lexical_parse_float/float.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
//! Extended helper trait for generic float types.
//!
//! This adapted from the Rust implementation, based on the fast-float-rust
//! implementation, and is similarly subject to an Apache2.0/MIT license.
#![doc(hidden)]
#[cfg(feature = "f16")]
use lexical_util::bf16::bf16;
use lexical_util::extended_float::ExtendedFloat;
#[cfg(feature = "f16")]
use lexical_util::f16::f16;
use lexical_util::num::{AsCast, Float};
#[cfg(all(not(feature = "std"), feature = "compact"))]
use crate::libm::{powd, powf};
use crate::limits::{ExactFloat, MaxDigits};
#[cfg(not(feature = "compact"))]
use crate::table::{get_small_f32_power, get_small_f64_power, get_small_int_power};
/// Alias with ~80 bits of precision, 64 for the mantissa and 16 for exponent.
/// This exponent is biased, and if the exponent is negative, it represents
/// a value with a bias of `i32::MIN + F::EXPONENT_BIAS`.
pub type ExtendedFloat80 = ExtendedFloat<u64>;
/// Helper trait to add more float characteristics for parsing floats.
pub trait RawFloat: Float + ExactFloat + MaxDigits {
// Maximum mantissa for the fast-path (`1 << 53` for f64).
const MAX_MANTISSA_FAST_PATH: u64 = 2_u64 << Self::MANTISSA_SIZE;
// Largest exponent value `(1 << EXP_BITS) - 1`.
const INFINITE_POWER: i32 = Self::MAX_EXPONENT + Self::EXPONENT_BIAS;
/// Minimum exponent that for a fast path case, or
/// `-⌊(MANTISSA_SIZE+1)/log2(r)⌋` where `r` is the radix with
/// powers-of-two removed.
#[must_use]
#[inline(always)]
fn min_exponent_fast_path(radix: u32) -> i64 {
Self::exponent_limit(radix).0
}
/// Maximum exponent that for a fast path case, or
/// `⌊(MANTISSA_SIZE+1)/log2(r)⌋` where `r` is the radix with
/// powers-of-two removed.
#[must_use]
#[inline(always)]
fn max_exponent_fast_path(radix: u32) -> i64 {
Self::exponent_limit(radix).1
}
// Maximum exponent that can be represented for a disguised-fast path case.
// This is `max_exponent_fast_path(radix) + ⌊(MANTISSA_SIZE+1)/log2(radix)⌋`
#[must_use]
#[inline(always)]
fn max_exponent_disguised_fast_path(radix: u32) -> i64 {
Self::max_exponent_fast_path(radix) + Self::mantissa_limit(radix)
}
/// Get a small power-of-radix for fast-path multiplication.
fn pow_fast_path(exponent: usize, radix: u32) -> Self;
/// Get a small, integral power-of-radix for fast-path multiplication.
#[must_use]
#[inline(always)]
fn int_pow_fast_path(exponent: usize, radix: u32) -> u64 {
// SAFETY: safe as long as the exponent is smaller than the radix table.
#[cfg(not(feature = "compact"))]
return get_small_int_power(exponent, radix);
#[cfg(feature = "compact")]
return (radix as u64).wrapping_pow(exponent as u32);
}
}
impl RawFloat for f32 {
#[inline(always)]
fn pow_fast_path(exponent: usize, radix: u32) -> Self {
// SAFETY: safe as long as the exponent is smaller than the radix table.
#[cfg(not(feature = "compact"))]
return get_small_f32_power(exponent, radix);
#[cfg(feature = "compact")]
return powf(radix as f32, exponent as f32);
}
}
impl RawFloat for f64 {
#[inline(always)]
fn pow_fast_path(exponent: usize, radix: u32) -> Self {
// SAFETY: safe as long as the exponent is smaller than the radix table.
#[cfg(not(feature = "compact"))]
return get_small_f64_power(exponent, radix);
#[cfg(feature = "compact")]
return powd(radix as f64, exponent as f64);
}
}
#[cfg(feature = "f16")]
impl RawFloat for f16 {
#[inline(always)]
fn pow_fast_path(_: usize, _: u32) -> Self {
unimplemented!()
}
}
#[cfg(feature = "f16")]
impl RawFloat for bf16 {
#[inline(always)]
fn pow_fast_path(_: usize, _: u32) -> Self {
unimplemented!()
}
}
/// Helper trait to add more float characteristics for the Eisel-Lemire
/// algorithm.
pub trait LemireFloat: RawFloat {
// Round-to-even only happens for negative values of q
// when `q ≥ −4` in the 64-bit case and when `q ≥ −17` in
// the 32-bitcase.
