1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
// Copyright Materialize, Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.inner (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License in the LICENSE file at the
// root of this repository, or online at
//
// http://www.apache.org/licenses/LICENSE-2.inner
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::cmp::Ordering;
use std::convert::TryFrom;
use std::convert::TryInto;
use std::ffi::{CStr, CString};
use std::fmt;
use std::iter::{Product, Sum};
use std::marker::PhantomData;
use std::mem::MaybeUninit;
use std::ops::{
Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Rem, RemAssign, Sub, SubAssign,
};
use std::str::FromStr;
use libc::c_char;
use crate::context::{Class, Context};
use crate::decimal::Decimal;
use crate::decimal128::Decimal128;
use crate::decimal32::Decimal32;
use crate::error::ParseDecimalError;
/// A 64-bit decimal floating-point number.
///
/// Additional operations are defined as methods on the [`Context`] type.
///
/// For convenience, `Decimal64` overloads many of the standard Rust operators.
/// For example, you can use the standard `+` operator to add two values
/// together:
///
/// ```
/// use dec::Decimal64;
/// let a = Decimal64::from(1);
/// let b = Decimal64::from(2);
/// assert_eq!(a + b, Decimal64::from(3));
/// ```
///
/// These overloaded operators implicitly construct a single-use default
/// context, which has some performance overhead. For maximum performance when
/// performing operations in bulk, use a long-lived context that you construct
/// yourself.
#[repr(transparent)]
#[derive(Clone, Copy)]
pub struct Decimal64 {
pub(crate) inner: decnumber_sys::decDouble,
}
impl Decimal64 {
/// The value that represents Not-a-Number (NaN).
pub const NAN: Decimal64 = Decimal64::from_ne_bytes(if cfg!(target_endian = "little") {
[0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x7c]
} else {
[0x7c, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0]
});
/// The value that represents zero.
pub const ZERO: Decimal64 = Decimal64::from_ne_bytes(if cfg!(target_endian = "little") {
[0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x38, 0x22]
} else {
[0x22, 0x38, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0]
});
/// The value that represents one.
pub const ONE: Decimal64 = Decimal64::from_ne_bytes(if cfg!(target_endian = "little") {
[0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x38, 0x22]
} else {
[0x22, 0x38, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1]
});
/// The value that represents 2<sup>32</sup>.
const TWO_POW_32: Decimal64 = Decimal64::from_ne_bytes(if cfg!(target_endian = "little") {
[0x7A, 0xB5, 0xAF, 0x15, 0x1, 0x0, 0x38, 0x22]
} else {
[0x22, 0x38, 0x0, 0x1, 0x15, 0xAF, 0xB5, 0x7A]
});
/// Creates a number from its representation as a little-endian byte array.
pub fn from_le_bytes(mut bytes: [u8; 8]) -> Decimal64 {
if cfg!(target_endian = "big") {
bytes.reverse();
}
Decimal64::from_ne_bytes(bytes)
}
/// Creates a number from its representation as a big-endian byte array.
pub fn from_be_bytes(mut bytes: [u8; 8]) -> Decimal64 {
if cfg!(target_endian = "little") {
bytes.reverse();
}
Decimal64::from_ne_bytes(bytes)
}
/// Creates a number from its representation as a byte array in the
/// native endianness of the target platform.
pub const fn from_ne_bytes(bytes: [u8; 8]) -> Decimal64 {
Decimal64 {
inner: decnumber_sys::decDouble { bytes },
}
}
/// Returns the memory representation of the number as a byte array in
/// little-endian order.
pub fn to_le_bytes(&self) -> [u8; 8] {
let mut bytes = self.to_ne_bytes();
if cfg!(target_endian = "big") {
bytes.reverse();
}
bytes
}
/// Returns the memory representation of the number as a byte array in
/// big-endian order.
pub fn to_be_bytes(&self) -> [u8; 8] {
let mut bytes = self.to_ne_bytes();
if cfg!(target_endian = "little") {
bytes.reverse();
}
bytes
}
/// Returns the memory representation of the number as a byte array in
/// the native endianness of the target platform.
pub fn to_ne_bytes(&self) -> [u8; 8] {
self.inner.bytes
}
/// Classifies the number.
pub fn class(&self) -> Class {
Class::from_c(unsafe { decnumber_sys::decDoubleClass(&self.inner) })
}
/// Computes the number of significant digits in the number.
///
/// If the number is zero or infinite, returns 1. If the number is a NaN,
/// returns the number of digits in the payload.
pub fn digits(&self) -> u32 {
unsafe { decnumber_sys::decDoubleDigits(&self.inner) }
}
/// Computes the coefficient of the number.
