1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.

use std::borrow::Borrow;
use std::collections::BTreeSet;
use std::fmt::Debug;
use std::marker::PhantomData;
use std::mem;
use std::sync::Arc;
use std::time::Instant;

use differential_dataflow::difference::Semigroup;
use differential_dataflow::lattice::Lattice;
use futures_util::stream::FuturesUnordered;
use futures_util::StreamExt;
use prometheus::Counter;
use timely::progress::Timestamp;
use tokio::sync::mpsc::UnboundedSender;
use tokio::sync::{mpsc, oneshot, Semaphore};
use tracing::{debug, debug_span, error, warn, Instrument, Span};

use crate::async_runtime::IsolatedRuntime;
use crate::batch::PartDeletes;
use mz_ore::cast::CastFrom;
use mz_ore::collections::HashSet;
use mz_persist::location::{Blob, SeqNo};
use mz_persist_types::{Codec, Codec64};

use crate::internal::machine::{retry_external, Machine};
use crate::internal::maintenance::RoutineMaintenance;
use crate::internal::metrics::{GcStepTimings, RetryMetrics};
use crate::internal::paths::{BlobKey, PartialBlobKey, PartialRollupKey};
use crate::internal::state::HollowBlobRef;
use crate::internal::state_versions::{InspectDiff, StateVersionsIter};
use crate::ShardId;

#[derive(Debug, Clone, PartialEq)]
pub struct GcReq {
    pub shard_id: ShardId,
    pub new_seqno_since: SeqNo,
}

#[derive(Debug)]
pub struct GarbageCollector<K, V, T, D> {
    sender: UnboundedSender<(GcReq, oneshot::Sender<RoutineMaintenance>)>,
    _phantom: PhantomData<fn() -> (K, V, T, D)>,
}

impl<K, V, T, D> Clone for GarbageCollector<K, V, T, D> {
    fn clone(&self) -> Self {
        GarbageCollector {
            sender: self.sender.clone(),
            _phantom: PhantomData,
        }
    }
}

/// Cleanup for no longer necessary blobs and consensus versions.
///
/// - Every read handle, snapshot, and listener is given a capability on seqno
///   with a very long lease (allowing for infrequent heartbeats). This is a
///   guarantee that no blobs referenced by the state at that version will be
///   deleted (even if they've been compacted in some newer version of the
///   state). This is called a seqno_since in the code as it has obvious
///   parallels to how sinces work at the shard/collection level. (Is reusing
///   "since" here a good idea? We could also call it a "seqno capability" or
///   something else instead.)
/// - Every state transition via apply_unbatched_cmd has the opportunity to
///   determine that the overall seqno_since for the shard has changed. In the
///   common case in production, this will be in response to a snapshot
///   finishing or a listener emitting some batch.
/// - It would be nice if this only ever happened in response to read-y things
///   (there'd be a nice parallel to how compaction background work is only
///   spawned by write activity), but if there are no readers, we still very
///   much want to continue to garbage collect. Notably, if there are no
///   readers, we naturally only need to hold a capability on the current
///   version of state. This means that if there are only writers, a write
///   commands will result in the seqno_since advancing immediately from the
///   previous version of the state to the new one.
/// - Like Compacter, GarbageCollector uses a heuristic to ignore some requests
///   to save work. In this case, the tradeoff is between consensus traffic
///   (plus a bit of cpu) and keeping blobs around longer than strictly
///   necessary. This is correct because a process could always die while
///   executing one of these requests (or be slow and still working on it when
///   the next request is generated), so we anyway need to handle them being
///   dropped.
/// - GarbageCollector works by `Consensus::scan`-ing for every live version of
///   state (ignoring what the request things the prev_state_seqno was for the
///   reasons mentioned immediately above). It then walks through them in a
///   loop, accumulating a BTreeSet of every referenced blob key. When it finds
///   the version corresponding to the new_seqno_since, it removes every blob in
///   that version of the state from the BTreeSet and exits the loop. This
///   results in the BTreeSet containing every blob eligible for deletion. It
///   deletes those blobs and then truncates the state to the new_seqno_since to
///   indicate that this work doesn't need to be done again.
/// - Note that these requests are being processed concurrently, so it's always
///   possible that some future request has already deleted the blobs and
///   truncated consensus. It's also possible that this is the future request.
///   As a result, the only guarantee that we get is that the current version of
///   head is >= new_seqno_since.
/// - (Aside: The above also means that if Blob is not linearizable, there is a
///   possible race where a blob gets deleted before it written and thus is
///   leaked. We anyway always have the possibility of a write process being
///   killed between when it writes a blob and links it into state, so this is
///   fine; it'll be caught and fixed by the same mechanism.)
impl<K, V, T, D> GarbageCollector<K, V, T, D>
where
    K: Debug + Codec,
    V: Debug + Codec,
    T: Timestamp + Lattice + Codec64 + Sync,
    D: Semigroup + Codec64,
{
    pub fn new(machine: Machine<K, V, T, D>, isolated_runtime: Arc<IsolatedRuntime>) -> Self {
        let (gc_req_sender, mut gc_req_recv) =
            mpsc::unbounded_channel::<(GcReq, oneshot::Sender<RoutineMaintenance>)>();

