bytes_utils/segmented.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
#![forbid(unsafe_code)]
use std::cmp;
use std::collections::VecDeque;
use std::io::IoSlice;
use std::iter::FromIterator;
use bytes::{Buf, BufMut, Bytes, BytesMut};
fn chunks_vectored<'s, B, I>(bufs: I, dst: &mut [IoSlice<'s>]) -> usize
where
I: Iterator<Item = &'s B>,
B: Buf + 's,
{
let mut filled = 0;
for buf in bufs {
if filled == dst.len() {
break;
}
filled += buf.chunks_vectored(&mut dst[filled..]);
}
filled
}
/// A consumable view of a sequence of buffers.
///
/// This allows viewing a sequence of buffers as one buffer, without copying the bytes over. Unlike
/// the [SegmentedBuf], this doesn't allow for appending more buffers and doesn't drop the buffers
/// as they are exhausted (though they all get exhausted, no leftovers are kept in them as the
/// caller advances through it). On the other hand, it doesn't require an internal allocation in
/// the form of VecDeque and can be based on any kind of slice.
///
/// # Example
///
/// ```rust
/// # use bytes_utils::SegmentedSlice;
/// # use bytes::Buf;
/// # use std::io::Read;
/// let mut buffers = [b"Hello" as &[_], b"", b" ", b"", b"World"];
/// let buf = SegmentedSlice::new(&mut buffers);
///
/// assert_eq!(11, buf.remaining());
/// assert_eq!(b"Hello", buf.chunk());
///
/// let mut out = String::new();
/// buf.reader().read_to_string(&mut out).expect("Doesn't cause IO errors");
/// assert_eq!("Hello World", out);
/// ```
///
/// # Optimizations
///
/// The [copy_to_bytes][SegmentedSlice::copy_to_bytes] method tries to avoid copies by delegating
/// into the underlying buffer if possible (if the whole request can be fulfilled using only a
/// single buffer). If that one is optimized (for example, the [Bytes] returns a shared instance
/// instead of making a copy), the copying is avoided. If the request is across a buffer boundary,
/// a copy is made.
///
/// The [chunks_vectored][SegmentedSlice::chunks_vectored] will properly output as many slices as
/// possible, not just 1 as the default implementation does.
#[derive(Debug, Default)]
pub struct SegmentedSlice<'a, B> {
remaining: usize,
idx: usize,
bufs: &'a mut [B],
}
impl<'a, B: Buf> SegmentedSlice<'a, B> {
/// Creates a new buffer out of a slice of buffers.
///
/// The buffers will then be taken in order to form one bigger buffer.
///
/// Each of the buffers in turn will be exhausted using its [advance][Buf::advance] before
/// proceeding to the next one. Note that the buffers are not dropped (unlike with
/// [SegmentedBuf]).
pub fn new(bufs: &'a mut [B]) -> Self {
let remaining = bufs.iter().map(Buf::remaining).sum();
let mut me = Self {
remaining,
idx: 0,
bufs,
};
me.clean_empty();
me
}
fn clean_empty(&mut self) {
while self.idx < self.bufs.len() && !self.bufs[self.idx].has_remaining() {
self.idx += 1;
}
}
}
impl<'a, B: Buf> Buf for SegmentedSlice<'a, B> {
fn remaining(&self) -> usize {
self.remaining
}
fn chunk(&self) -> &[u8] {
self.bufs.get(self.idx).map(Buf::chunk).unwrap_or_default()
}
fn advance(&mut self, mut cnt: usize) {
self.remaining -= cnt;
while cnt > 0 {
let first = &mut self.bufs[self.idx];
let rem = first.remaining();
let segment = cmp::min(rem, cnt);
first.advance(segment);
cnt -= segment;
self.clean_empty();
}
}
fn copy_to_bytes(&mut self, len: usize) -> Bytes {
assert!(len <= self.remaining(), "`len` greater than remaining");
match self.bufs.get_mut(self.idx) {
// Special optimized case. The whole request comes from the front buffer. That one may
// be optimized to do something more efficient, like slice the Bytes (if B == Bytes)
// instead of copying, so we take the opportunity if it offers itself.