///
/// If the number is a special value (i.e., NaN or infinity), returns zero.
pub fn coefficient(&self) -> i64 {
let mut dpd = if cfg!(target_endian = "big") {
u64::from_be_bytes(self.inner.bytes)
} else {
u64::from_le_bytes(self.inner.bytes)
};
// Densely packed decimals are 10-bit strings.
let dpd_mask = 0b11_1111_1111;
// Digits 8-16
// Lossy conversion from u64 to usize is fine because we only care
// about the 10 rightmost bits.
let mut r = i64::from(unsafe { decnumber_sys::DPD2BIN[dpd as usize & dpd_mask] });
dpd >>= 10;
r += i64::from(unsafe { decnumber_sys::DPD2BINK[dpd as usize & dpd_mask] });
dpd >>= 10;
r += i64::from(unsafe { decnumber_sys::DPD2BINM[dpd as usize & dpd_mask] });
dpd >>= 10;
// Digits 2-7
let mut r_1: i64 = 0;
r_1 += i64::from(unsafe { decnumber_sys::DPD2BIN[dpd as usize & dpd_mask] });
dpd >>= 10;
r_1 += i64::from(unsafe { decnumber_sys::DPD2BINK[dpd as usize & dpd_mask] });
r += r_1 * 10_000_000_00;
// Digit 1
let h = i64::from(unsafe { decnumber_sys::DECCOMBMSD[(dpd >> 18) as usize] });
if h > 0 {
r += h * 1_000_000_000_000_000;
}
if self.is_negative() {
r *= -1;
}
r
}
/// Returns the individual digits of the coefficient in 8-bit, unpacked
/// [binary-coded decimal][bcd] format.
///
/// [bcd]: https://en.wikipedia.org/wiki/Binary-coded_decimal
pub fn coefficient_digits(&self) -> [u8; decnumber_sys::DECDOUBLE_Pmax] {
let mut buf = [0u8; decnumber_sys::DECDOUBLE_Pmax];
unsafe {
decnumber_sys::decDoubleGetCoefficient(&self.inner, buf.as_mut_ptr() as *mut u8);
}
buf
}
/// Computes the exponent of the number.
pub fn exponent(&self) -> i32 {
unsafe { decnumber_sys::decDoubleGetExponent(&self.inner) }
}
/// Returns an equivalent number whose encoding is guaranteed to be
/// canonical.
pub fn canonical(mut self) -> Decimal64 {
unsafe {
decnumber_sys::decDoubleCanonical(&mut self.inner, &self.inner);
}
self
}
/// Reports whether the encoding of the number is canonical.
pub fn is_canonical(&self) -> bool {
unsafe { decnumber_sys::decDoubleIsCanonical(&self.inner) != 0 }
}
/// Reports whether the number is finite.
///
/// A finite number is one that is neither infinite nor a NaN.
pub fn is_finite(&self) -> bool {
unsafe { decnumber_sys::decDoubleIsFinite(&self.inner) != 0 }
}
/// Reports whether the number is positive or negative infinity.
pub fn is_infinite(&self) -> bool {
unsafe { decnumber_sys::decDoubleIsInfinite(&self.inner) != 0 }
}
/// Reports whether the number is an integer.
///
/// An integer is a decimal number that is finite and has an exponent of
/// zero.
pub fn is_integer(&self) -> bool {
unsafe { decnumber_sys::decDoubleIsInteger(&self.inner) != 0 }
}
/// Reports whether the number is a valid argument for logical operations.
///
/// A number is a valid argument for logical operations if it is a
/// nonnegative integer where each digit is either zero or one.
pub fn is_logical(&self) -> bool {
unsafe { decnumber_sys::decDoubleIsInteger(&self.inner) != 0 }
}
/// Reports whether the number is a NaN.
pub fn is_nan(&self) -> bool {
unsafe { decnumber_sys::decDoubleIsNaN(&self.inner) != 0 }
}
/// Reports whether the number is less than zero and not a NaN.
pub fn is_negative(&self) -> bool {
unsafe { decnumber_sys::decDoubleIsNegative(&self.inner) != 0 }
}
/// Reports whether the number is normal.
///
/// A normal number is finite, non-zero, and not subnormal.
pub fn is_normal(&self) -> bool {
unsafe { decnumber_sys::decDoubleIsNormal(&self.inner) != 0 }
}
/// Reports whether the number is greater than zero and not a NaN.
pub fn is_positive(&self) -> bool {
unsafe { decnumber_sys::decDoubleIsPositive(&self.inner) != 0 }
}
/// Reports whether the number is a signaling NaN.
pub fn is_signaling_nan(&self) -> bool {
unsafe { decnumber_sys::decDoubleIsSignaling(&self.inner) != 0 }
}
/// Reports whether the number has a sign of 1.