        // spin off a single task responsible for executing GC requests.
        // work is enqueued into the task through a channel
        let _worker_handle = mz_ore::task::spawn(|| "PersistGcWorker", async move {
            while let Some((req, completer)) = gc_req_recv.recv().await {
                let mut consolidated_req = req;
                let mut gc_completed_senders = vec![completer];

                // check if any further gc requests have built up. we'll merge their requests
                // together and run a single GC pass to satisfy all of them
                while let Ok((req, completer)) = gc_req_recv.try_recv() {
                    assert_eq!(req.shard_id, consolidated_req.shard_id);
                    gc_completed_senders.push(completer);
                    consolidated_req.new_seqno_since =
                        std::cmp::max(req.new_seqno_since, consolidated_req.new_seqno_since);
                }

                let merged_requests = gc_completed_senders.len() - 1;
                if merged_requests > 0 {
                    machine
                        .applier
                        .metrics
                        .gc
                        .merged
                        .inc_by(u64::cast_from(merged_requests));
                    debug!(
                        "Merged {} gc requests together for shard {}",
                        merged_requests, consolidated_req.shard_id
                    );
                }

                let gc_span = debug_span!(parent: None, "gc_and_truncate", shard_id=%consolidated_req.shard_id);
                gc_span.follows_from(&Span::current());

                let start = Instant::now();
                machine.applier.metrics.gc.started.inc();
                let (mut maintenance, _stats) = {
                    let name = format!("gc_and_truncate ({})", &consolidated_req.shard_id);
                    let machine = machine.clone();
                    isolated_runtime
                        .spawn_named(|| name, async move {
                            Self::gc_and_truncate(&machine, consolidated_req)
                                .instrument(gc_span)
                                .await
                        })
                        .await
                        .expect("gc_and_truncate failed")
                };
                machine.applier.metrics.gc.finished.inc();
                machine.applier.shard_metrics.gc_finished.inc();
                machine
                    .applier
                    .metrics
                    .gc
                    .seconds
                    .inc_by(start.elapsed().as_secs_f64());

                // inform all callers who enqueued GC reqs that their work is complete
                for sender in gc_completed_senders {
                    // we can safely ignore errors here, it's possible the caller
                    // wasn't interested in waiting and dropped their receiver.
                    // maintenance will be somewhat-arbitrarily assigned to the first oneshot.
                    let _ = sender.send(mem::take(&mut maintenance));
                }
            }
        });

        GarbageCollector {
            sender: gc_req_sender,
            _phantom: PhantomData,
        }
    }

    /// Enqueues a [GcReq] to be consumed by the GC background task when available.
    ///
    /// Returns a future that indicates when GC has cleaned up to at least [GcReq::new_seqno_since]
    pub fn gc_and_truncate_background(
        &self,
        req: GcReq,
    ) -> Option<oneshot::Receiver<RoutineMaintenance>> {
        let (gc_completed_sender, gc_completed_receiver) = oneshot::channel();
        let new_gc_sender = self.sender.clone();
        let send = new_gc_sender.send((req, gc_completed_sender));

        if let Err(e) = send {
            // In the steady state we expect this to always succeed, but during
            // shutdown it is possible the destination task has already spun down
            warn!(
                "gc_and_truncate_background failed to send gc request: {}",
                e
            );
            return None;
        }

