1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
//! Specifications for containers

#![forbid(missing_docs)]

use std::collections::VecDeque;

pub mod columnation;
pub mod flatcontainer;

/// A container transferring data through dataflow edges
///
/// A container stores a number of elements and thus is able to describe it length (`len()`) and
/// whether it is empty (`is_empty()`). It supports removing all elements (`clear`).
///
/// A container must implement default. The default implementation is not required to allocate
/// memory for variable-length components.
///
/// We require the container to be cloneable to enable efficient copies when providing references
/// of containers to operators. Care must be taken that the type's `clone_from` implementation
/// is efficient (which is not necessarily the case when deriving `Clone`.)
/// TODO: Don't require `Container: Clone`
pub trait Container: Default + Clone + 'static {
    /// The type of elements when reading non-destructively from the container.
    type ItemRef<'a> where Self: 'a;

    /// The type of elements when draining the container.
    type Item<'a> where Self: 'a;

    /// Push `item` into self
    #[inline]
    fn push<T>(&mut self, item: T) where Self: PushInto<T> {
        self.push_into(item)
    }

    /// The number of elements in this container
    ///
    /// The length of a container must be consistent between sending and receiving it.
    /// When exchanging a container and partitioning it into pieces, the sum of the length
    /// of all pieces must be equal to the length of the original container. When combining
    /// containers, the length of the result must be the sum of the individual parts.
    fn len(&self) -> usize;

    /// Determine if the container contains any elements, corresponding to `len() == 0`.
    fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Remove all contents from `self` while retaining allocated memory.
    /// After calling `clear`, `is_empty` must return `true` and `len` 0.
    fn clear(&mut self);

    /// Iterator type when reading from the container.
    type Iter<'a>: Iterator<Item=Self::ItemRef<'a>>;

    /// Returns an iterator that reads the contents of this container.
    fn iter(&self) -> Self::Iter<'_>;

    /// Iterator type when draining the container.
    type DrainIter<'a>: Iterator<Item=Self::Item<'a>>;

    /// Returns an iterator that drains the contents of this container.
    /// Drain leaves the container in an undefined state.
    fn drain(&mut self) -> Self::DrainIter<'_>;
}

/// A container that can be sized and reveals its capacity.
pub trait SizableContainer: Container {
    /// Return the capacity of the container.
    fn capacity(&self) -> usize;
    /// Return the preferred capacity of the container.
    fn preferred_capacity() -> usize;
    /// Reserve space for `additional` elements, possibly increasing the capacity of the container.
    fn reserve(&mut self, additional: usize);
}

/// A container that can absorb items of a specific type.
pub trait PushInto<T> {
    /// Push item into self.
    fn push_into(&mut self, item: T);
}

/// A type that can build containers from items.
///
/// An implementation needs to absorb elements, and later reveal equivalent information
/// chunked into individual containers, but is free to change the data representation to
/// better fit the properties of the container.
///
/// Types implementing this trait should provide appropriate [`PushInto`] implementations such
/// that users can push the expected item types.
///
/// The owner extracts data in two ways. The opportunistic [`Self::extract`] method returns
/// any ready data, but doesn't need to produce partial outputs. In contrast, [`Self::finish`]
/// needs to produce all outputs, even partial ones. Caller should repeatedly call the functions
/// to drain pending or finished data.
///
/// The caller should consume the containers returned by [`Self::extract`] and
/// [`Self::finish`]. Implementations can recycle buffers, but should ensure that they clear
/// any remaining elements.
///
/// For example, a consolidating builder can aggregate differences in-place, but it has
/// to ensure that it preserves the intended information.
///
/// The trait does not prescribe any specific ordering guarantees, and each implementation can
/// decide to represent a push order for `extract` and `finish`, or not.
pub trait ContainerBuilder: Default + 'static {
    /// The container type we're building.
    type Container: Container;
    /// Extract assembled containers, potentially leaving unfinished data behind. Can
    /// be called repeatedly, for example while the caller can send data.
    ///
    /// Returns a `Some` if there is data ready to be shipped, and `None` otherwise.
    #[must_use]
    fn extract(&mut self) -> Option<&mut Self::Container>;
    /// Extract assembled containers and any unfinished data. Should
    /// be called repeatedly until it returns `None`.
    #[must_use]
    fn finish(&mut self) -> Option<&mut Self::Container>;
}