///
/// Note that zeros and NaNs may have a sign of 1.
pub fn is_signed(&self) -> bool {
unsafe { decnumber_sys::decDoubleIsSigned(&self.inner) != 0 }
}
/// Reports whether the number is subnormal.
///
/// A subnormal number is finite, non-zero, and has magnitude less than
/// 10<sup>emin</sup>.
pub fn is_subnormal(&self) -> bool {
unsafe { decnumber_sys::decDoubleIsSubnormal(&self.inner) != 0 }
}
/// Reports whether the number is positive or negative zero.
pub fn is_zero(&self) -> bool {
unsafe { decnumber_sys::decDoubleIsZero(&self.inner) != 0 }
}
/// Reports whether the quantum of the number matches the quantum of
/// `rhs`.
///
/// Quantums are considered to match if the numbers have the same exponent,
/// are both NaNs, or both infinite.
pub fn quantum_matches(&self, rhs: &Decimal64) -> bool {
unsafe { decnumber_sys::decDoubleSameQuantum(&self.inner, &rhs.inner) != 0 }
}
/// Determines the ordering of this number relative to `rhs`, using the
/// total order predicate defined in IEEE 754-2008.
///
/// For a brief description of the ordering, consult [`f32::total_cmp`].
pub fn total_cmp(&self, rhs: &Decimal64) -> Ordering {
let mut d = Decimal64::ZERO;
unsafe {
decnumber_sys::decDoubleCompareTotal(&mut d.inner, &self.inner, &rhs.inner);
}
if d.is_positive() {
Ordering::Greater
} else if d.is_negative() {
Ordering::Less
} else {
debug_assert!(d.is_zero());
Ordering::Equal
}
}
/// Returns a string of the number in standard notation, i.e. guaranteed to
/// not be scientific notation.
pub fn to_standard_notation_string(&self) -> String {
if !self.is_finite() {
return self.to_string();
}
let mut digits = [b'0'; decnumber_sys::DECDOUBLE_Pmax];
let mut digits_idx = 0;
let (sourlo, sourhi) = if cfg!(target_endian = "little") {
(
u32::from_le_bytes(self.inner.bytes[0..4].try_into().unwrap()) as usize,
u32::from_le_bytes(self.inner.bytes[4..8].try_into().unwrap()) as usize,
)
} else {
(
u32::from_be_bytes(self.inner.bytes[4..8].try_into().unwrap()) as usize,
u32::from_be_bytes(self.inner.bytes[0..4].try_into().unwrap()) as usize,
)
};
let comb = ((sourhi >> 26) & 0x1f) as usize;
let msd = unsafe { decnumber_sys::DECCOMBMSD[comb] };
if msd > 0 {
digits[digits_idx] = b'0' + msd as u8;
digits_idx += 1;
}
#[allow(unused_assignments)]
let mut dpd: usize = 0;
dpd = (sourhi >> 8) & 0x3ff; // declet 1
dpd2char!(dpd, digits, digits_idx);
dpd = ((sourhi & 0xff) << 2) | (sourlo >> 30); // declet 2
dpd2char!(dpd, digits, digits_idx);
dpd = (sourlo >> 20) & 0x3ff; // declet 3
dpd2char!(dpd, digits, digits_idx);
dpd = (sourlo >> 10) & 0x3ff; // declet 4
dpd2char!(dpd, digits, digits_idx);
dpd = (sourlo) & 0x3ff; // declet 5
dpd2char!(dpd, digits, digits_idx);
stringify_digits!(self, digits, digits_idx)
}
}
#[test]
fn test() {
let mut cx = Context::<Decimal64>::default();
let d = cx.parse("0").unwrap();
println!("{:?}", d.to_standard_notation_string());
}
impl Default for Decimal64 {
fn default() -> Decimal64 {
Decimal64::ZERO
}
}
impl fmt::Debug for Decimal64 {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(self, f)
}
}
impl fmt::Display for Decimal64 {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let mut buf = MaybeUninit::<[c_char; decnumber_sys::DECDOUBLE_String]>::uninit();
let c_str = unsafe {
if f.alternate() {
decnumber_sys::decDoubleToEngString(&self.inner, buf.as_mut_ptr() as *mut c_char);
} else {
decnumber_sys::decDoubleToString(&self.inner, buf.as_mut_ptr() as *mut c_char);
}
CStr::from_ptr(buf.as_ptr() as *const c_char)
};
f.write_str(
c_str
.to_str()
.expect("decDoubleToString yields valid UTF-8"),
)
}
}
impl FromStr for Decimal64 {
type Err = ParseDecimalError;