Some(front) if front.remaining() >= len => {
self.remaining -= len;
let res = front.copy_to_bytes(len);
self.clean_empty();
res
}
// The general case, borrowed from the default implementation (there's no way to
// delegate to it, is there?)
_ => {
let mut res = BytesMut::with_capacity(len);
res.put(self.take(len));
res.freeze()
}
}
}
fn chunks_vectored<'s>(&'s self, dst: &mut [IoSlice<'s>]) -> usize {
let bufs = self.bufs.get(self.idx..).unwrap_or_default();
chunks_vectored(bufs.iter(), dst)
}
}
/// A concatenation of multiple buffers into a large one, without copying the bytes over.
///
/// Note that this doesn't provide a continuous slice view into them, it is split into the segments
/// of the original smaller buffers.
///
/// This variants drop the inner buffers as they are exhausted and new ones can be added. But it
/// internally keeps a [VecDeque], therefore needs a heap allocation. If you don't need the
/// extending behaviour, but want to avoid the allocation, the [SegmentedSlice] can be used instead.
///
/// # Why
///
/// This can be used, for example, if data of unknown length is coming over the network (for
/// example, the bodies in [hyper] act a bit like this, it returns a stream of [Bytes] buffers).
/// One might want to accumulate the whole body before acting on it, possibly by parsing it through
/// [serde] or [prost]. Options would include:
///
/// * Have a `Vec<u8>` and extend it with each chunk. This needlessly copy the bytes every time and
/// reallocates if the vector grows too large.
/// * Repeatedly use [chain][Buf::chain], but this changes the type of the whole buffer, therefore
/// needs to be boxed.
/// * Use [hyper::body::aggregate] to create a [Buf] implementation that concatenates all of them
/// together, but lacks any kind of flexibility (like protecting against loading too much data
/// into memory).
///
/// This type allows for concatenating multiple buffers, either all at once, or by incrementally
/// pushing more buffers to the end.
///
/// # Heterogeneous buffers
///
/// This expects all the buffers are of the same type. If different-typed buffers are needed, one
/// needs to use dynamic dispatch, either something like `SegmentedBuf<Box<Buf>>` or
/// `SegmentedBuf<&mut Buf>`.
///
/// # Example
///
/// ```rust
/// # use std::io::Read;
/// # use bytes::{Bytes, Buf};
/// # use bytes_utils::SegmentedBuf;
/// let mut buf = SegmentedBuf::new();
/// buf.push(Bytes::from("Hello"));
/// buf.push(Bytes::from(" "));
/// buf.push(Bytes::from("World"));
///
/// assert_eq!(3, buf.segments());
/// assert_eq!(11, buf.remaining());
/// assert_eq!(b"Hello", buf.chunk());
///
/// let mut out = String::new();
/// buf.reader().read_to_string(&mut out).expect("Doesn't cause IO errors");
/// assert_eq!("Hello World", out);
/// ```
///
/// # FIFO behaviour
///
/// The buffers are dropped once their data are completely consumed. Additionally, it is possible
/// to add more buffers to the end, even while some of the previous buffers were partially or fully
/// consumed. That makes it usable as kind of a queue (that operates on the buffers, not individual
/// bytes).