/// A default container builder that uses length and preferred capacity to chunk data.
///
/// Maintains a single empty allocation between [`Self::push_into`] and [`Self::extract`], but not
/// across [`Self::finish`] to maintain a low memory footprint.
///
/// Maintains FIFO order.
#[derive(Default, Debug)]
pub struct CapacityContainerBuilder<C>{
    /// Container that we're writing to.
    current: C,
    /// Emtpy allocation.
    empty: Option<C>,
    /// Completed containers pending to be sent.
    pending: VecDeque<C>,
}

impl<T, C: SizableContainer + PushInto<T>> PushInto<T> for CapacityContainerBuilder<C> {
    #[inline]
    fn push_into(&mut self, item: T) {
        if self.current.capacity() == 0 {
            self.current = self.empty.take().unwrap_or_default();
            // Discard any non-uniform capacity container.
            if self.current.capacity() != C::preferred_capacity() {
                self.current = C::default();
            }
            // Protect against non-emptied containers.
            self.current.clear();
        }
        // Ensure capacity
        if self.current.capacity() < C::preferred_capacity() {
            self.current.reserve(C::preferred_capacity() - self.current.len());
        }

        // Push item
        self.current.push(item);

        // Maybe flush
        if self.current.len() == self.current.capacity() {
            self.pending.push_back(std::mem::take(&mut self.current));
        }
    }
}

impl<C: Container> ContainerBuilder for CapacityContainerBuilder<C> {
    type Container = C;

    #[inline]
    fn extract(&mut self) -> Option<&mut C> {
        if let Some(container) = self.pending.pop_front() {
            self.empty = Some(container);
            self.empty.as_mut()
        } else {
            None
        }
    }

    #[inline]
    fn finish(&mut self) -> Option<&mut C> {
        if !self.current.is_empty() {
            self.pending.push_back(std::mem::take(&mut self.current));
        }
        self.empty = self.pending.pop_front();
        self.empty.as_mut()
    }
}

impl<C: Container> CapacityContainerBuilder<C> {
    /// Push a pre-formed container at this builder. This exists to maintain
    /// API compatibility.
    #[inline]
    pub fn push_container(&mut self, container: &mut C) {
        if !container.is_empty() {
            // Flush to maintain FIFO ordering.
            if self.current.len() > 0 {
                self.pending.push_back(std::mem::take(&mut self.current));
            }

            let mut empty = self.empty.take().unwrap_or_default();
            // Ideally, we'd discard non-uniformly sized containers, but we don't have
            // access to `len`/`capacity` of the container.
            empty.clear();

            self.pending.push_back(std::mem::replace(container, empty));
        }
    }
}

impl<T: Clone + 'static> Container for Vec<T> {
    type ItemRef<'a> = &'a T where T: 'a;
    type Item<'a> = T where T: 'a;

    fn len(&self) -> usize {
        Vec::len(self)
    }

    fn is_empty(&self) -> bool {
        Vec::is_empty(self)
    }

    fn clear(&mut self) { Vec::clear(self) }

    type Iter<'a> = std::slice::Iter<'a, T>;

    fn iter(&self) -> Self::Iter<'_> {
        self.as_slice().iter()
    }

    type DrainIter<'a> = std::vec::Drain<'a, T>;

    fn drain(&mut self) -> Self::DrainIter<'_> {
        self.drain(..)
    }
}

impl<T: Clone + 'static> SizableContainer for Vec<T> {
    fn capacity(&self) -> usize {
        self.capacity()
    }

    fn preferred_capacity() -> usize {
        buffer::default_capacity::<T>()
    }

    fn reserve(&mut self, additional: usize) {
        self.reserve(additional);
    }
}

impl<T> PushInto<T> for Vec<T> {
    #[inline]
    fn push_into(&mut self, item: T) {
        self.push(item)
    }
}


impl<T: Clone> PushInto<&T> for Vec<T> {
    #[inline]
    fn push_into(&mut self, item: &T) {
        self.push(item.clone())
    }
}

impl<T: Clone> PushInto<&&T> for Vec<T> {
    #[inline]
    fn push_into(&mut self, item: &&T) {
        self.push_into(*item)
    }
}

