differential_dataflow/algorithms/prefix_sum.rs
1//! Implementation of Parallel Prefix Sum
2
3use timely::dataflow::Scope;
4
5use crate::{Collection, ExchangeData};
6use crate::lattice::Lattice;
7use crate::operators::*;
8
9/// Extension trait for the prefix_sum method.
10pub trait PrefixSum<G: Scope, K, D> {
11 /// Computes the prefix sum for each element in the collection.
12 ///
13 /// The prefix sum is data-parallel, in the sense that the sums are computed independently for
14 /// each key of type `K`. For a single prefix sum this type can be `()`, but this permits the
15 /// more general accumulation of multiple independent sequences.
16 fn prefix_sum<F>(&self, zero: D, combine: F) -> Self where F: Fn(&K,&D,&D)->D + 'static;
17
18 /// Determine the prefix sum at each element of `location`.
19 fn prefix_sum_at<F>(&self, locations: Collection<G, (usize, K)>, zero: D, combine: F) -> Self where F: Fn(&K,&D,&D)->D + 'static;
20}
21
22impl<G, K, D> PrefixSum<G, K, D> for Collection<G, ((usize, K), D)>
23where
24 G: Scope,
25 G::Timestamp: Lattice,
26 K: ExchangeData+::std::hash::Hash,
27 D: ExchangeData+::std::hash::Hash,
28{
29 fn prefix_sum<F>(&self, zero: D, combine: F) -> Self where F: Fn(&K,&D,&D)->D + 'static {
30 self.prefix_sum_at(self.map(|(x,_)| x), zero, combine)
31 }
32
33 fn prefix_sum_at<F>(&self, locations: Collection<G, (usize, K)>, zero: D, combine: F) -> Self where F: Fn(&K,&D,&D)->D + 'static {
34
35 let combine1 = ::std::rc::Rc::new(combine);
36 let combine2 = combine1.clone();
37
38 let ranges = aggregate(self.clone(), move |k,x,y| (*combine1)(k,x,y));
39 broadcast(ranges, locations, zero, move |k,x,y| (*combine2)(k,x,y))
40 }
41}
42
43/// Accumulate data in `collection` into all powers-of-two intervals containing them.
44pub fn aggregate<G, K, D, F>(collection: Collection<G, ((usize, K), D)>, combine: F) -> Collection<G, ((usize, usize, K), D)>
45where
46 G: Scope,
47 G::Timestamp: Lattice,
48 K: ExchangeData+::std::hash::Hash,
49 D: ExchangeData+::std::hash::Hash,
50 F: Fn(&K,&D,&D)->D + 'static,
51{
52 // initial ranges are at each index, and with width 2^0.
53 let unit_ranges = collection.map(|((index, key), data)| ((index, 0, key), data));
54
55 unit_ranges
56 .iterate(|ranges|
57
58 // Each available range, of size less than usize::max_value(), advertises itself as the range
59 // twice as large, aligned to integer multiples of its size. Each range, which may contain at
60 // most two elements, then summarizes itself using the `combine` function. Finally, we re-add
61 // the initial `unit_ranges` intervals, so that the set of ranges grows monotonically.
62
63 ranges
64 .filter(|&((_pos, log, _), _)| log < 64)
65 .map(|((pos, log, key), data)| ((pos >> 1, log + 1, key), (pos, data)))
66 .reduce(move |&(_pos, _log, ref key), input, output| {
67 let mut result = (input[0].0).1.clone();
68 if input.len() > 1 { result = combine(key, &result, &(input[1].0).1); }
69 output.push((result, 1));
70 })
71 .concat(&unit_ranges.enter(&ranges.scope()))
72 )
73}
74
75/// Produces the accumulated values at each of the `usize` locations in `queries`.
76pub fn broadcast<G, K, D, F>(
77 ranges: Collection<G, ((usize, usize, K), D)>,
78 queries: Collection<G, (usize, K)>,
79 zero: D,
80 combine: F) -> Collection<G, ((usize, K), D)>
81where
82 G: Scope,
83 G::Timestamp: Lattice+Ord+::std::fmt::Debug,
84 K: ExchangeData+::std::hash::Hash,
85 D: ExchangeData+::std::hash::Hash,
86 F: Fn(&K,&D,&D)->D + 'static,
87{
88
89 let zero0 = zero.clone();
90 let zero1 = zero.clone();
91 let zero2 = zero.clone();
92
93 // The `queries` collection may not line up with an existing element of `ranges`, and so we must
94 // track down the first range that matches. If it doesn't exist, we will need to produce a zero
95 // value. We could produce the full path from (0, key) to (idx, key), and aggregate any and all
96 // matches. This has the defect of being n log n rather than linear, as the root ranges will be
97 // replicated for each query.
98 //
99 // I think it works to have each (idx, key) propose each of the intervals it knows should be used
100 // to assemble its input. We then `distinct` these and intersect them with the offered `ranges`,
101 // essentially performing a semijoin. We then perform the unfolding, where we might need to use
102 // empty ranges if none exist in `ranges`.
103
104 // We extract desired ranges for each `idx` from its binary representation: each set bit requires
105 // the contribution of a range, and we call out each of these. This could produce a super-linear
106 // amount of data (multiple requests for the roots), but it will be compacted down in `distinct`.
107 // We could reduce the amount of data by producing the requests iteratively, with a distinct in
108 // the loop to pre-suppress duplicate requests. This comes at a complexity cost, though.
109 let requests =
110 queries
111 .flat_map(|(idx, key)|
112 (0 .. 64)
113 .filter(move |i| (idx & (1usize << i)) != 0) // set bits require help.
114 .map(move |i| ((idx >> i) - 1, i, key.clone())) // width 2^i interval.
115 )
116 .distinct();
117
118 // Acquire each requested range.
119 let full_ranges =
120 ranges
121 .semijoin(&requests);
122
123 // Each requested range should exist, even if as a zero range, for correct reconstruction.
124 let zero_ranges =
125 full_ranges
126 .map(move |((idx, log, key), _)| ((idx, log, key), zero0.clone()))
127 .negate()
128 .concat(&requests.map(move |(idx, log, key)| ((idx, log, key), zero1.clone())));
129
130 // Merge occupied and empty ranges.
131 let used_ranges = full_ranges.concat(&zero_ranges);
132
133 // Each key should initiate a value of `zero` at position `0`.
134 let init_states =
135 queries
136 .map(move |(_, key)| ((0, key), zero2.clone()))
137 .distinct();
138
139 // Iteratively expand assigned values by joining existing ranges with current assignments.
140 init_states
141 .iterate(|states| {
142 used_ranges
143 .enter(&states.scope())
144 .map(|((pos, log, key), data)| ((pos << log, key), (log, data)))
145 .join_map(states, move |&(pos, ref key), &(log, ref data), state|
146 ((pos + (1 << log), key.clone()), combine(key, state, data)))
147 .concat(&init_states.enter(&states.scope()))
148 .distinct()
149 })
150 .semijoin(&queries)
151}