qcell/lcell.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
use core::cell::UnsafeCell;
use core::marker::PhantomData;
use super::Invariant;
type Id<'id> = PhantomData<Invariant<&'id ()>>;
/// Borrowing-owner of zero or more [`LCell`](struct.LCell.html)
/// instances.
///
/// Use `LCellOwner::scope(|owner| ...)` to create an instance of this
/// type. The key piece of Rust syntax that enables this is
/// `for<'id>`. This allows creating an invariant lifetime within a
/// closure, which is different to any other Rust lifetime thanks to
/// the techniques explained in various places: section 6.3 of [this
/// thesis from Gankra (formerly
/// Gankro)](https://raw.githubusercontent.com/Gankra/thesis/master/thesis.pdf),
/// [this Reddit
/// post](https://www.reddit.com/r/rust/comments/3oo0oe/sound_unchecked_indexing_with_lifetimebased_value/),
/// and [this Rust playground
/// example](https://play.rust-lang.org/?gist=21a00b0e181a918f8ca4&version=stable).
/// Also see [this Reddit
/// comment](https://www.reddit.com/r/rust/comments/3aahl1/outside_of_closures_what_are_some_other_uses_for/csavac5/)
/// and its linked playground code.
///
/// Alternatively, if the **generativity** feature is enabled, the
/// [`generativity`](https://crates.io/crates/generativity) crate can
/// be used to create an owner as follows: `make_guard!(guard); let
/// mut owner = LCellOwner::new(guard);`. However note that the Rust
/// compiler error messages may be more confusing with
/// **generativity** if you make a mistake and use the wrong owner for
/// a cell.
///
/// Some history: `GhostCell` by
/// [**pythonesque**](https://github.com/pythonesque) predates the
/// creation of `LCell`, and inspired it. Discussion of `GhostCell`
/// on Reddit showed that a lifetime-based approach to cells was
/// feasible, but unfortunately the `ghost_cell.rs` source didn't seem
/// to be available under a community-friendly licence. So I went
/// back to first principles and created `LCell` from `TCell` code,
/// combined with invariant lifetime code derived from the various
/// community sources that predate `GhostCell`. Later `Send` and
/// `Sync` support for `LCell` was contributed independently.
///
/// See also [crate documentation](index.html).
pub struct LCellOwner<'id> {
_id: Id<'id>,
}
impl<'id> LCellOwner<'id> {
/// Create a new `LCellOwner`, with a new lifetime, that exists
/// only within the scope of the execution of the given closure
/// call. If two scope calls are nested, then the two owners get
/// different lifetimes.
///
/// ```rust
/// use qcell::{LCellOwner, LCell};
/// LCellOwner::scope(|owner| {
/// let cell = LCell::new(100);
/// assert_eq!(cell.ro(&owner), &100);
/// })
/// ```
pub fn scope<F>(f: F)
where
F: for<'scope_id> FnOnce(LCellOwner<'scope_id>),
{
f(Self { _id: PhantomData })
}
/// Create a new `LCellOwner` with a unique lifetime from a `Guard`.
///
/// ```rust
/// use qcell::{generativity::make_guard, LCellOwner, LCell};
/// make_guard!(guard);
/// let mut owner = LCellOwner::new(guard);
/// let cell = LCell::new(100);
/// assert_eq!(cell.ro(&owner), &100);
/// ```
#[cfg(feature = "generativity")]
#[cfg_attr(docsrs, doc(cfg(feature = "generativity")))]
pub fn new(_guard: generativity::Guard<'id>) -> Self {
Self { _id: PhantomData }
}
/// Create a new cell owned by this owner instance. See also
/// [`LCell::new`].
///
/// [`LCell::new`]: struct.LCell.html
pub fn cell<T>(&self, value: T) -> LCell<'id, T> {
LCell::<T>::new(value)
}
/// Borrow contents of a `LCell` immutably (read-only). Many
/// `LCell` instances can be borrowed immutably at the same time
/// from the same owner.
#[inline]
pub fn ro<'a, T: ?Sized>(&'a self, lc: &'a LCell<'id, T>) -> &'a T {
unsafe { &*lc.value.get() }
}
/// Borrow contents of a `LCell` mutably (read-write). Only one
/// `LCell` at a time can be borrowed from the owner using this
/// call. The returned reference must go out of scope before
/// another can be borrowed.
#[inline]
pub fn rw<'a, T: ?Sized>(&'a mut self, lc: &'a LCell<'id, T>) -> &'a mut T {
unsafe { &mut *lc.value.get() }
}
/// Borrow contents of two `LCell` instances mutably. Panics if
/// the two `LCell` instances point to the same memory.