        Some(gc_completed_receiver)
    }

    pub(crate) async fn gc_and_truncate(
        machine: &Machine<K, V, T, D>,
        req: GcReq,
    ) -> (RoutineMaintenance, GcResults) {
        let mut step_start = Instant::now();
        let mut report_step_timing = |counter: &Counter| {
            let now = Instant::now();
            counter.inc_by(now.duration_since(step_start).as_secs_f64());
            step_start = now;
        };
        assert_eq!(req.shard_id, machine.shard_id());

        // Double check our GC req: seqno_since will never regress
        // so we can verify it's not somehow greater than the last-
        // known seqno_since
        if req.new_seqno_since > machine.applier.seqno_since() {
            machine
                .applier
                .fetch_and_update_state(Some(req.new_seqno_since))
                .await;
            let current_seqno_since = machine.applier.seqno_since();
            assert!(
                req.new_seqno_since <= current_seqno_since,
                "invalid gc req: {:?} vs machine seqno_since {}",
                req,
                current_seqno_since
            );
        }

        // First, check the latest known state to this process to see
        // if there's relevant GC work for this seqno_since
        let gc_rollups =
            GcRollups::new(machine.applier.rollups_lte_seqno(req.new_seqno_since), &req);
        let rollups_to_remove_from_state = gc_rollups.rollups_to_remove_from_state();
        report_step_timing(&machine.applier.metrics.gc.steps.find_removable_rollups);

        let mut gc_results = GcResults::default();

        if rollups_to_remove_from_state.is_empty() {
            // If there are no rollups to remove from state (either the work has already
            // been done, or the there aren't enough rollups <= seqno_since to have any
            // to delete), we can safely exit.
            machine.applier.metrics.gc.noop.inc();
            return (RoutineMaintenance::default(), gc_results);
        }

        debug!(
            "Finding all rollups <= ({}). Will truncate: {:?}. Will remove rollups from state: {:?}",
            req.new_seqno_since,
            gc_rollups.truncate_seqnos().collect::<Vec<_>>(),
            rollups_to_remove_from_state,
        );

        let mut states = machine
            .applier
            .state_versions
            .fetch_all_live_states(req.shard_id)
            .await
            .expect("state is initialized")
            .check_ts_codec()
            .expect("ts codec has not changed");
        let initial_seqno = states.state().seqno;
        report_step_timing(&machine.applier.metrics.gc.steps.fetch_seconds);

        machine
            .applier
            .shard_metrics
            .gc_live_diffs
            .set(u64::cast_from(states.len()));

        debug!(
            "gc seqno_since: ({}) got {} versions from scan",
            req.new_seqno_since,
            states.len()
        );

        Self::incrementally_delete_and_truncate(
            &mut states,
            &gc_rollups,
            machine,
            &mut report_step_timing,
            &mut gc_results,
        )
        .await;

        // Now that the blobs are deleted / Consensus is truncated, remove
        // the rollups from state. Doing this at the end ensures that our
        // invariant is maintained that the current state contains a rollup
        // to the earliest state in Consensus, and ensures that if GC crashes
        // part-way through, we still have a reference to these rollups to
        // resume their deletion.
        //
        // This does mean that if GC crashes part-way through we would
        // repeat work when it resumes. However the redundant work should
        // be minimal as Consensus is incrementally truncated, allowing
        // the next run of GC to skip any work needed for rollups less
        // than the last truncation.
        //
        // In short, while this step is not incremental, it does not need
        // to be for GC to efficiently resume. And in fact, making it
        // incremental could be quite expensive (e.g. more CaS operations).
        let (removed_rollups, maintenance) =
            machine.remove_rollups(rollups_to_remove_from_state).await;
        report_step_timing(&machine.applier.metrics.gc.steps.remove_rollups_from_state);
        debug!("CaS removed rollups from state: {:?}", removed_rollups);
        gc_results.rollups_removed_from_state = removed_rollups;

        // Everything here and below is not strictly needed for GC to complete,
        // but it's a good opportunity, while we have all live states in hand,
        // to run some metrics and assertions.

