1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
//! Decoder for PEM encapsulated data.
//!
//! From RFC 7468 Section 2:
//!
//! > Textual encoding begins with a line comprising "-----BEGIN ", a
//! > label, and "-----", and ends with a line comprising "-----END ", a
//! > label, and "-----". Between these lines, or "encapsulation
//! > boundaries", are base64-encoded data according to Section 4 of
//! > [RFC 4648].
//!
//! [RFC 4648]: https://datatracker.ietf.org/doc/html/rfc4648
use crate::{
grammar, Base64Decoder, Error, Result, BASE64_WRAP_WIDTH, POST_ENCAPSULATION_BOUNDARY,
PRE_ENCAPSULATION_BOUNDARY,
};
use core::str;
#[cfg(feature = "alloc")]
use alloc::vec::Vec;
#[cfg(feature = "std")]
use std::io;
/// Decode a PEM document according to RFC 7468's "Strict" grammar.
///
/// On success, writes the decoded document into the provided buffer, returning
/// the decoded label and the portion of the provided buffer containing the
/// decoded message.
pub fn decode<'i, 'o>(pem: &'i [u8], buf: &'o mut [u8]) -> Result<(&'i str, &'o [u8])> {
let mut decoder = Decoder::new(pem).map_err(|e| check_for_headers(pem, e))?;
let type_label = decoder.type_label();
let buf = buf
.get_mut(..decoder.remaining_len())
.ok_or(Error::Length)?;
let decoded = decoder.decode(buf).map_err(|e| check_for_headers(pem, e))?;
if decoder.base64.is_finished() {
Ok((type_label, decoded))
} else {
Err(Error::Length)
}
}
/// Decode a PEM document according to RFC 7468's "Strict" grammar, returning
/// the result as a [`Vec`] upon success.
#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
pub fn decode_vec(pem: &[u8]) -> Result<(&str, Vec<u8>)> {
let mut decoder = Decoder::new(pem).map_err(|e| check_for_headers(pem, e))?;
let type_label = decoder.type_label();
let mut buf = Vec::new();
decoder
.decode_to_end(&mut buf)
.map_err(|e| check_for_headers(pem, e))?;
Ok((type_label, buf))
}
/// Decode the encapsulation boundaries of a PEM document according to RFC 7468's "Strict" grammar.
///
/// On success, returning the decoded label.
pub fn decode_label(pem: &[u8]) -> Result<&str> {
Ok(Encapsulation::try_from(pem)?.label())
}
/// Buffered PEM decoder.
///
/// Stateful buffered decoder type which decodes an input PEM document according
/// to RFC 7468's "Strict" grammar.
#[derive(Clone)]
pub struct Decoder<'i> {
/// PEM type label.
type_label: &'i str,
/// Buffered Base64 decoder.
base64: Base64Decoder<'i>,
}
impl<'i> Decoder<'i> {
/// Create a new PEM [`Decoder`] with the default options.
///
/// Uses the default 64-character line wrapping.
pub fn new(pem: &'i [u8]) -> Result<Self> {
Self::new_wrapped(pem, BASE64_WRAP_WIDTH)
}
/// Create a new PEM [`Decoder`] which wraps at the given line width.
pub fn new_wrapped(pem: &'i [u8], line_width: usize) -> Result<Self> {
let encapsulation = Encapsulation::try_from(pem)?;
let type_label = encapsulation.label();
let base64 = Base64Decoder::new_wrapped(encapsulation.encapsulated_text, line_width)?;
Ok(Self { type_label, base64 })
}
/// Get the PEM type label for the input document.
pub fn type_label(&self) -> &'i str {
self.type_label
}
/// Decode data into the provided output buffer.
///
/// There must be at least as much remaining Base64 input to be decoded
/// in order to completely fill `buf`.
pub fn decode<'o>(&mut self, buf: &'o mut [u8]) -> Result<&'o [u8]> {
Ok(self.base64.decode(buf)?)
}
/// Decode all of the remaining data in the input buffer into `buf`.
#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
pub fn decode_to_end<'o>(&mut self, buf: &'o mut Vec<u8>) -> Result<&'o [u8]> {
Ok(self.base64.decode_to_end(buf)?)
}
/// Get the decoded length of the remaining PEM data after Base64 decoding.
pub fn remaining_len(&self) -> usize {
self.base64.remaining_len()
}
/// Are we finished decoding the PEM input?
pub fn is_finished(&self) -> bool {
self.base64.is_finished()
}
}
impl<'i> From<Decoder<'i>> for Base64Decoder<'i> {
fn from(decoder: Decoder<'i>) -> Base64Decoder<'i> {
decoder.base64
}
}
#[cfg(feature = "std")]
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
impl<'i> io::Read for Decoder<'i> {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
self.base64.read(buf)
}
fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
self.base64.read_to_end(buf)
}
fn read_exact(&mut self, buf: &mut [u8]) -> io::Result<()> {
self.base64.read_exact(buf)
}
}
/// PEM encapsulation parser.
