafe to use the result in any way other than to reference
/// its contents, and then only for the lifetime of the columnar region.
/// Correct uses of this method are very likely exclusive to this crate.
unsafe fn copy(&mut self, item: &Self::Item) -> Self::Item;
/// Retain allocations but discard their contents.
///
/// The elements in the region do not actually own resources, and
/// their normal `Drop` implementations will not be called. This method
/// should only be called after all instances returned by `copy` have
/// been disposed of, as this method may invalidate their contents.
fn clear(&mut self);
/// Ensure that the region can absorb `items` without reallocation.
fn reserve_items<'a, I>(&mut self, items: I)
where
Self: 'a,
I: Iterator<Item=&'a Self::Item>+Clone;
/// Allocate an instance of `Self` that can absorb `items` without reallocation.
fn with_capacity_items<'a, I>(items: I) -> Self
where
Self: 'a,
I: Iterator<Item=&'a Self::Item>+Clone
{
let mut region = Self::default();
region.reserve_items(items);
region
}
// Ensure that the region can absorb the items of `regions` without reallocation
fn reserve_regions<'a, I>(&mut self, regions: I)
where
Self: 'a,
I: Iterator<Item = &'a Self> + Clone;
/// Allocate an instance of `Self` that can absorb the items of `regions` without reallocation.
fn with_capacity_regions<'a, I>(regions: I) -> Self
where
Self: 'a,
I: Iterator<Item = &'a Self> + Clone
{
let mut region = Self::default();
region.reserve_regions(regions);
region
}
/// Determine this region's memory used and reserved capacity in bytes.
///
/// An implementation should invoke the `callback` for each distinct allocation, providing the
/// used capacity as the first parameter and the actual capacity as the second parameter.
/// Both parameters represent a number of bytes. The implementation should only mention
/// allocations it owns, but not itself, because another object owns it.
///
/// The closure is free to sum the parameters, or do more advanced analysis such as creating a
/// histogram of allocation sizes.
fn heap_size(&self, callback: impl FnMut(usize, usize));
}
/// A vacuous region that just copies items.
pub struct CopyRegion<T> {
phantom: std::marker::PhantomData<T>,
}
impl<T> Default for CopyRegion<T> {
fn default() -> Self {
Self { phantom: std::marker::PhantomData }
}
}
// Any type that implements copy can use a non-region that just copies items.
impl<T: Copy> Region for CopyRegion<T> {
type Item = T;
#[inline(always)]
unsafe fn copy(&mut self, item: &Self::Item) -> Self::Item {
*item
}
#[inline(always)]
fn clear(&mut self) { }
fn reserve_items<'a, I>(&mut self, _items: I)
where
Self: 'a,
I: Iterator<Item=&'a Self::Item> + Clone { }
fn reserve_regions<'a, I>(&mut self, _regions: I)
where
Self: 'a,
I: Iterator<Item = &'a Self> + Clone { }
#[inline]
fn heap_size(&self, _callback: impl FnMut(usize, usize)) {
// Does not contain any allocation
}
}
/// A region allocator which holds items at stable memory locations.
///
/// Items once inserted will not be moved, and their locations in memory
/// can be relied on by others, until the region is cleared.
///
/// This type accepts owned data, rather than references, and does not
/// itself intend to implement `Region`. Rather, it is a useful building
/// block for other less-safe code that wants allocated data to remain at
/// fixed memory locations.
pub struct StableRegion<T> {
/// The active allocation into which we are writing.
local: Vec<T>,
/// All previously active allocations.
stash: Vec<Vec<T>>,
/// The maximum allocation size
limit: usize,
}
// Manually implement `Default` as `T` may not implement it.
impl<T> Default for StableRegion<T> {
fn default() -> Self {
Self {
local: Vec::new(),
stash: Vec::new(),
limit: usize::MAX,
}
}
}
impl<T> StableRegion<T> {
/// Construct a [StableRegion] with a allocation size limit.
pub fn with_limit(limit: usize) -> Self {
Self {
local: Default::default(),
stash: Default::default(),
limit: limit,
}
}
/// Clears the contents without dropping any elements.
