ropey/
rope_builder.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
use std::sync::Arc;

use smallvec::SmallVec;

use crate::crlf;
use crate::rope::Rope;
use crate::tree::{Node, NodeChildren, NodeText, MAX_BYTES, MAX_CHILDREN, MIN_BYTES};

/// An efficient incremental `Rope` builder.
///
/// This is used to efficiently build ropes from sequences of text
/// chunks.  It is useful for creating ropes from:
///
/// - ...large text files, without pre-loading their entire contents into
///   memory (but see [`from_reader()`](Rope::from_reader) for a convenience
///   function that does this for casual use-cases).
/// - ...streaming data sources.
/// - ...non-utf8 text data, doing the encoding conversion incrementally
///   as you go.
///
/// Unlike repeatedly calling `Rope::insert()` on the end of a rope,
/// this API runs in time linear to the amount of data fed to it, and
/// is overall much faster.
///
/// # Example
/// ```
/// # use ropey::RopeBuilder;
/// #
/// let mut builder = RopeBuilder::new();
///
/// builder.append("Hello ");
/// builder.append("world!\n");
/// builder.append("How's ");
/// builder.append("it goin");
/// builder.append("g?");
///
/// let rope = builder.finish();
///
/// assert_eq!(rope, "Hello world!\nHow's it going?");
/// ```
#[derive(Debug, Clone)]
pub struct RopeBuilder {
    stack: SmallVec<[Arc<Node>; 4]>,
    buffer: String,
    last_chunk_len_bytes: usize,
}

impl RopeBuilder {
    /// Creates a new RopeBuilder, ready for input.
    pub fn new() -> Self {
        RopeBuilder {
            stack: {
                let mut stack = SmallVec::new();
                stack.push(Arc::new(Node::new()));
                stack
            },
            buffer: String::new(),
            last_chunk_len_bytes: 0,
        }
    }

    /// Appends `chunk` to the end of the in-progress `Rope`.
    ///
    /// Call this method repeatedly to incrementally build up a
    /// `Rope`.  The passed text chunk can be as large or small as
    /// desired, but larger chunks are more efficient.
    ///
    /// `chunk` must be valid utf8 text.
    pub fn append(&mut self, chunk: &str) {
        self.append_internal(chunk, false);
    }

    /// Finishes the build, and returns the `Rope`.
    ///
    /// Note: this method consumes the builder.  If you want to continue
    /// building other ropes with the same prefix, you can clone the builder
    /// before calling `finish()`.
    pub fn finish(mut self) -> Rope {
        // Append the last leaf
        self.append_internal("", true);
        self.finish_internal(true)
    }

    /// Builds a rope all at once from a single string slice.
    ///
    /// This avoids the creation and use of the internal buffer.  This is
    /// for internal use only, because the public-facing API has
    /// Rope::from_str(), which actually uses this for its implementation.
    pub(crate) fn build_at_once(mut self, chunk: &str) -> Rope {
        self.append_internal(chunk, true);
        self.finish_internal(true)
    }

    /// NOT PART OF THE PUBLIC API (hidden from docs for a reason!).
    ///
    /// Appends `contents` to the in-progress rope as a single leaf
    /// node (chunk).  This is useful for building ropes with specific
    /// chunk configurations for testing purposes.  It will happily append
    /// both empty and more-than-max-size chunks.
    ///
    /// This makes no attempt to be consistent with the standard `append()`
    /// method, and should not be used in conjunction with it.
    #[doc(hidden)]
    pub fn _append_chunk(&mut self, contents: &str) {
        self.append_leaf_node(Arc::new(Node::Leaf(NodeText::from_str(contents))));
    }

    /// NOT PART OF THE PUBLIC API (hidden from docs for a reason!).
    ///
    /// Finishes the build without doing any tree fixing to adhere
    /// to the btree invariants. To be used with `_append_chunk()` to
    /// construct ropes with specific chunk boundaries for testing.
    #[doc(hidden)]
    pub fn _finish_no_fix(self) -> Rope {
        self.finish_internal(false)
    }