fn from_str(s: &str) -> Result<Decimal64, ParseDecimalError> {
Context::<Decimal64>::default().parse(s)
}
}
impl From<i32> for Decimal64 {
fn from(n: i32) -> Decimal64 {
let mut d = Decimal64::ZERO;
unsafe {
decnumber_sys::decDoubleFromInt32(&mut d.inner, n);
};
d
}
}
impl From<u32> for Decimal64 {
fn from(n: u32) -> Decimal64 {
let mut d = Decimal64::ZERO;
unsafe {
decnumber_sys::decDoubleFromUInt32(&mut d.inner, n);
};
d
}
}
impl From<Decimal32> for Decimal64 {
fn from(d32: Decimal32) -> Decimal64 {
let mut d64 = Decimal64::ZERO;
unsafe {
decnumber_sys::decSingleToWider(&d32.inner, &mut d64.inner);
}
d64
}
}
impl PartialOrd for Decimal64 {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Context::<Decimal64>::default().partial_cmp(*self, *other)
}
}
impl PartialEq for Decimal64 {
fn eq(&self, other: &Self) -> bool {
self.partial_cmp(other) == Some(Ordering::Equal)
}
}
impl Neg for Decimal64 {
type Output = Decimal64;
fn neg(self) -> Decimal64 {
Context::<Decimal64>::default().minus(self)
}
}
impl Add<Decimal64> for Decimal64 {
type Output = Decimal64;
fn add(self, rhs: Decimal64) -> Decimal64 {
Context::<Decimal64>::default().add(self, rhs)
}
}
impl AddAssign<Decimal64> for Decimal64 {
fn add_assign(&mut self, rhs: Decimal64) {
*self = Context::<Decimal64>::default().add(*self, rhs);
}
}
impl Div<Decimal64> for Decimal64 {
type Output = Decimal64;
fn div(self, rhs: Decimal64) -> Decimal64 {
Context::<Decimal64>::default().div(self, rhs)
}
}
impl DivAssign<Decimal64> for Decimal64 {
fn div_assign(&mut self, rhs: Decimal64) {
*self = Context::<Decimal64>::default().div(*self, rhs);
}
}
impl Mul<Decimal64> for Decimal64 {
type Output = Decimal64;
fn mul(self, rhs: Decimal64) -> Decimal64 {
Context::<Decimal64>::default().mul(self, rhs)
}
}
impl MulAssign<Decimal64> for Decimal64 {
fn mul_assign(&mut self, rhs: Decimal64) {
*self = Context::<Decimal64>::default().mul(*self, rhs);
}
}
impl Rem<Decimal64> for Decimal64 {
type Output = Decimal64;
fn rem(self, rhs: Decimal64) -> Decimal64 {
Context::<Decimal64>::default().rem(self, rhs)
}
}
impl RemAssign<Decimal64> for Decimal64 {
fn rem_assign(&mut self, rhs: Decimal64) {
*self = Context::<Decimal64>::default().rem(*self, rhs);
}
}
impl Sub<Decimal64> for Decimal64 {
type Output = Decimal64;
fn sub(self, rhs: Decimal64) -> Decimal64 {
Context::<Decimal64>::default().sub(self, rhs)
}
}
impl SubAssign<Decimal64> for Decimal64 {
fn sub_assign(&mut self, rhs: Decimal64) {
*self = Context::<Decimal64>::default().sub(*self, rhs);
}
}
impl Sum for Decimal64 {
fn sum<I>(iter: I) -> Self
where
I: Iterator<Item = Decimal64>,
{
let mut cx = Context::<Decimal64>::default();
let mut sum = Decimal64::ZERO;
for d in iter {
sum = cx.add(sum, d);
}
sum
}
}
impl<'a> Sum<&'a Decimal64> for Decimal64 {
fn sum<I>(iter: I) -> Self
where
I: Iterator<Item = &'a Decimal64>,
{
iter.copied().sum()
}
}
impl Product for Decimal64 {
fn product<I>(iter: I) -> Self
where
I: Iterator<Item = Decimal64>,
{
let mut cx = Context::<Decimal64>::default();
let mut product = Decimal64::ONE;
for d in iter {
product = cx.mul(product, d);
}
product
}
}
impl<'a> Product<&'a Decimal64> for Decimal64 {
fn product<I>(iter: I) -> Self
where
I: Iterator<Item = &'a Decimal64>,
{
iter.copied().product()
}
}
impl Default for Context<Decimal64> {
fn default() -> Context<Decimal64> {
let mut ctx = MaybeUninit::<decnumber_sys::decContext>::uninit();
let ctx = unsafe {
decnumber_sys::decContextDefault(ctx.as_mut_ptr(), decnumber_sys::DEC_INIT_DECDOUBLE);
ctx.assume_init()
};
Context {
inner: ctx,
_phantom: PhantomData,
}
}
}
impl Context<Decimal64> {
/// Parses a number from its string representation.