        // Apply all remaining live states to rollup some metrics, like how many
        // parts are being held (in Blob) that are not part of the latest state.
        let mut seqno_held_parts = 0;
        while let Some(_) = states.next(|diff| match diff {
            InspectDiff::FromInitial(_) => {}
            InspectDiff::Diff(diff) => {
                diff.blob_deletes().for_each(|blob| match blob {
                    HollowBlobRef::Batch(batch) => {
                        seqno_held_parts += batch.part_count();
                    }
                    HollowBlobRef::Rollup(_) => {}
                });
            }
        }) {}

        machine
            .applier
            .shard_metrics
            .gc_seqno_held_parts
            .set(u64::cast_from(seqno_held_parts));

        // verify that the "current" state (as of `fetch_all_live_states`) contains
        // a rollup to the earliest state we fetched. this invariant isn't affected
        // by the GC work we just performed, but it is a property of GC correctness
        // overall / is a convenient place to run the assertion.
        let valid_pre_gc_state = states
            .state()
            .collections
            .rollups
            .contains_key(&initial_seqno);

        debug_assert!(
            valid_pre_gc_state,
            "rollups = {:?}, state seqno = {}",
            states.state().collections.rollups,
            initial_seqno
        );

        if !valid_pre_gc_state {
            // this should never be true in the steady-state, but may be true the
            // first time GC runs after fixing any correctness bugs related to our
            // state version invariants. we'll make it an error so we can track
            // any violations in Sentry, but opt not to panic because the root
            // cause of the violation cannot be from this GC run (in fact, this
            // GC run, assuming it's correct, should have fixed the violation!)
            error!("earliest state fetched during GC did not have corresponding rollup: rollups = {:?}, state seqno = {}",
                states.state().collections.rollups,
                initial_seqno
            );
        }

        report_step_timing(
            &machine
                .applier
                .metrics
                .gc
                .steps
                .post_gc_calculations_seconds,
        );

        (maintenance, gc_results)
    }

    /// Physically deletes all blobs from Blob and live diffs from Consensus that
    /// are safe to delete, given the `seqno_since`, ensuring that the earliest
    /// live diff in Consensus has a rollup of seqno `<= seqno_since`.
    ///
    /// Internally, performs deletions for each rollup encountered, ensuring that
    /// incremental progress is made even if the process is interrupted before
    /// completing all gc work.
    async fn incrementally_delete_and_truncate<F>(
        states: &mut StateVersionsIter<T>,
        gc_rollups: &GcRollups,
        machine: &Machine<K, V, T, D>,
        timer: &mut F,
        gc_results: &mut GcResults,
    ) where
        F: FnMut(&Counter),
    {
        assert_eq!(states.state().shard_id, machine.shard_id());
        let shard_id = states.state().shard_id;
        let mut batch_parts_to_delete = PartDeletes::default();
        let mut rollups_to_delete: BTreeSet<PartialRollupKey> = BTreeSet::new();

        for truncate_lt in gc_rollups.truncate_seqnos() {
            assert!(batch_parts_to_delete.is_empty());
            assert!(rollups_to_delete.is_empty());

            // our state is already past the truncation point. there's no work to do --
            // some process already truncated this far
            if states.state().seqno >= truncate_lt {
                continue;
            }

            // By our invariant, `states` should always begin on a rollup.
            assert!(
                gc_rollups.contains_seqno(&states.state().seqno),
                "rollups = {:?}, state seqno = {}",
                gc_rollups,
                states.state().seqno
            );

            Self::find_removable_blobs(
                states,
                truncate_lt,
                &machine.applier.metrics.gc.steps,
                timer,
                &mut batch_parts_to_delete,
                &mut rollups_to_delete,
            );