///
/// This parser performs an initial pass over the data, locating the
/// pre-encapsulation (`---BEGIN [...]---`) and post-encapsulation
/// (`---END [...]`) boundaries while attempting to avoid branching
/// on the potentially secret Base64-encoded data encapsulated between
/// the two boundaries.
///
/// It only supports a single encapsulated message at present. Future work
/// could potentially include extending it provide an iterator over a series
/// of encapsulated messages.
#[derive(Copy, Clone, Debug)]
struct Encapsulation<'a> {
/// Type label extracted from the pre/post-encapsulation boundaries.
///
/// From RFC 7468 Section 2:
///
/// > The type of data encoded is labeled depending on the type label in
/// > the "-----BEGIN " line (pre-encapsulation boundary). For example,
/// > the line may be "-----BEGIN CERTIFICATE-----" to indicate that the
/// > content is a PKIX certificate (see further below). Generators MUST
/// > put the same label on the "-----END " line (post-encapsulation
/// > boundary) as the corresponding "-----BEGIN " line. Labels are
/// > formally case-sensitive, uppercase, and comprised of zero or more
/// > characters; they do not contain consecutive spaces or hyphen-minuses,
/// > nor do they contain spaces or hyphen-minuses at either end. Parsers
/// > MAY disregard the label in the post-encapsulation boundary instead of
/// > signaling an error if there is a label mismatch: some extant
/// > implementations require the labels to match; others do not.
label: &'a str,
/// Encapsulated text portion contained between the boundaries.
///
/// This data should be encoded as Base64, however this type performs no
/// validation of it so it can be handled in constant-time.
encapsulated_text: &'a [u8],
}
impl<'a> Encapsulation<'a> {
/// Parse the type label and encapsulated text from between the
/// pre/post-encapsulation boundaries.
pub fn parse(data: &'a [u8]) -> Result<Self> {
// Strip the "preamble": optional text occurring before the pre-encapsulation boundary
let data = grammar::strip_preamble(data)?;
// Parse pre-encapsulation boundary (including label)
let data = data
.strip_prefix(PRE_ENCAPSULATION_BOUNDARY)
.ok_or(Error::PreEncapsulationBoundary)?;
let (label, body) = grammar::split_label(data).ok_or(Error::Label)?;
let mut body = match grammar::strip_trailing_eol(body).unwrap_or(body) {
[head @ .., b'-', b'-', b'-', b'-', b'-'] => head,
_ => return Err(Error::PreEncapsulationBoundary),
};
// Ensure body ends with a properly labeled post-encapsulation boundary
for &slice in [POST_ENCAPSULATION_BOUNDARY, label.as_bytes()].iter().rev() {
// Ensure the input ends with the post encapsulation boundary as
// well as a matching label
if !body.ends_with(slice) {
return Err(Error::PostEncapsulationBoundary);
}
let len = body.len().checked_sub(slice.len()).ok_or(Error::Length)?;
body = body.get(..len).ok_or(Error::PostEncapsulationBoundary)?;
}
let encapsulated_text =
grammar::strip_trailing_eol(body).ok_or(Error::PostEncapsulationBoundary)?;
Ok(Self {
label,
encapsulated_text,
})
}
/// Get the label parsed from the encapsulation boundaries.
pub fn label(self) -> &'a str {
self.label
}
}
impl<'a> TryFrom<&'a [u8]> for Encapsulation<'a> {
type Error = Error;
fn try_from(bytes: &'a [u8]) -> Result<Self> {
Self::parse(bytes)
}
}
/// Check for PEM headers in the input, as they are disallowed by RFC7468.
///
/// Returns `Error::HeaderDisallowed` if headers are encountered.
fn check_for_headers(pem: &[u8], err: Error) -> Error {
if err == Error::Base64(base64ct::Error::InvalidEncoding)
&& pem.iter().any(|&b| b == grammar::CHAR_COLON)
{
Error::HeaderDisallowed
} else {
err
}
}
#[cfg(test)]
mod tests {
use super::Encapsulation;
#[test]
fn pkcs8_example() {
let pem = include_bytes!("../tests/examples/pkcs8.pem");
let encapsulation = Encapsulation::parse(pem).unwrap();
assert_eq!(encapsulation.label, "PRIVATE KEY");
assert_eq!(
encapsulation.encapsulated_text,
&[
77, 67, 52, 67, 65, 81, 65, 119, 66, 81, 89, 68, 75, 50, 86, 119, 66, 67, 73, 69,
73, 66, 102, 116, 110, 72, 80, 112, 50, 50, 83, 101, 119, 89, 109, 109, 69, 111,
77, 99, 88, 56, 86, 119, 73, 52, 73, 72, 119, 97, 113, 100, 43, 57, 76, 70, 80,
106, 47, 49, 53, 101, 113, 70
]
);
}
}