pub fn parse<S>(&mut self, s: S) -> Result<Decimal64, ParseDecimalError>
where
S: Into<Vec<u8>>,
{
let c_string = CString::new(s).map_err(|_| ParseDecimalError)?;
let mut d = Decimal64::ZERO;
unsafe {
decnumber_sys::decDoubleFromString(&mut d.inner, c_string.as_ptr(), &mut self.inner);
};
if (self.inner.status & decnumber_sys::DEC_Conversion_syntax) != 0 {
Err(ParseDecimalError)
} else {
Ok(d)
}
}
/// Constructs a number from a 128-bit decimal float.
///
/// The result may be inexact. The status fields on the context will be set
/// appropriately if so.
pub fn from_decimal128(&mut self, d128: Decimal128) -> Decimal64 {
let mut d64 = Decimal64::ZERO;
unsafe {
decnumber_sys::decDoubleFromWider(&mut d64.inner, &d128.inner, &mut self.inner);
};
d64
}
/// Constructs a number from an arbitrary-precision decimal.
///
/// The result may be inexact. The status fields on the context will be set
/// appropriately if so.
pub fn from_decimal<const N: usize>(&mut self, d: &Decimal<N>) -> Decimal64 {
let mut d64 = Decimal64::ZERO;
unsafe {
decnumber_sys::decimal64FromNumber(&mut d64.inner, d.as_ptr(), &mut self.inner);
};
d64
}
/// Constructs a number from an `i64`.
///
/// Note that this function can return inexact results for numbers with 15
/// or more places of precision, e.g. `99_999_999_999_999_999i64`,
/// `-99_999_999_999_999_999i64`, `i64::MAX`, `i64::MIN`, etc.
///
/// However, some numbers with 15 or more places of precision retain their
/// exactness, e.g. `1_000_000_000_000_000i64`.
///
/// ```
/// use dec::Decimal64;
/// let mut ctx = dec::Context::<Decimal64>::default();
/// let d = ctx.from_i64(-99_999_999_999_999_999i64);
/// // Inexact result
/// assert!(ctx.status().inexact());
///
/// let mut ctx = dec::Context::<Decimal64>::default();
/// let d = ctx.from_i64(1_000_000_000_000_000i64);
/// // Exact result
/// assert!(!ctx.status().inexact());
/// ```
///
/// To avoid inexact results when converting from large `i64`, use
/// [`crate::Decimal128`] instead.
pub fn from_i64(&mut self, n: i64) -> Decimal64 {
from_signed_int!(Decimal64, self, n)
}
/// Constructs a number from an `u64`.
///
/// Note that this function can return inexact results for numbers with 16
/// or more places of precision, e.g., `1_000_000_000_000_0001u64` and
/// `u64::MAX`.
///
/// However, some numbers with 15 or more places of precision retain their
/// exactness, e.g. `1_000_000_000_000_000u64`.
///
/// ```
/// use dec::Decimal64;
/// let mut ctx = dec::Context::<Decimal64>::default();
/// let d = ctx.from_i64(1_000_000_000_000_0001i64);
/// // Inexact result
/// assert!(ctx.status().inexact());
///
/// let mut ctx = dec::Context::<Decimal64>::default();
/// let d = ctx.from_i64(1_000_000_000_000_000i64);
/// // Exact result
/// assert!(!ctx.status().inexact());
/// ```
///
/// To avoid inexact results when converting from large `u64`, use
/// [`crate::Decimal128`] instead.
pub fn from_u64(&mut self, n: u64) -> Decimal64 {
from_unsigned_int!(Decimal64, self, n)
}
/// Computes the absolute value of `n`.
///
/// This has the same effect as [`Context::<Decimal64>::plus`] unless
/// `n` is negative, in which case it has the same effect as
/// [`Context::<Decimal64>::minus`].