///
/// ```rust
/// # use bytes::{Bytes, Buf};
/// # use bytes_utils::SegmentedBuf;
/// let mut buf = SegmentedBuf::new();
/// buf.push(Bytes::from("Hello"));
/// assert_eq!(1, buf.segments());
///
/// let mut out = [0; 3];
/// buf.copy_to_slice(&mut out);
/// assert_eq!(&out, b"Hel");
/// assert_eq!(2, buf.remaining());
/// assert_eq!(1, buf.segments());
///
/// buf.push(Bytes::from("World"));
/// assert_eq!(7, buf.remaining());
/// assert_eq!(2, buf.segments());
///
/// buf.copy_to_slice(&mut out);
/// assert_eq!(&out, b"loW");
/// assert_eq!(4, buf.remaining());
/// assert_eq!(1, buf.segments());
/// ```
///
/// # Optimizations
///
/// The [copy_to_bytes][SegmentedBuf::copy_to_bytes] method tries to avoid copies by delegating
/// into the underlying buffer if possible (if the whole request can be fulfilled using only a
/// single buffer). If that one is optimized (for example, the [Bytes] returns a shared instance
/// instead of making a copy), the copying is avoided. If the request is across a buffer boundary,
/// a copy is made.
///
/// The [chunks_vectored][SegmentedBuf::chunks_vectored] will properly output as many slices as
/// possible, not just 1 as the default implementation does.
///
/// [hyper]: https://docs.rs/hyper
/// [serde]: https://docs.rs/serde
/// [prost]: https://docs.rs/prost
/// [hyper::body::aggregate]: https://docs.rs/hyper/0.14.2/hyper/body/fn.aggregate.html
#[derive(Clone, Debug)]
pub struct SegmentedBuf<B> {
bufs: VecDeque<B>,
// Pre-computed sum of the total remaning
remaining: usize,
}
impl<B> SegmentedBuf<B> {
/// Creates a new empty instance.
///
/// The instance can be [pushed][SegmentedBuf::push] or [extended][Extend] later.
///
/// Alternatively, one may create it directly from an iterator, a [Vec] or a [VecDeque] of
/// buffers.
pub fn new() -> Self {
Self::default()
}
/// Returns the yet unconsumed sequence of buffers.
pub fn into_inner(self) -> VecDeque<B> {
self.into()
}
/// Returns the number of segments (buffers) this contains.
pub fn segments(&self) -> usize {
self.bufs.len()
}
}
impl<B: Buf> SegmentedBuf<B> {
/// Extends the buffer by another segment.
///
/// The newly added segment is added to the end of the buffer (the buffer works as a FIFO).
pub fn push(&mut self, buf: B) {
self.remaining += buf.remaining();
self.bufs.push_back(buf);
self.clean_empty();
}
fn update_remaining(&mut self) {
self.remaining = self.bufs.iter().map(Buf::remaining).sum();
}
fn clean_empty(&mut self) {
loop {
match self.bufs.front() {
Some(b) if !b.has_remaining() => {
self.bufs.pop_front();
}
_ => break,
}
}
}
}
impl<B> Default for SegmentedBuf<B> {
fn default() -> Self {
Self {
bufs: VecDeque::new(),
remaining: 0,
}
}
}
impl<B: Buf> From<Vec<B>> for SegmentedBuf<B> {
fn from(bufs: Vec<B>) -> Self {
Self::from(VecDeque::from(bufs))
}
}
impl<B: Buf> From<VecDeque<B>> for SegmentedBuf<B> {
fn from(bufs: VecDeque<B>) -> Self {
let mut me = Self { bufs, remaining: 0 };
me.clean_empty();
me.update_remaining();
me
}
}
impl<B> From<SegmentedBuf<B>> for VecDeque<B> {
fn from(me: SegmentedBuf<B>) -> Self {
me.bufs
}
}
impl<B: Buf> Extend<B> for SegmentedBuf<B> {
fn extend<T: IntoIterator<Item = B>>(&mut self, iter: T) {
self.bufs.extend(iter);
self.clean_empty();
self.update_remaining();
}
}
impl<B: Buf> FromIterator<B> for SegmentedBuf<B> {
fn from_iter<T: IntoIterator<Item = B>>(iter: T) -> Self {
let mut me = Self {
bufs: VecDeque::from_iter(iter),
remaining: 0,
};
me.clean_empty();
me.update_remaining();
me
}
}
impl<B: Buf> Buf for SegmentedBuf<B> {
fn remaining(&self) -> usize {
self.remaining
}
fn chunk(&self) -> &[u8] {
self.bufs.front().map(Buf::chunk).unwrap_or_default()
}
fn advance(&mut self, mut cnt: usize) {
assert!(cnt <= self.remaining, "Advance past the end of buffer");
self.remaining -= cnt;
while cnt > 0 {
let front = self
.bufs
.front_mut()
.expect("Missing buffers to provide remaining");
let front_remaining = front.remaining();
if front_remaining >= cnt {
front.advance(cnt);
break;
} else {
// We advance past the whole front buffer
cnt -= front_remaining;
self.bufs.pop_front();
}
}
self.clean_empty();
}
fn copy_to_bytes(&mut self, len: usize) -> Bytes {
assert!(len <= self.remaining(), "`len` greater than remaining");
match self.bufs.front_mut() {
// Special optimized case. The whole request comes from the front buffer. That one may
// be optimized to do something more efficient, like slice the Bytes (if B == Bytes)
// instead of copying, so we take the opportunity if it offers itself.