    //-----------------------------------------------------------------

    // Internal workings of `append()`.
    fn append_internal(&mut self, chunk: &str, is_last_chunk: bool) {
        let mut chunk = chunk;

        // Repeatedly chop text off the end of the input, creating
        // leaf nodes out of them and appending them to the tree.
        while !chunk.is_empty() || (!self.buffer.is_empty() && is_last_chunk) {
            // Get the text for the next leaf
            let (leaf_text, remainder) = self.get_next_leaf_text(chunk, is_last_chunk);
            chunk = remainder;

            self.last_chunk_len_bytes = chunk.len();

            // Append the leaf to the rope
            match leaf_text {
                NextText::None => break,
                NextText::UseBuffer => {
                    let leaf_text = NodeText::from_str(&self.buffer);
                    self.append_leaf_node(Arc::new(Node::Leaf(leaf_text)));
                    self.buffer.clear();
                }
                NextText::String(s) => {
                    self.append_leaf_node(Arc::new(Node::Leaf(NodeText::from_str(s))));
                }
            }
        }
    }

    // Internal workings of `finish()`.
    //
    // When `fix_tree` is false, the resulting node tree is NOT fixed up
    // to adhere to the btree invariants.  This is useful for some testing
    // code.  But generally, `fix_tree` should be set to true.
    fn finish_internal(mut self, fix_tree: bool) -> Rope {
        // Zip up all the remaining nodes on the stack
        let mut stack_idx = self.stack.len() - 1;
        while stack_idx >= 1 {
            let node = self.stack.pop().unwrap();
            if let Node::Internal(ref mut children) = *Arc::make_mut(&mut self.stack[stack_idx - 1])
            {
                children.push((node.text_info(), node));
            } else {
                unreachable!();
            }
            stack_idx -= 1;
        }

        // Create the rope.
        let mut rope = Rope {
            root: self.stack.pop().unwrap(),
        };

        // Fix up the tree to be well-formed.
        if fix_tree {
            Arc::make_mut(&mut rope.root).zip_fix_right();
            if self.last_chunk_len_bytes < MIN_BYTES
                && self.last_chunk_len_bytes != rope.len_bytes()
            {
                // Merge the last chunk if it was too small.
                let idx = rope.len_chars()
                    - rope.byte_to_char(rope.len_bytes() - self.last_chunk_len_bytes);
                Arc::make_mut(&mut rope.root).fix_tree_seam(idx);
            }
            rope.pull_up_singular_nodes();
        }

        return rope;
    }

    // Returns (next_leaf_text, remaining_text)
    #[inline(always)]
    fn get_next_leaf_text<'a>(
        &mut self,
        text: &'a str,
        is_last_chunk: bool,
    ) -> (NextText<'a>, &'a str) {
        assert!(
            self.buffer.len() < MAX_BYTES,
            "RopeBuilder: buffer is already full when receiving a chunk! \
             This should never happen!",
        );

        // Simplest case: empty buffer and enough in `text` for a full
        // chunk, so just chop a chunk off from `text` and use that.
        if self.buffer.is_empty() && text.len() >= MAX_BYTES {
            let split_idx = crlf::find_good_split(
                MAX_BYTES.min(text.len() - 1), // - 1 to avoid CRLF split.
                text.as_bytes(),
                true,
            );
            return (NextText::String(&text[..split_idx]), &text[split_idx..]);
        }
        // If the buffer + `text` is enough for a full chunk, push enough
        // of `text` onto the buffer to fill it and use that.
        else if (text.len() + self.buffer.len()) >= MAX_BYTES {
            let mut split_idx =
                crlf::find_good_split(MAX_BYTES - self.buffer.len(), text.as_bytes(), true);
            if split_idx == text.len() && text.as_bytes()[text.len() - 1] == 0x0D {
                // Avoid CRLF split.
                split_idx -= 1;
            };
            self.buffer.push_str(&text[..split_idx]);
            return (NextText::UseBuffer, &text[split_idx..]);
        }
        // If we don't have enough text for a full chunk.
        else {
            // If it's our last chunk, wrap it all up!
            if is_last_chunk {
                if self.buffer.is_empty() {
                    return if text.is_empty() {
                        (NextText::None, "")
                    } else {
                        (NextText::String(text), "")
                    };
                } else {
                    self.buffer.push_str(text);
                    return (NextText::UseBuffer, "");
                }
            }
            // Otherwise, just push to the buffer.
            else {
                self.buffer.push_str(text);
                return (NextText::None, "");
            }
        }
    }