///
/// The returned result will be canonical.
pub fn abs(&mut self, mut n: Decimal64) -> Decimal64 {
unsafe {
decnumber_sys::decDoubleAbs(&mut n.inner, &n.inner, &mut self.inner);
}
n
}
/// Adds `lhs` and `rhs`.
pub fn add(&mut self, mut lhs: Decimal64, rhs: Decimal64) -> Decimal64 {
unsafe {
decnumber_sys::decDoubleAdd(&mut lhs.inner, &lhs.inner, &rhs.inner, &mut self.inner);
}
lhs
}
/// Carries out the digitwise logical and of `lhs` and `rhs`.
///
/// The operands must be valid for logical operations.
/// See [`Decimal64::is_logical`].
pub fn and(&mut self, mut lhs: Decimal64, rhs: Decimal64) -> Decimal64 {
unsafe {
decnumber_sys::decDoubleAnd(&mut lhs.inner, &lhs.inner, &rhs.inner, &mut self.inner);
}
lhs
}
/// Divides `lhs` by `rhs`.
pub fn div(&mut self, mut lhs: Decimal64, rhs: Decimal64) -> Decimal64 {
unsafe {
decnumber_sys::decDoubleDivide(&mut lhs.inner, &lhs.inner, &rhs.inner, &mut self.inner);
}
lhs
}
/// Divides `lhs` by `rhs` and returns the integer part of the result
/// (rounded towards zero) with an exponent of 0.
///
/// If the result would overflow, then [`Status::division_impossible`] is
/// set.
///
/// [`Status::division_impossible`]: crate::context::Status::division_impossible
pub fn div_integer(&mut self, mut lhs: Decimal64, rhs: Decimal64) -> Decimal64 {
unsafe {
decnumber_sys::decDoubleDivideInteger(
&mut lhs.inner,
&lhs.inner,
&rhs.inner,
&mut self.inner,
);
}
lhs
}
/// Calculates the fused multiply-add `(x * y) + z`.
///
/// The multiplication is carried out first and is exact, so this operation
/// only has the one, final rounding.
pub fn fma(&mut self, mut x: Decimal64, y: Decimal64, z: Decimal64) -> Decimal64 {
unsafe {
decnumber_sys::decDoubleFMA(
&mut x.inner,
&x.inner,
&y.inner,
&z.inner,
&mut self.inner,
);
}
x
}
/// Carries out the digitwise logical inversion of `n`.
///
/// The operand must be valid for logical operation.
/// See [`Decimal64::is_logical`].
pub fn invert(&mut self, mut n: Decimal64) -> Decimal64 {
unsafe {
decnumber_sys::decDoubleInvert(&mut n.inner, &n.inner, &mut self.inner);
}
n
}
/// Computes the adjusted exponent of the number, according to IEEE 754
/// rules.
pub fn logb(&mut self, mut n: Decimal64) -> Decimal64 {
unsafe {
decnumber_sys::decDoubleLogB(&mut n.inner, &n.inner, &mut self.inner);
}
n
}
/// Returns whichever of `lhs` and `rhs` is larger.
////
/// The comparison is performed using the same rules as for
/// [`Decimal64::total_cmp`].
pub fn max(&mut self, mut lhs: Decimal64, rhs: Decimal64) -> Decimal64 {
unsafe {
decnumber_sys::decDoubleMax(&mut lhs.inner, &lhs.inner, &rhs.inner, &mut self.inner);
}
lhs
}
/// Returns whichever of `lhs` and `rhs` has the largest absolute value.
pub fn max_abs(&mut self, mut lhs: Decimal64, rhs: Decimal64) -> Decimal64 {
unsafe {
decnumber_sys::decDoubleMaxMag(&mut lhs.inner, &lhs.inner, &rhs.inner, &mut self.inner);
}
lhs
}
/// Returns whichever of `lhs` and `rhs` is smaller.
////
/// The comparison is performed using the same rules as for
/// [`Decimal64::total_cmp`].
pub fn min(&mut self, mut lhs: Decimal64, rhs: Decimal64) -> Decimal64 {
unsafe {
decnumber_sys::decDoubleMin(&mut lhs.inner, &lhs.inner, &rhs.inner, &mut self.inner);
}
lhs
}
/// Returns whichever of `lhs` and `rhs` has the largest absolute value.
pub fn min_abs(&mut self, mut lhs: Decimal64, rhs: Decimal64) -> Decimal64 {
unsafe {
decnumber_sys::decDoubleMinMag(&mut lhs.inner, &lhs.inner, &rhs.inner, &mut self.inner);
}
lhs
}
/// Subtracts `n` from zero.
pub fn minus(&mut self, mut n: Decimal64) -> Decimal64 {
unsafe {
decnumber_sys::decDoubleMinus(&mut n.inner, &n.inner, &mut self.inner);
}
n
}
/// Multiplies `lhs` by `rhs`.
pub fn mul(&mut self, mut lhs: Decimal64, rhs: Decimal64) -> Decimal64 {
unsafe {
decnumber_sys::decDoubleMultiply(
&mut lhs.inner,
&lhs.inner,
&rhs.inner,
&mut self.inner,
);
}
lhs
}
/// Returns the next number to `n` in the direction of negative infinity.