Some(front) if front.remaining() >= len => {
self.remaining -= len;
let res = front.copy_to_bytes(len);
self.clean_empty();
res
}
// The general case, borrowed from the default implementation (there's no way to
// delegate to it, is there?)
_ => {
let mut res = BytesMut::with_capacity(len);
res.put(self.take(len));
res.freeze()
}
}
}
fn chunks_vectored<'a>(&'a self, dst: &mut [IoSlice<'a>]) -> usize {
chunks_vectored(self.bufs.iter(), dst)
}
}
#[cfg(test)]
mod tests {
use std::io::Read;
use std::ops::Deref;
use proptest::prelude::*;
use super::*;
#[test]
fn empty() {
let mut b = SegmentedBuf::<Bytes>::new();
assert!(!b.has_remaining());
assert_eq!(0, b.remaining());
assert!(b.chunk().is_empty());
assert_eq!(0, b.segments());
b.copy_to_slice(&mut []);
b.advance(0);
assert_eq!(0, b.reader().read(&mut [0; 10]).unwrap());
}
#[test]
fn empty_slices() {
let mut b = SegmentedSlice::<&[u8]>::default();
assert!(!b.has_remaining());
assert_eq!(0, b.remaining());
assert!(b.chunk().is_empty());
b.copy_to_slice(&mut []);
b.advance(0);
assert_eq!(0, b.reader().read(&mut [0; 10]).unwrap());
}
fn segmented() -> SegmentedBuf<Bytes> {
vec![
Bytes::from("Hello"),
Bytes::from(" "),
Bytes::new(),
Bytes::from("World"),
]
.into()
}
#[test]
fn segments() {
let mut b = segmented();
assert_eq!(11, b.remaining());
assert_eq!(b"Hello", b.chunk());
assert_eq!(4, b.segments());
b.advance(3);
assert_eq!(8, b.remaining());
assert_eq!(b"lo", b.chunk());
assert_eq!(4, b.segments());
}
#[test]
fn to_bytes_all() {
let mut b = segmented();
let bytes = b.copy_to_bytes(11);
assert_eq!("Hello World", &bytes);
}
#[test]
fn advance_within() {
let mut b = segmented();
b.advance(2);
assert_eq!(4, b.segments());
assert_eq!(9, b.remaining());
assert_eq!(b"llo", b.chunk());
}
#[test]
fn advance_border() {
let mut b = segmented();
b.advance(5);
assert_eq!(3, b.segments());
assert_eq!(6, b.remaining());
assert_eq!(b" ", b.chunk());
}
#[test]
fn advance_across() {
let mut b = segmented();
b.advance(7);
assert_eq!(1, b.segments());
assert_eq!(4, b.remaining());
assert_eq!(b"orld", b.chunk());
}
#[test]
fn empty_at_border() {
let mut b = segmented();
b.advance(6);
assert_eq!(1, b.segments());
assert_eq!(5, b.remaining());
assert_eq!(b"World", b.chunk());
}
#[test]
fn empty_bufs() {
fn is_empty(b: &SegmentedBuf<Bytes>) {
assert_eq!(0, b.segments());
assert_eq!(0, b.remaining());
assert_eq!(b"", b.chunk());
}
is_empty(&vec![].into());
is_empty(&vec![Bytes::new(), Bytes::new()].into());
is_empty(&vec![Bytes::new(), Bytes::new()].into_iter().collect());
let mut b = SegmentedBuf::new();
is_empty(&b);