#[inline]
pub fn rw2<'a, T: ?Sized, U: ?Sized>(
&'a mut self,
lc1: &'a LCell<'id, T>,
lc2: &'a LCell<'id, U>,
) -> (&'a mut T, &'a mut U) {
assert!(
lc1 as *const _ as *const () as usize != lc2 as *const _ as *const () as usize,
"Illegal to borrow same LCell twice with rw2()"
);
unsafe { (&mut *lc1.value.get(), &mut *lc2.value.get()) }
}
/// Borrow contents of three `LCell` instances mutably. Panics if
/// any pair of `LCell` instances point to the same memory.
#[inline]
pub fn rw3<'a, T: ?Sized, U: ?Sized, V: ?Sized>(
&'a mut self,
lc1: &'a LCell<'id, T>,
lc2: &'a LCell<'id, U>,
lc3: &'a LCell<'id, V>,
) -> (&'a mut T, &'a mut U, &'a mut V) {
assert!(
(lc1 as *const _ as *const () as usize != lc2 as *const _ as *const () as usize)
&& (lc2 as *const _ as *const () as usize != lc3 as *const _ as *const () as usize)
&& (lc3 as *const _ as *const () as usize != lc1 as *const _ as *const () as usize),
"Illegal to borrow same LCell twice with rw3()"
);
unsafe {
(
&mut *lc1.value.get(),
&mut *lc2.value.get(),
&mut *lc3.value.get(),
)
}
}
}
/// Cell whose contents are owned (for borrowing purposes) by a
/// [`LCellOwner`].
///
/// To borrow from this cell, use the borrowing calls on the
/// [`LCellOwner`] instance that owns it, i.e. that shares the same
/// Rust lifetime.
///
/// See also [crate documentation](index.html).
///
/// [`LCellOwner`]: struct.LCellOwner.html
#[repr(transparent)]
pub struct LCell<'id, T: ?Sized> {
_id: Id<'id>,
value: UnsafeCell<T>,
}
impl<'id, T> LCell<'id, T> {
/// Create a new `LCell`. The owner of this cell is inferred by
/// Rust from the context. So the owner lifetime is whatever
/// lifetime is required by the first use of the new `LCell`.
#[inline]
pub fn new(value: T) -> LCell<'id, T> {
LCell {
_id: PhantomData,
value: UnsafeCell::new(value),
}
}
/// Destroy the cell and return the contained value
///
/// Safety: Since this consumes the cell, there can be no other
/// references to the cell or the data at this point.
#[inline]
pub fn into_inner(self) -> T {
self.value.into_inner()
}
}
impl<'id, T: ?Sized> LCell<'id, T> {
/// Borrow contents of this cell immutably (read-only). Many
/// `LCell` instances can be borrowed immutably at the same time
/// from the same owner.
#[inline]
pub fn ro<'a>(&'a self, owner: &'a LCellOwner<'id>) -> &'a T {
owner.ro(self)
}
/// Borrow contents of this cell mutably (read-write). Only one
/// `LCell` at a time can be borrowed from the owner using this
/// call. The returned reference must go out of scope before
/// another can be borrowed. To mutably borrow from two or three
/// cells at the same time, see [`LCellOwner::rw2`] or
/// [`LCellOwner::rw3`].
#[inline]
pub fn rw<'a>(&'a self, owner: &'a mut LCellOwner<'id>) -> &'a mut T {
owner.rw(self)
}
/// Returns a mutable reference to the underlying data
///
/// Note that this is only useful at the beginning-of-life or
/// end-of-life of the cell when you have exclusive access to it.
/// Normally you'd use [`LCell::rw`] or [`LCellOwner::rw`] to get
/// a mutable reference to the contents of the cell.
///
/// Safety: This call borrows `LCell` mutably which guarantees
/// that we possess the only reference. This means that there can
/// be no active borrows of other forms, even ones obtained using
/// an immutable reference.
#[inline]
pub fn get_mut(&mut self) -> &mut T {
self.value.get_mut()
}
}
impl<'id, T: Default + ?Sized> Default for LCell<'id, T> {
fn default() -> Self {
LCell::new(T::default())
}
}
// LCell already automatically implements Send, but not
// Sync. We can add these implementations though, since it's fine to
// send a &LCell to another thread, and even mutably borrow the value
// there, as long as T is Send and Sync.
//
// The reason why LCell<T>'s impl of Sync requires T: Send + Sync
// instead of just T: Sync is that LCell provides interior mutability.
// If you send a &LCell<T> (and its owner) to a different thread, you
// can call .rw() to get a &mut T, and use std::mem::swap() to move
// the T, effectively sending the T to that other thread. That's not
// allowed if T: !Send.
//
// Note that the bounds on T for LCell<T>'s impl of Sync are the same
// as those of std::sync::RwLock<T>. That's not a coincidence.