mod rc {
    use std::ops::Deref;
    use std::rc::Rc;

    use crate::Container;

    impl<T: Container> Container for Rc<T> {
        type ItemRef<'a> = T::ItemRef<'a> where Self: 'a;
        type Item<'a> = T::ItemRef<'a> where Self: 'a;

        fn len(&self) -> usize {
            std::ops::Deref::deref(self).len()
        }

        fn is_empty(&self) -> bool {
            std::ops::Deref::deref(self).is_empty()
        }

        fn clear(&mut self) {
            // Try to reuse the allocation if possible
            if let Some(inner) = Rc::get_mut(self) {
                inner.clear();
            } else {
                *self = Self::default();
            }
        }

        type Iter<'a> = T::Iter<'a>;

        fn iter(&self) -> Self::Iter<'_> {
            self.deref().iter()
        }

        type DrainIter<'a> = T::Iter<'a>;

        fn drain(&mut self) -> Self::DrainIter<'_> {
            self.iter()
        }
    }
}

mod arc {
    use std::ops::Deref;
    use std::sync::Arc;

    use crate::Container;

    impl<T: Container> Container for Arc<T> {
        type ItemRef<'a> = T::ItemRef<'a> where Self: 'a;
        type Item<'a> = T::ItemRef<'a> where Self: 'a;

        fn len(&self) -> usize {
            std::ops::Deref::deref(self).len()
        }

        fn is_empty(&self) -> bool {
            std::ops::Deref::deref(self).is_empty()
        }

        fn clear(&mut self) {
            // Try to reuse the allocation if possible
            if let Some(inner) = Arc::get_mut(self) {
                inner.clear();
            } else {
                *self = Self::default();
            }
        }

        type Iter<'a> = T::Iter<'a>;

        fn iter(&self) -> Self::Iter<'_> {
            self.deref().iter()
        }

        type DrainIter<'a> = T::Iter<'a>;

        fn drain(&mut self) -> Self::DrainIter<'_> {
            self.iter()
        }
    }
}

/// A container that can partition itself into pieces.
pub trait PushPartitioned: SizableContainer {
    /// Partition and push this container.
    ///
    /// Drain all elements from `self`, and use the function `index` to determine which `buffer` to
    /// append an element to. Call `flush` with an index and a buffer to send the data downstream.
    fn push_partitioned<I, F>(&mut self, buffers: &mut [Self], index: I, flush: F)
    where
        for<'a> I: FnMut(&Self::Item<'a>) -> usize,
        F: FnMut(usize, &mut Self);
}

impl<C: SizableContainer> PushPartitioned for C where for<'a> C: PushInto<C::Item<'a>> {
    fn push_partitioned<I, F>(&mut self, buffers: &mut [Self], mut index: I, mut flush: F)
    where
        for<'a> I: FnMut(&Self::Item<'a>) -> usize,
        F: FnMut(usize, &mut Self),
    {
        let ensure_capacity = |this: &mut Self| {
            let capacity = this.capacity();
            let desired_capacity = Self::preferred_capacity();
            if capacity < desired_capacity {
                this.reserve(desired_capacity - capacity);
            }
        };

        for datum in self.drain() {
            let index = index(&datum);
            ensure_capacity(&mut buffers[index]);
            buffers[index].push(datum);
            if buffers[index].len() >= buffers[index].capacity() {
                flush(index, &mut buffers[index]);
            }
        }
        self.clear();
    }
}

pub mod buffer {
    //! Functionality related to calculating default buffer sizes

    /// The upper limit for buffers to allocate, size in bytes. [default_capacity] converts
    /// this to size in elements.
    pub const BUFFER_SIZE_BYTES: usize = 1 << 13;

    /// The maximum buffer capacity in elements. Returns a number between [BUFFER_SIZE_BYTES]
    /// and 1, inclusively.
    pub const fn default_capacity<T>() -> usize {
        let size = std::mem::size_of::<T>();
        if size == 0 {
            BUFFER_SIZE_BYTES
        } else if size <= BUFFER_SIZE_BYTES {
            BUFFER_SIZE_BYTES / size
        } else {
            1
        }
    }
}