///
/// This operation follows the IEEE 754 rules for the *nextDown* operation.
pub fn next_minus(&mut self, mut n: Decimal64) -> Decimal64 {
unsafe {
decnumber_sys::decDoubleNextMinus(&mut n.inner, &n.inner, &mut self.inner);
}
n
}
/// Returns the next number to `n` in the direction of positive infinity.
///
/// This operation follows the IEEE 754 rules for the *nextUp* operation.
pub fn next_plus(&mut self, mut n: Decimal64) -> Decimal64 {
unsafe {
decnumber_sys::decDoubleNextPlus(&mut n.inner, &n.inner, &mut self.inner);
}
n
}
/// Returns the next number to `x` in the direction of `y`.
///
/// This operation follows the IEEE 754 rules for the *nextAfter* operation.
pub fn next_toward(&mut self, mut x: Decimal64, y: Decimal64) -> Decimal64 {
unsafe {
decnumber_sys::decDoubleNextToward(&mut x.inner, &x.inner, &y.inner, &mut self.inner);
}
x
}
/// Determines the ordering of `lhs` relative to `rhs`, using a partial
/// order.
///
/// If either `lhs` or `rhs` is a NaN, returns `None`. To force an ordering
/// upon NaNs, use [`Decimal64::total_cmp`] or
/// [`OrderedDecimal`](crate::OrderedDecimal).
pub fn partial_cmp(&mut self, lhs: Decimal64, rhs: Decimal64) -> Option<Ordering> {
let mut d = Decimal64::ZERO;
unsafe {
decnumber_sys::decDoubleCompare(&mut d.inner, &lhs.inner, &rhs.inner, &mut self.inner);
}
if d.is_positive() {
Some(Ordering::Greater)
} else if d.is_negative() {
Some(Ordering::Less)
} else if d.is_zero() {
Some(Ordering::Equal)
} else {
debug_assert!(d.is_nan());
None
}
}
/// Adds `n` to zero.
pub fn plus(&mut self, mut n: Decimal64) -> Decimal64 {
unsafe {
decnumber_sys::decDoublePlus(&mut n.inner, &n.inner, &mut self.inner);
}
n
}
/// Rounds or pads `lhs` so that it has the same exponent as `rhs`.
pub fn quantize(&mut self, mut lhs: Decimal64, rhs: Decimal64) -> Decimal64 {
unsafe {
decnumber_sys::decDoubleQuantize(
&mut lhs.inner,
&lhs.inner,
&rhs.inner,
&mut self.inner,
);
}
lhs
}
/// Reduces the number's coefficient to its shortest possible form without
/// changing the value of the result.
///
/// This removes all possible trailing zeros; some may remain when the
/// number is very close to the most positive or most negative number.
pub fn reduce(&mut self, mut n: Decimal64) -> Decimal64 {
unsafe {
decnumber_sys::decDoubleReduce(&mut n.inner, &n.inner, &mut self.inner);
}
n
}
/// Integer-divides `lhs` by `rhs` and returns the remainder from the
/// division.
pub fn rem(&mut self, mut lhs: Decimal64, rhs: Decimal64) -> Decimal64 {
unsafe {
decnumber_sys::decDoubleRemainder(
&mut lhs.inner,
&lhs.inner,
&rhs.inner,
&mut self.inner,
);
}
lhs
}
/// Like [`rem`](Context::<Decimal64>::rem), but uses the IEEE 754
/// rules for remainder operations.
pub fn rem_near(&mut self, mut lhs: Decimal64, rhs: Decimal64) -> Decimal64 {
unsafe {
decnumber_sys::decDoubleRemainderNear(
&mut lhs.inner,
&lhs.inner,
&rhs.inner,
&mut self.inner,
);
}
lhs
}
/// Rotates the digits of `lhs` by `rhs`.
///
/// If `rhs` is positive, rotates to the left. If `rhs` is negative, rotates
/// to the right.