            // After finding removable blobs, our state should be exactly `truncate_lt`,
            // to ensure we've seen all blob deletions in the diffs needed to reach
            // this seqno.
            //
            // That we can always reach `truncate_lt` given the live diffs we fetched
            // earlier is a little subtle:
            // * Our GC request was generated after `seqno_since` was written.
            // * If our initial seqno on this loop was < `truncate_lt`, then our read
            //   to `fetch_all_live_states` must have seen live diffs through at least
            //   `seqno_since`, because the diffs were not yet truncated.
            // * `seqno_since` >= `truncate_lt`, therefore we must have enough live
            //   diffs to reach `truncate_lt`.
            assert_eq!(states.state().seqno, truncate_lt);
            // `truncate_lt` _is_ the seqno of a rollup, but let's very explicitly
            // assert that we're about to truncate everything less than a rollup
            // to maintain our invariant.
            assert!(
                gc_rollups.contains_seqno(&states.state().seqno),
                "rollups = {:?}, state seqno = {}",
                gc_rollups,
                states.state().seqno
            );

            // Extra paranoia: verify that none of the blobs we're about to delete
            // are in our current state (we should only be truncating blobs from
            // before this state!)
            states.state().blobs().for_each(|blob| match blob {
                HollowBlobRef::Batch(batch) => {
                    for live_part in &batch.parts {
                        assert!(!batch_parts_to_delete.contains(live_part));
                    }
                }
                HollowBlobRef::Rollup(live_rollup) => {
                    assert_eq!(rollups_to_delete.get(&live_rollup.key), None);
                    // And double check that the rollups we're about to delete are
                    // earlier than our truncation point:
                    match BlobKey::parse_ids(&live_rollup.key.complete(&shard_id)) {
                        Ok((_shard, PartialBlobKey::Rollup(rollup_seqno, _rollup))) => {
                            assert!(rollup_seqno < truncate_lt);
                        }
                        _ => {
                            panic!("invalid rollup during deletion: {:?}", live_rollup);
                        }
                    }
                }
            });

            gc_results.truncated_consensus_to.push(truncate_lt);
            gc_results.batch_parts_deleted_from_blob += batch_parts_to_delete.len();
            gc_results.rollups_deleted_from_blob += rollups_to_delete.len();

            Self::delete_and_truncate(
                truncate_lt,
                &mut batch_parts_to_delete,
                &mut rollups_to_delete,
                machine,
                timer,
            )
            .await;
        }
    }

    /// Iterates through `states`, accumulating all deleted blobs (both batch parts
    /// and rollups) until reaching the seqno `truncate_lt`.
    ///
    /// * The initial seqno of `states` MUST be less than `truncate_lt`.
    /// * The seqno of `states` after this fn will be exactly `truncate_lt`.
    fn find_removable_blobs<F>(
        states: &mut StateVersionsIter<T>,
        truncate_lt: SeqNo,
        metrics: &GcStepTimings,
        timer: &mut F,
        batch_parts_to_delete: &mut PartDeletes<T>,
        rollups_to_delete: &mut BTreeSet<PartialRollupKey>,
    ) where
        F: FnMut(&Counter),
    {
        assert!(states.state().seqno < truncate_lt);
        while let Some(state) = states.next(|diff| match diff {
            InspectDiff::FromInitial(_) => {}
            InspectDiff::Diff(diff) => {
                diff.blob_deletes().for_each(|blob| match blob {
                    HollowBlobRef::Batch(batch) => {
                        for part in &batch.parts {
                            // we use BTreeSets for fast lookups elsewhere, but we should never
                            // see repeat blob insertions within a single GC run, otherwise we
                            // have a logic error or our diffs are incorrect (!)
                            assert!(batch_parts_to_delete.add(part));
                        }
                    }
                    HollowBlobRef::Rollup(rollup) => {
                        assert!(rollups_to_delete.insert(rollup.key.to_owned()));
                    }
                });
            }
        }) {
            if state.seqno == truncate_lt {
                break;
            }
        }
        timer(&metrics.find_deletable_blobs_seconds);
    }