    fn append_leaf_node(&mut self, leaf: Arc<Node>) {
        let last = self.stack.pop().unwrap();
        match *last {
            Node::Leaf(_) => {
                if last.leaf_text().is_empty() {
                    self.stack.push(leaf);
                } else {
                    let mut children = NodeChildren::new();
                    children.push((last.text_info(), last));
                    children.push((leaf.text_info(), leaf));
                    self.stack.push(Arc::new(Node::Internal(children)));
                }
            }

            Node::Internal(_) => {
                self.stack.push(last);
                let mut left = leaf;
                let mut stack_idx = (self.stack.len() - 1) as isize;
                loop {
                    if stack_idx < 0 {
                        // We're above the root, so do a root split.
                        let mut children = NodeChildren::new();
                        children.push((left.text_info(), left));
                        self.stack.insert(0, Arc::new(Node::Internal(children)));
                        break;
                    } else if self.stack[stack_idx as usize].child_count() < (MAX_CHILDREN - 1) {
                        // There's room to add a child, so do that.
                        Arc::make_mut(&mut self.stack[stack_idx as usize])
                            .children_mut()
                            .push((left.text_info(), left));
                        break;
                    } else {
                        // Not enough room to fit a child, so split.
                        left = Arc::new(Node::Internal(
                            Arc::make_mut(&mut self.stack[stack_idx as usize])
                                .children_mut()
                                .push_split((left.text_info(), left)),
                        ));
                        std::mem::swap(&mut left, &mut self.stack[stack_idx as usize]);
                        stack_idx -= 1;
                    }
                }
            }
        }
    }
}

impl Default for RopeBuilder {
    fn default() -> Self {
        Self::new()
    }
}

enum NextText<'a> {
    None,
    UseBuffer,
    String(&'a str),
}

//===========================================================================

#[cfg(test)]
mod tests {
    use super::*;

    // 127 bytes, 103 chars, 4 lines
    const TEXT: &str = "Hello there!  How're you doing?\r\nIt's \
                        a fine day, isn't it?\r\nAren't you glad \
                        we're alive?\r\nこんにちは、みんなさん!";

    #[test]
    fn rope_builder_01() {
        let mut b = RopeBuilder::new();

        b.append("Hello there!  How're you doing?\r");
        b.append("\nIt's a fine ");
        b.append("d");
        b.append("a");
        b.append("y,");
        b.append(" ");
        b.append("isn't it?");
        b.append("\r");
        b.append("\nAren't you ");
        b.append("glad we're alive?\r");
        b.append("\n");
        b.append("こんにち");
        b.append("は、みんなさ");
        b.append("ん!");

        let r = b.finish();

        assert_eq!(r, TEXT);

        r.assert_integrity();
        r.assert_invariants();
    }

    #[test]
    fn rope_builder_default_01() {
        let mut b = RopeBuilder::default();

        b.append("Hello there!  How're you doing?\r");
        b.append("\nIt's a fine day, isn't it?\r\nAren't you ");
        b.append("glad we're alive?\r\nこんにちは、みんなさん!");

        let r = b.finish();

        assert_eq!(r, TEXT);

        r.assert_integrity();
        r.assert_invariants();
    }
}