#[inline]
pub fn clear(&mut self) {
unsafe {
// Unsafety justified in that setting the length to zero exposes
// no invalid data.
self.local.set_len(0);
// Release allocations in `stash` without dropping their elements.
for mut buffer in self.stash.drain(..) {
buffer.set_len(0);
}
}
}
/// Copies an iterator of items into the region.
#[inline]
pub fn copy_iter<I>(&mut self, items: I) -> &mut [T]
where
I: Iterator<Item = T> + std::iter::ExactSizeIterator,
{
self.reserve(items.len());
let initial_len = self.local.len();
self.local.extend(items);
&mut self.local[initial_len ..]
}
/// Copies a slice of cloneable items into the region.
#[inline]
pub fn copy_slice(&mut self, items: &[T]) -> &mut [T]
where
T: Clone,
{
self.reserve(items.len());
let initial_len = self.local.len();
self.local.extend_from_slice(items);
&mut self.local[initial_len ..]
}
/// Ensures that there is space in `self.local` to copy at least `count` items.
#[inline(always)]
pub fn reserve(&mut self, count: usize) {
// Check if `item` fits into `self.local` without reallocation.
// If not, stash `self.local` and increase the allocation.
if count > self.local.capacity() - self.local.len() {
// Increase allocated capacity in powers of two.
// We could choose a different rule here if we wanted to be
// more conservative with memory (e.g. page size allocations).
let mut next_len = (self.local.capacity() + 1).next_power_of_two();
next_len = std::cmp::min(next_len, self.limit);
next_len = std::cmp::max(count, next_len);
let new_local = Vec::with_capacity(next_len);
if self.local.is_empty() {
self.local = new_local;
} else {
self.stash.push(std::mem::replace(&mut self.local, new_local));
}
}
}
/// Allocates a new `Self` that can accept `count` items without reallocation.
pub fn with_capacity(count: usize) -> Self {
let mut region = Self::default();
region.reserve(count);
region
}
/// The number of items current held in the region.
pub fn len(&self) -> usize {
self.local.len() + self.stash.iter().map(|r| r.len()).sum::<usize>()
}
#[inline]
pub fn heap_size(&self, mut callback: impl FnMut(usize, usize)) {
// Calculate heap size for local, stash, and stash entries
let size_of_t = std::mem::size_of::<T>();
callback(
self.local.len() * size_of_t,
self.local.capacity() * size_of_t,
);
callback(
self.stash.len() * std::mem::size_of::<Vec<T>>(),
self.stash.capacity() * std::mem::size_of::<Vec<T>>(),
);
for stash in &self.stash {
callback(stash.len() * size_of_t, stash.capacity() * size_of_t);
}
}
}
/// A type that can be stored in a columnar region.
///
/// This trait exists only to allow types to name the columnar region
/// that should be used.
pub trait Columnation: Sized {
/// The type of region capable of absorbing allocations owned by
/// the `Self` type. Note: not allocations of `Self`, but of the
/// things that it owns.
type InnerRegion: Region<Item = Self>;
}
pub use columnstack::ColumnStack;
mod columnstack {
use super::{Columnation, Region};
/// An append-only vector that store records as columns.
///
/// This container maintains elements that might conventionally own
/// memory allocations, but instead the pointers to those allocations
/// reference larger regions of memory shared with multiple instances
/// of the type. Elements can be retrieved as references, and care is
/// taken when this type is dropped to ensure that the correct memory
/// is returned (rather than the incorrect memory, from running the
/// elements' `Drop` implementations).
pub struct ColumnStack<T: Columnation> {
pub(crate) local: Vec<T>,
pub(crate) inner: T::InnerRegion,
}
impl<T: Columnation> ColumnStack<T> {
/// Construct a [ColumnStack], reserving space for `capacity` elements
///
/// Note that the associated region is not initialized to a specific capacity
/// because we can't generally know how much space would be required. For this reason,
/// this function is private.
fn with_capacity(capacity: usize) -> Self {
Self {
local: Vec::with_capacity(capacity),
inner: T::InnerRegion::default(),
}
}
/// Ensures `Self` can absorb `items` without further allocations.