    /// Deletes `batch_parts` and `rollups` from Blob.
    /// Truncates Consensus to `truncate_lt`.
    async fn delete_and_truncate<F>(
        truncate_lt: SeqNo,
        batch_parts: &mut PartDeletes<T>,
        rollups: &mut BTreeSet<PartialRollupKey>,
        machine: &Machine<K, V, T, D>,
        timer: &mut F,
    ) where
        F: FnMut(&Counter),
    {
        let shard_id = machine.shard_id();
        let delete_semaphore = Semaphore::new(
            machine
                .applier
                .cfg
                .dynamic
                .gc_blob_delete_concurrency_limit(),
        );

        let batch_parts = std::mem::take(batch_parts);
        batch_parts
            .delete(
                machine.applier.state_versions.blob.borrow(),
                shard_id,
                machine
                    .applier
                    .cfg
                    .dynamic
                    .gc_blob_delete_concurrency_limit(),
                &*machine.applier.metrics,
                &machine.applier.metrics.retries.external.batch_delete,
            )
            .instrument(debug_span!("batch::delete"))
            .await;
        timer(&machine.applier.metrics.gc.steps.delete_batch_part_seconds);

        Self::delete_all(
            machine.applier.state_versions.blob.borrow(),
            rollups.iter().map(|k| k.complete(&shard_id)),
            &machine.applier.metrics.retries.external.rollup_delete,
            debug_span!("rollup::delete"),
            &delete_semaphore,
        )
        .await;
        rollups.clear();
        timer(&machine.applier.metrics.gc.steps.delete_rollup_seconds);

        machine
            .applier
            .state_versions
            .truncate_diffs(&shard_id, truncate_lt)
            .await;
        timer(&machine.applier.metrics.gc.steps.truncate_diff_seconds);
    }

    // There's also a bulk delete API in s3 if the performance of this
    // becomes an issue. Maybe make Blob::delete take a list of keys?
    //
    // https://docs.aws.amazon.com/AmazonS3/latest/API/API_DeleteObjects.html
    async fn delete_all(
        blob: &dyn Blob,
        keys: impl Iterator<Item = BlobKey>,
        metrics: &RetryMetrics,
        span: Span,
        semaphore: &Semaphore,
    ) {
        let futures = FuturesUnordered::new();
        for key in keys {
            futures.push(
                retry_external(metrics, move || {
                    let key = key.clone();
                    async move {
                        let _permit = semaphore
                            .acquire()
                            .await
                            .expect("acquiring permit from open semaphore");
                        blob.delete(&key).await.map(|_| ())
                    }
                })
                .instrument(span.clone()),
            )
        }

        futures.collect().await
    }
}

#[derive(Debug, Default)]
pub(crate) struct GcResults {
    pub(crate) batch_parts_deleted_from_blob: usize,
    pub(crate) rollups_deleted_from_blob: usize,
    pub(crate) truncated_consensus_to: Vec<SeqNo>,
    pub(crate) rollups_removed_from_state: Vec<SeqNo>,
}

#[derive(Debug)]
struct GcRollups {
    rollups_lte_seqno_since: Vec<(SeqNo, PartialRollupKey)>,
    rollup_seqnos: HashSet<SeqNo>,
}

impl GcRollups {
    fn new(rollups_lte_seqno_since: Vec<(SeqNo, PartialRollupKey)>, gc_req: &GcReq) -> Self {
        assert!(rollups_lte_seqno_since
            .iter()
            .all(|(seqno, _rollup)| *seqno <= gc_req.new_seqno_since));
        let rollup_seqnos = rollups_lte_seqno_since.iter().map(|(x, _)| *x).collect();
        Self {
            rollups_lte_seqno_since,
            rollup_seqnos,
        }
    }

    fn contains_seqno(&self, seqno: &SeqNo) -> bool {
        self.rollup_seqnos.contains(seqno)
    }

    /// Returns the seqnos we can safely truncate state to when performing
    /// incremental GC (all rollups with seqnos <= seqno_since).
    fn truncate_seqnos(&self) -> impl Iterator<Item = SeqNo> + '_ {
        self.rollups_lte_seqno_since
            .iter()
            .map(|(seqno, _rollup)| *seqno)
    }

    /// Returns the rollups we can safely remove from state (all rollups
    /// `<` than the latest rollup `<=` seqno_since).
    ///
    /// See the full explanation in [crate::internal::state_versions::StateVersions]
    /// for how this is derived.
    fn rollups_to_remove_from_state(&self) -> &[(SeqNo, PartialRollupKey)] {
        match self.rollups_lte_seqno_since.split_last() {
            None => &[],
            Some((_rollup_to_keep, rollups_to_remove_from_state)) => rollups_to_remove_from_state,
        }
    }
}