// The way these types let you access T concurrently is the same,
// even though the locking mechanisms are different.
unsafe impl<'id, T: Send + Sync + ?Sized> Sync for LCell<'id, T> {}
#[cfg(test)]
mod tests {
use super::{LCell, LCellOwner};
use std::rc::Rc;
#[test]
fn lcell() {
LCellOwner::scope(|mut owner| {
let c1 = LCell::new(100u32);
let c2 = owner.cell(200u32);
(*owner.rw(&c1)) += 1;
(*owner.rw(&c2)) += 2;
let c1ref = owner.ro(&c1);
let c2ref = owner.ro(&c2);
let total = *c1ref + *c2ref;
assert_eq!(total, 303);
});
}
#[test]
#[cfg(feature = "generativity")]
fn generativity() {
generativity::make_guard!(guard);
let mut owner = LCellOwner::new(guard);
let c1 = LCell::new(100_u32);
let c2 = LCell::new(200_u32);
(*owner.rw(&c1)) += 1;
(*owner.rw(&c2)) += 2;
let c1ref = owner.ro(&c1);
let c2ref = owner.ro(&c2);
let total = *c1ref + *c2ref;
assert_eq!(total, 303);
}
#[test]
#[should_panic]
fn lcell_rw2() {
LCellOwner::scope(|mut owner| {
let c1 = Rc::new(LCell::new(100u32));
let (mutref1, mutref2) = owner.rw2(&c1, &c1);
*mutref1 += 1;
*mutref2 += 1;
});
}
#[test]
#[should_panic]
fn lcell_rw3_1() {
LCellOwner::scope(|mut owner| {
let c1 = Rc::new(LCell::new(100u32));
let c2 = Rc::new(LCell::new(200u32));
let (mutref1, mutref2, mutref3) = owner.rw3(&c1, &c1, &c2);
*mutref1 += 1;
*mutref2 += 1;
*mutref3 += 1;
});
}
#[test]
#[should_panic]
fn lcell_rw3_2() {
LCellOwner::scope(|mut owner| {
let c1 = Rc::new(LCell::new(100u32));
let c2 = Rc::new(LCell::new(200u32));
let (mutref1, mutref2, mutref3) = owner.rw3(&c1, &c2, &c1);
*mutref1 += 1;
*mutref2 += 1;
*mutref3 += 1;
});
}
#[test]
#[should_panic]
fn lcell_rw3_3() {
LCellOwner::scope(|mut owner| {
let c1 = Rc::new(LCell::new(100u32));
let c2 = Rc::new(LCell::new(200u32));
let (mutref1, mutref2, mutref3) = owner.rw3(&c2, &c1, &c1);
*mutref1 += 1;
*mutref2 += 1;
*mutref3 += 1;
});
}
#[test]
fn lcell_get_mut() {
LCellOwner::scope(|owner| {
let mut cell = LCell::new(100u32);
let mut_ref = cell.get_mut();
*mut_ref = 50;
let cell_ref = owner.ro(&cell);
assert_eq!(*cell_ref, 50);
});
}
#[test]
fn lcell_into_inner() {
let cell = LCell::new(100u32);
assert_eq!(cell.into_inner(), 100);
}
#[test]
fn lcell_unsized() {
LCellOwner::scope(|mut owner| {
struct Squares(u32);
struct Integers(u64);
trait Series {
fn step(&mut self);
fn value(&self) -> u64;
}
impl Series for Squares {
fn step(&mut self) {
self.0 += 1;
}
fn value(&self) -> u64 {
(self.0 as u64) * (self.0 as u64)
}
}
impl Series for Integers {
fn step(&mut self) {
self.0 += 1;
}
fn value(&self) -> u64 {
self.0
}
}
fn series<'id>(init: u32, is_squares: bool) -> Box<LCell<'id, dyn Series>> {
if is_squares {
Box::new(LCell::new(Squares(init)))
} else {
Box::new(LCell::new(Integers(init as u64)))
}
}
let own = &mut owner;
let cell1 = series(4, false);
let cell2 = series(7, true);
let cell3 = series(3, true);
assert_eq!(cell1.ro(own).value(), 4);
cell1.rw(own).step();
assert_eq!(cell1.ro(own).value(), 5);
assert_eq!(own.ro(&cell2).value(), 49);
own.rw(&cell2).step();
assert_eq!(own.ro(&cell2).value(), 64);
let (r1, r2, r3) = own.rw3(&cell1, &cell2, &cell3);
r1.step();
r2.step();
r3.step();
assert_eq!(cell1.ro(own).value(), 6);
assert_eq!(cell2.ro(own).value(), 81);
assert_eq!(cell3.ro(own).value(), 16);
let (r1, r2) = own.rw2(&cell1, &cell2);
r1.step();
r2.step();
assert_eq!(cell1.ro(own).value(), 7);
assert_eq!(cell2.ro(own).value(), 100);
});
}
}