///
/// The argument `items` may be cloned and iterated multiple times.
/// Please be careful if it contains side effects.
#[inline(always)]
pub fn reserve_items<'a, I>(&'a mut self, items: I)
where
I: Iterator<Item= &'a T>+Clone,
{
self.local.reserve(items.clone().count());
self.inner.reserve_items(items);
}
/// Ensures `Self` can absorb `items` without further allocations.
///
/// The argument `items` may be cloned and iterated multiple times.
/// Please be careful if it contains side effects.
#[inline(always)]
pub fn reserve_regions<'a, I>(&mut self, regions: I)
where
Self: 'a,
I: Iterator<Item= &'a Self>+Clone,
{
self.local.reserve(regions.clone().map(|cs| cs.local.len()).sum());
self.inner.reserve_regions(regions.map(|cs| &cs.inner));
}
/// Copies an element in to the region.
///
/// The element can be read by indexing
pub fn copy(&mut self, item: &T) {
// TODO: Some types `T` should just be cloned.
// E.g. types that are `Copy` or vecs of ZSTs.
unsafe {
self.local.push(self.inner.copy(item));
}
}
/// Empties the collection.
pub fn clear(&mut self) {
unsafe {
// Unsafety justified in that setting the length to zero exposes
// no invalid data.
self.local.set_len(0);
self.inner.clear();
}
}
/// Retain elements that pass a predicate, from a specified offset.
///
/// This method may or may not reclaim memory in the inner region.
pub fn retain_from<P: FnMut(&T)->bool>(&mut self, index: usize, mut predicate: P) {
if index < self.local.len() {
let mut write_position = index;
for position in index .. self.local.len() {
if predicate(&self[position]) {
// TODO: compact the inner region and update pointers.
self.local.swap(position, write_position);
write_position += 1;
}
}
unsafe {
// Unsafety justified in that `write_position` is no greater than
// `self.local.len()` and so this exposes no invalid data.
self.local.set_len(write_position);
}
}
}
/// Estimate the memory capacity in bytes.
#[inline]
pub fn heap_size(&self, mut callback: impl FnMut(usize, usize)) {
let size_of = std::mem::size_of::<T>();
callback(self.local.len() * size_of, self.local.capacity() * size_of);
self.inner.heap_size(callback);
}
/// Estimate the consumed memory capacity in bytes, summing both used and total capacity.
#[inline]
pub fn summed_heap_size(&self) -> (usize, usize) {
let (mut length, mut capacity) = (0, 0);
self.heap_size(|len, cap| {
length += len;
capacity += cap
});
(length, capacity)
}
}
impl<T: Columnation> std::ops::Deref for ColumnStack<T> {
type Target = [T];
#[inline(always)]
fn deref(&self) -> &Self::Target {
&self.local[..]
}
}
impl<T: Columnation> Drop for ColumnStack<T> {
fn drop(&mut self) {
self.clear();
}
}
impl<T: Columnation> Default for ColumnStack<T> {
fn default() -> Self {
Self {
local: Vec::new(),
inner: T::InnerRegion::default(),
}
}
}
impl<'a, T: Columnation + 'a> Extend<&'a T> for ColumnStack<T> {
fn extend<I: IntoIterator<Item=&'a T>>(&mut self, iter: I) {
for element in iter {
self.copy(element)
}
}
}
impl<'a, T: Columnation + 'a> std::iter::FromIterator<&'a T> for ColumnStack<T> {
fn from_iter<I: IntoIterator<Item=&'a T>>(iter: I) -> Self {
let iter = iter.into_iter();
let mut c = ColumnStack::<T>::with_capacity(iter.size_hint().0);
c.extend(iter);
c
}
}
impl<T: Columnation + PartialEq> PartialEq for ColumnStack<T> {
fn eq(&self, other: &Self) -> bool {
PartialEq::eq(&self[..], &other[..])