///
/// `rhs` specifies the number of positions to rotate, and must be a finite
/// integer. NaNs are propagated as usual.
///
/// If `lhs` is infinity, the result is infinity of the same sign.
pub fn rotate(&mut self, mut lhs: Decimal64, rhs: Decimal64) -> Decimal64 {
unsafe {
decnumber_sys::decDoubleRotate(&mut lhs.inner, &lhs.inner, &rhs.inner, &mut self.inner);
}
lhs
}
/// Rounds the number to an integral value using the rounding mode in the
/// context.
pub fn round(&mut self, mut n: Decimal64) -> Decimal64 {
unsafe {
decnumber_sys::decDoubleToIntegralExact(&mut n.inner, &n.inner, &mut self.inner);
}
n
}
/// Multiplies `x` by 10<sup>`y`</sup>.
pub fn scaleb(&mut self, mut x: Decimal64, y: Decimal64) -> Decimal64 {
unsafe {
decnumber_sys::decDoubleScaleB(&mut x.inner, &x.inner, &y.inner, &mut self.inner);
}
x
}
/// Sets `d`'s exponent to `e` _without_ modifying the coefficient.
pub fn set_exponent(&mut self, d: &mut Decimal64, e: i32) {
unsafe {
decnumber_sys::decDoubleSetExponent(&mut d.inner, &mut self.inner, e);
}
}
/// Shifts the digits of `lhs` by `rhs`.
///
/// If `rhs` is positive, shifts to the left. If `rhs` is negative, shifts
/// to the right. Any digits "shifted in" will be zero.
///
/// `rhs` specifies the number of positions to shift, and must be a finite
/// integer. NaNs are propagated as usual.
///
/// If `lhs` is infinity, the result is infinity of the same sign.
pub fn shift(&mut self, mut lhs: Decimal64, rhs: Decimal64) -> Decimal64 {
unsafe {
decnumber_sys::decDoubleShift(&mut lhs.inner, &lhs.inner, &rhs.inner, &mut self.inner);
}
lhs
}
/// Adjust `x`'s exponent to equal `s`, while retaining as many of the same
/// significant digits of the coefficient as permitted with the current and
/// new exponents.
///
/// - When increasing the exponent's value, **irrevocably truncates** the least
/// significant digits. Use caution in this context.
/// - When reducing the exponent's value, appends `0`s as less significant
/// digits.
///
/// ```
/// use dec::{Context, Decimal64};
/// let mut cx = Context::<Decimal64>::default();
/// let mut d = cx.div(Decimal64::from(5), Decimal64::from(4));
///
/// assert_eq!(d.exponent(), -2);
/// assert_eq!(d.to_string(), "1.25");
///
/// cx.rescale(&mut d, -3);
/// assert_eq!(d.exponent(), -3);
/// assert_eq!(d.to_string(), "1.250");
///
/// cx.rescale(&mut d, -1);
/// assert_eq!(d.exponent(), -1);
/// assert_eq!(d.to_string(), "1.2");
///
/// cx.rescale(&mut d, 0);
/// assert_eq!(d.exponent(), 0);
/// assert_eq!(d.to_string(), "1");
/// ```
pub fn rescale(&mut self, x: &mut Decimal64, s: i32) {
let e = x.exponent();
*x = self.shift(*x, Decimal64::from(e - s));
self.set_exponent(x, s);
}
/// Subtracts `rhs` from `lhs`.
pub fn sub(&mut self, mut lhs: Decimal64, rhs: Decimal64) -> Decimal64 {
unsafe {
decnumber_sys::decDoubleSubtract(
&mut lhs.inner,
&lhs.inner,
&rhs.inner,
&mut self.inner,
);
}
lhs
}
/// Carries out the digitwise logical or of `lhs` and `rhs`.
///
/// The operands must be valid for logical operations.
/// See [`Decimal64::is_logical`].
pub fn or(&mut self, mut lhs: Decimal64, rhs: Decimal64) -> Decimal64 {
unsafe {
decnumber_sys::decDoubleOr(&mut lhs.inner, &lhs.inner, &rhs.inner, &mut self.inner);
}
lhs
}
/// Carries out the digitwise logical exclusive or of `lhs` and `rhs`.
///
/// The operands must be valid for logical operations.
/// See [`Decimal64::is_logical`].
pub fn xor(&mut self, mut lhs: Decimal64, rhs: Decimal64) -> Decimal64 {
unsafe {
decnumber_sys::decDoubleXor(&mut lhs.inner, &lhs.inner, &rhs.inner, &mut self.inner);
}
lhs
}
}