b.push(Bytes::new());
is_empty(&b);
b.extend(vec![Bytes::new(), Bytes::new()]);
is_empty(&b);
}
#[test]
fn sliced_hello() {
let mut buffers = [b"Hello" as &[_], b"", b" ", b"", b"World"];
let buf = SegmentedSlice::new(&mut buffers);
assert_eq!(11, buf.remaining());
assert_eq!(b"Hello", buf.chunk());
let mut out = String::new();
buf.reader()
.read_to_string(&mut out)
.expect("Doesn't cause IO errors");
assert_eq!("Hello World", out);
}
#[test]
fn chunk_vectored() {
let mut b = segmented();
assert_eq!(b.chunks_vectored(&mut []), 0);
let mut slices = [IoSlice::new(&[]); 5];
assert_eq!(b.segments(), 4);
assert_eq!(b.chunks_vectored(&mut slices), 3);
assert_eq!(&*slices[0], b"Hello");
assert_eq!(&*slices[1], b" ");
assert_eq!(&*slices[2], b"World");
b.advance(2);
let mut slices = [IoSlice::new(&[]); 1];
assert_eq!(b.chunks_vectored(&mut slices), 1);
assert_eq!(&*slices[0], b"llo");
}
#[test]
fn chunk_vectored_nested() {
let mut bufs = [segmented(), segmented()];
let mut bufs = SegmentedSlice::new(&mut bufs);
let mut slices = [IoSlice::new(&[]); 10];
assert_eq!(bufs.chunks_vectored(&mut slices), 6);
assert_eq!(&*slices[0], b"Hello");
assert_eq!(&*slices[1], b" ");
assert_eq!(&*slices[2], b"World");
assert_eq!(&*slices[3], b"Hello");
assert_eq!(&*slices[4], b" ");
assert_eq!(&*slices[5], b"World");
bufs.advance(2);
let mut slices = [IoSlice::new(&[]); 1];
assert_eq!(bufs.chunks_vectored(&mut slices), 1);
assert_eq!(&*slices[0], b"llo");
}
proptest! {
#[test]
fn random(bufs: Vec<Vec<u8>>, splits in proptest::collection::vec(0..10usize, 1..10)) {
let concat: Vec<u8> = bufs.iter().flat_map(|b| b.iter()).copied().collect();
let mut segmented = bufs.iter()
.map(|b| &b[..])
.collect::<SegmentedBuf<_>>();
assert_eq!(concat.len(), segmented.remaining());
assert!(segmented.segments() <= bufs.len());
assert!(concat.starts_with(segmented.chunk()));
let mut bytes = segmented.clone().copy_to_bytes(segmented.remaining());
assert_eq!(&concat[..], &bytes[..]);
let mut sliced = bufs.iter().map(Deref::deref).collect::<Vec<&[u8]>>();
let mut sliced = SegmentedSlice::new(&mut sliced);
let mut fifo = SegmentedBuf::new();
let mut buf_pos = bufs.iter();
for split in splits {
if !bytes.has_remaining() {
break;
}
let split = cmp::min(bytes.remaining(), split);
while fifo.remaining() < split {
fifo.push(&buf_pos.next().unwrap()[..]);
}
let c1 = bytes.copy_to_bytes(split);
let c2 = segmented.copy_to_bytes(split);
let c3 = sliced.copy_to_bytes(split);
assert_eq!(c1, c2);
assert_eq!(c1, c3);
assert_eq!(bytes.remaining(), segmented.remaining());
assert_eq!(bytes.remaining(), sliced.remaining());
}
}
}
}