}
}
impl<T: Columnation + Eq> Eq for ColumnStack<T> {}
impl<T: Columnation + std::fmt::Debug> std::fmt::Debug for ColumnStack<T> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
(&self[..]).fmt(f)
}
}
impl<T: Columnation> Clone for ColumnStack<T> {
fn clone(&self) -> Self {
let mut new: Self = Default::default();
for item in &self[..] {
new.copy(item);
}
new
}
fn clone_from(&mut self, source: &Self) {
self.clear();
for item in &source[..] {
self.copy(item);
}
}
}
}
mod implementations {
use super::{Region, CopyRegion, StableRegion, Columnation, ColumnStack};
// Implementations for types whose `clone()` suffices for the region.
macro_rules! implement_columnation {
($index_type:ty) => (
impl Columnation for $index_type {
type InnerRegion = CopyRegion<$index_type>;
}
)
}
implement_columnation!(());
implement_columnation!(bool);
implement_columnation!(char);
implement_columnation!(u8);
implement_columnation!(u16);
implement_columnation!(u32);
implement_columnation!(u64);
implement_columnation!(u128);
implement_columnation!(usize);
implement_columnation!(i8);
implement_columnation!(i16);
implement_columnation!(i32);
implement_columnation!(i64);
implement_columnation!(i128);
implement_columnation!(isize);
implement_columnation!(f32);
implement_columnation!(f64);
implement_columnation!(std::num::Wrapping<i8>);
implement_columnation!(std::num::Wrapping<i16>);
implement_columnation!(std::num::Wrapping<i32>);
implement_columnation!(std::num::Wrapping<i64>);
implement_columnation!(std::num::Wrapping<i128>);
implement_columnation!(std::num::Wrapping<isize>);
implement_columnation!(std::time::Duration);
/// Implementations for `Option<T: Columnation>`.
pub mod option {
use super::{Columnation, Region};
#[derive(Default)]
pub struct OptionRegion<R: Region> {
region: R,
}
impl<R: Region> Region for OptionRegion<R> {
type Item = Option<R::Item>;
#[inline(always)]
unsafe fn copy(&mut self, item: &Self::Item) -> Self::Item {
item.as_ref().map(|inner| self.region.copy(inner))
}
#[inline(always)]
fn clear(&mut self) {
self.region.clear();
}
#[inline(always)]
fn reserve_items<'a, I>(&mut self, items: I)
where
Self: 'a,
I: Iterator<Item=&'a Self::Item>+Clone,
{
self.region.reserve_items(items.flat_map(|x| x.as_ref()));
}
fn reserve_regions<'a, I>(&mut self, regions: I)
where
Self: 'a,
I: Iterator<Item = &'a Self> + Clone,
{
self.region.reserve_regions(regions.map(|r| &r.region));
}
#[inline]
fn heap_size(&self, callback: impl FnMut(usize, usize)) {
self.region.heap_size(callback)
}
}
impl<T: Columnation> Columnation for Option<T> {
type InnerRegion = OptionRegion<T::InnerRegion>;
}
}
/// Implementations for `Result<T: Columnation, E: Columnation>`.