//
// When `q ≥ 0`,we have that `5^q ≤ 2m+1`. In the 64-bit case,we
// have `5^q ≤ 2m+1 ≤ 2^54` or `q ≤ 23`. In the 32-bit case,we have
// `5^q ≤ 2m+1 ≤ 2^25` or `q ≤ 10`.
//
// When q < 0, we have `w ≥ (2m+1)×5^−q`. We must have that `w < 2^64`
// so `(2m+1)×5^−q < 2^64`. We have that `2m+1 > 2^53` (64-bit case)
// or `2m+1 > 2^24` (32-bit case). Hence,we must have `2^53×5^−q < 2^64`
// (64-bit) and `2^24×5^−q < 2^64` (32-bit). Hence we have `5^−q < 2^11`
// or `q ≥ −4` (64-bit case) and `5^−q < 2^40` or `q ≥ −17` (32-bitcase).
//
// Thus we have that we only need to round ties to even when
// we have that `q ∈ [−4,23]` (in the 64-bit case) or `q∈[−17,10]`
// (in the 32-bit case). In both cases,the power of five (`5^|q|`)
// fits in a 64-bit word.
const MIN_EXPONENT_ROUND_TO_EVEN: i32;
const MAX_EXPONENT_ROUND_TO_EVEN: i32;
/// Minimum normal exponent value `-(1 << (EXPONENT_SIZE - 1)) + 1`.
const MINIMUM_EXPONENT: i32;
/// Smallest decimal exponent for a non-zero value.
const SMALLEST_POWER_OF_TEN: i32;
/// Largest decimal exponent for a non-infinite value.
const LARGEST_POWER_OF_TEN: i32;
}
impl LemireFloat for f32 {
const MIN_EXPONENT_ROUND_TO_EVEN: i32 = -17;
const MAX_EXPONENT_ROUND_TO_EVEN: i32 = 10;
const MINIMUM_EXPONENT: i32 = -127;
const SMALLEST_POWER_OF_TEN: i32 = -65;
const LARGEST_POWER_OF_TEN: i32 = 38;
}
impl LemireFloat for f64 {
const MIN_EXPONENT_ROUND_TO_EVEN: i32 = -4;
const MAX_EXPONENT_ROUND_TO_EVEN: i32 = 23;
const MINIMUM_EXPONENT: i32 = -1023;
const SMALLEST_POWER_OF_TEN: i32 = -342;
const LARGEST_POWER_OF_TEN: i32 = 308;
}
#[cfg(feature = "f16")]
impl LemireFloat for f16 {
const MIN_EXPONENT_ROUND_TO_EVEN: i32 = 0;
const MAX_EXPONENT_ROUND_TO_EVEN: i32 = 0;
const MINIMUM_EXPONENT: i32 = 0;
const SMALLEST_POWER_OF_TEN: i32 = 0;
const LARGEST_POWER_OF_TEN: i32 = 0;
}
#[cfg(feature = "f16")]
impl LemireFloat for bf16 {
const MIN_EXPONENT_ROUND_TO_EVEN: i32 = 0;
const MAX_EXPONENT_ROUND_TO_EVEN: i32 = 0;
const MINIMUM_EXPONENT: i32 = 0;
const SMALLEST_POWER_OF_TEN: i32 = 0;
const LARGEST_POWER_OF_TEN: i32 = 0;
}
#[inline(always)]
#[cfg(all(feature = "std", feature = "compact"))]
pub fn powf(x: f32, y: f32) -> f32 {
x.powf(y)
}
#[inline(always)]
#[cfg(all(feature = "std", feature = "compact"))]
pub fn powd(x: f64, y: f64) -> f64 {
x.powf(y)
}
/// Converts an `ExtendedFloat` to the closest machine float type.
#[must_use]
#[inline(always)]
pub fn extended_to_float<F: Float>(x: ExtendedFloat80) -> F {
let mut word = x.mant;
word |= (x.exp as u64) << F::MANTISSA_SIZE;
F::from_bits(F::Unsigned::as_cast(word))
}