pub mod result {
use super::{Columnation, Region};
#[derive(Default)]
pub struct ResultRegion<R1: Region, R2: Region> {
region1: R1,
region2: R2,
}
impl<R1: Region, R2: Region> Region for ResultRegion<R1, R2> {
type Item = Result<R1::Item, R2::Item>;
#[inline(always)]
unsafe fn copy(&mut self, item: &Self::Item) -> Self::Item {
match item {
Ok(item) => { Ok(self.region1.copy(item)) },
Err(item) => { Err(self.region2.copy(item)) },
}
}
#[inline(always)]
fn clear(&mut self) {
self.region1.clear();
self.region2.clear();
}
#[inline]
fn reserve_items<'a, I>(&mut self, items: I)
where
Self: 'a,
I: Iterator<Item=&'a Self::Item>+Clone,
{
let items2 = items.clone();
self.region1.reserve_items(items2.flat_map(|x| x.as_ref().ok()));
self.region2.reserve_items(items.flat_map(|x| x.as_ref().err()));
}
fn reserve_regions<'a, I>(&mut self, regions: I)
where
Self: 'a,
I: Iterator<Item = &'a Self> + Clone,
{
self.region1.reserve_regions(regions.clone().map(|r| &r.region1));
self.region2.reserve_regions(regions.map(|r| &r.region2));
}
#[inline]
fn heap_size(&self, mut callback: impl FnMut(usize, usize)) {
self.region1.heap_size(&mut callback);
self.region2.heap_size(callback)
}
}
impl<T: Columnation, E: Columnation> Columnation for Result<T, E> {
type InnerRegion = ResultRegion<T::InnerRegion, E::InnerRegion>;
}
}
/// Implementations for `Vec<T: Columnation>`.
pub mod vec {
use super::{Columnation, Region, StableRegion};
/// Region allocation for the contents of `Vec<T>` types.
///
/// Items `T` are stored in stable contiguous memory locations,
/// and then a `Vec<T>` referencing them is falsified.
pub struct VecRegion<T: Columnation> {
/// Region for stable memory locations for `T` items.
region: StableRegion<T>,
/// Any inner region allocations.
inner: T::InnerRegion,
}
// Manually implement `Default` as `T` may not implement it.
impl<T: Columnation> Default for VecRegion<T> {
fn default() -> Self {
VecRegion {
region: StableRegion::<T>::default(),
inner: T::InnerRegion::default(),
}
}
}
impl<T: Columnation> Columnation for Vec<T> {
type InnerRegion = VecRegion<T>;
}
impl<T: Columnation> Region for VecRegion<T> {
type Item = Vec<T>;
#[inline]
fn clear(&mut self) {
self.region.clear();
self.inner.clear();
}
#[inline(always)]
unsafe fn copy(&mut self, item: &Self::Item) -> Self::Item {
// TODO: Some types `T` should just be cloned, with `copy_slice`.
// E.g. types that are `Copy` or vecs of ZSTs.
let inner = &mut self.inner;
let slice = self.region.copy_iter(item.iter().map(|element| inner.copy(element)));
Vec::from_raw_parts(slice.as_mut_ptr(), item.len(), item.len())
}
#[inline(always)]
fn reserve_items<'a, I>(&mut self, items: I)
where
Self: 'a,
I: Iterator<Item=&'a Self::Item>+Clone,
{
self.region.reserve(items.clone().count());
self.inner.reserve_items(items.flat_map(|x| x.iter()));
}
fn reserve_regions<'a, I>(&mut self, regions: I)
where
Self: 'a,
I: Iterator<Item = &'a Self> + Clone,
{
self.region.reserve(regions.clone().map(|r| r.region.len()).sum());
self.inner.reserve_regions(regions.map(|r| &r.inner));
}
#[inline]
fn heap_size(&self, mut callback: impl FnMut(usize, usize)) {
self.inner.heap_size(&mut callback);
self.region.heap_size(callback);
}
}
}
/// Implementation for `String`.
pub mod string {
use super::{Columnation, Region, StableRegion};
/// Region allocation for `String` data.
///
/// Content bytes are stored in stable contiguous memory locations,
/// and then a `String` referencing them is falsified.
#[derive(Default)]
pub struct StringStack {
region: StableRegion<u8>,
}
impl Columnation for String {
type InnerRegion = StringStack;
}
impl Region for StringStack {
type Item = String;
#[inline]
fn clear(&mut self) {
self.region.clear();
}
// Removing `(always)` is a 20% performance regression in
// the `string10_copy` benchmark.
#[inline(always)] unsafe fn copy(&mut self, item: &String) -> String {
let bytes = self.region.copy_slice(item.as_bytes());
String::from_raw_parts(bytes.as_mut_ptr(), item.len(), item.len())
}
#[inline(always)]
fn reserve_items<'a, I>(&mut self, items: I)
where
Self: 'a,
I: Iterator<Item=&'a Self::Item>+Clone,
{
self.region.reserve(items.map(|x| x.len()).sum());
}
fn reserve_regions<'a, I>(&mut self, regions: I)
where
Self: 'a,
I: Iterator<Item = &'a Self> + Clone,
{
self.region.reserve(regions.clone().map(|r| r.region.len()).sum());
}
#[inline]
fn heap_size(&self, callback: impl FnMut(usize, usize)) {
self.region.heap_size(callback)
}
}
}
/// Implementation for tuples.
pub mod tuple {
use super::{Columnation, ColumnStack, Region};
use paste::paste;
macro_rules! tuple_columnation_inner1 {
([$name0:tt $($name:tt)*], [($index0:tt) $(($index:tt))*], $self:tt, $items:tt) => ( paste! {
$self.[<region $name0>].reserve_items($items.clone().map(|item| {
&item.$index0
}));
tuple_columnation_inner1!([$($name)*], [$(($index))*], $self, $items);
}
);
([], [$(($index:tt))*], $self:ident, $items:ident) => ( );
}
// This macro is copied from the above macro, but could probably be simpler as it does not need indexes.
macro_rules! tuple_columnation_inner2 {
([$name0:tt $($name:tt)*], [($index0:tt) $(($index:tt))*], $self:tt, $regions:tt) => ( paste! {
$self.[<region $name0>].reserve_regions($regions.clone().map(|region| {
®ion.[<region $name0>]
}));
tuple_columnation_inner2!([$($name)*], [$(($index))*], $self, $regions);
}
);
([], [$(($index:tt))*], $self:ident, $regions:ident) => ( );
}
/// The macro creates the region implementation for tuples
macro_rules! tuple_columnation {
( $($name:ident)+) => ( paste! {
impl<$($name: Columnation),*> Columnation for ($($name,)*) {
type InnerRegion = [<Tuple $($name)* Region >]<$($name::InnerRegion,)*>;
}
#[allow(non_snake_case)]
#[derive(Default)]
pub struct [<Tuple $($name)* Region >]<$($name: Region),*> {
$([<region $name>]: $name),*
}
#[allow(non_snake_case)]
impl<$($name: Region),*> [<Tuple $($name)* Region>]<$($name),*> {
#[allow(clippy::too_many_arguments)]
#[inline] pub unsafe fn copy_destructured(&mut self, $([<r $name>]: &$name::Item),*) -> <[<Tuple $($name)* Region>]<$($name),*> as Region>::Item {
(
$(self.[<region $name>].copy(&[<r $name>]),)*
)
}
}
#[allow(non_snake_case)]
impl<$($name: Region),*> Region for [<Tuple $($name)* Region>]<$($name),*> {
type Item = ($($name::Item,)*);
#[inline]
fn clear(&mut self) {
$(self.[<region $name>].clear());*
}
#[inline] unsafe fn copy(&mut self, item: &Self::Item) -> Self::Item {
let ($(ref $name,)*) = *item;
(
$(self.[<region $name>].copy($name),)*
)
}
#[inline(always)]
fn reserve_items<'a, It>(&mut self, items: It)
where
Self: 'a,
It: Iterator<Item=&'a Self::Item>+Clone,
{
tuple_columnation_inner1!([$($name)+], [(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (28) (29) (30) (31)], self, items);
}
#[inline(always)]
fn reserve_regions<'a, It>(&mut self, regions: It)
where
Self: 'a,
It: Iterator<Item = &'a Self> + Clone,
{
tuple_columnation_inner2!([$($name)+], [(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (28) (29) (30) (31)], self, regions);
}
#[inline] fn heap_size(&self, mut callback: impl FnMut(usize, usize)) {
$(self.[<region $name>].heap_size(&mut callback);)*
}
}
}
tuple_column_stack!(ColumnStack, $($name)*);
);
}
/// The macro creates the `copy_destructured` implementation for a custom column stack
/// with a single generic parameter characterizing the type `T` it stores.
/// It assumes there are two fields on `self`:
/// * `local`: A type supporting `push(T)`, e.g, `Vec`.
/// * `inner`: A region of type `T`.
/// We're exporting this macro so custom `ColumnStack` implementations can benefit from it.
#[macro_export]
macro_rules! tuple_column_stack {
( $type:ident, $($name:ident)+) => (
#[allow(non_snake_case)]
impl<$($name: Columnation),*> $type<($($name,)*)> {
/// Copies a destructured tuple into this column stack.
///
/// This serves situations where a tuple should be constructed from its constituents but not
/// not all elements are available as owned data.
///
/// The element can be read by indexing
pub fn copy_destructured(&mut self, $($name: &$name,)*) {
unsafe {
self.local.push(self.inner.copy_destructured($($name,)*));
}
}
}
);
}
tuple_columnation!(A);
tuple_columnation!(A B);
tuple_columnation!(A B C);
tuple_columnation!(A B C D);
tuple_columnation!(A B C D E);
tuple_columnation!(A B C D E F);
tuple_columnation!(A B C D E F G);
tuple_columnation!(A B C D E F G H);
tuple_columnation!(A B C D E F G H I);
tuple_columnation!(A B C D E F G H I J);
tuple_columnation!(A B C D E F G H I J K);
tuple_columnation!(A B C D E F G H I J K L);
tuple_columnation!(A B C D E F G H I J K L M);
tuple_columnation!(A B C D E F G H I J K L M N);
tuple_columnation!(A B C D E F G H I J K L M N O);
tuple_columnation!(A B C D E F G H I J K L M N O P);
tuple_columnation!(A B C D E F G H I J K L M N O P Q);
tuple_columnation!(A B C D E F G H I J K L M N O P Q R);
tuple_columnation!(A B C D E F G H I J K L M N O P Q R S);
tuple_columnation!(A B C D E F G H I J K L M N O P Q R S T);
tuple_columnation!(A B C D E F G H I J K L M N O P Q R S T U);
tuple_columnation!(A B C D E F G H I J K L M N O P Q R S T U V);
tuple_columnation!(A B C D E F G H I J K L M N O P Q R S T U V W);
tuple_columnation!(A B C D E F G H I J K L M N O P Q R S T U V W X);
tuple_columnation!(A B C D E F G H I J K L M N O P Q R S T U V W X Y);
tuple_columnation!(A B C D E F G H I J K L M N O P Q R S T U V W X Y Z);
tuple_columnation!(A B C D E F G H I J K L M N O P Q R S T U V W X Y Z AA);
tuple_columnation!(A B C D E F G H I J K L M N O P Q R S T U V W X Y Z AA AB);
tuple_columnation!(A B C D E F G H I J K L M N O P Q R S T U V W X Y Z AA AB AC);
tuple_columnation!(A B C D E F G H I J K L M N O P Q R S T U V W X Y Z AA AB AC AD);
tuple_columnation!(A B C D E F G H I J K L M N O P Q R S T U V W X Y Z AA AB AC AD AE);
tuple_columnation!(A B C D E F G H I J K L M N O P Q R S T U V W X Y Z AA AB AC AD AE AF);
}
}