futures_timer/native/
heap.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
//! A simple binary heap with support for removal of arbitrary elements
//!
//! This heap is used to manage timer state in the event loop. All timeouts go
//! into this heap and we also cancel timeouts from this heap. The crucial
//! feature of this heap over the standard library's `BinaryHeap` is the ability
//! to remove arbitrary elements. (e.g. when a timer is canceled)
//!
//! Note that this heap is not at all optimized right now, it should hopefully
//! just work.

use std::mem;

pub struct Heap<T> {
    // Binary heap of items, plus the slab index indicating what position in the
    // list they're in.
    items: Vec<(T, usize)>,

    // A map from a slab index (assigned to an item above) to the actual index
    // in the array the item appears at.
    index: Vec<SlabSlot<usize>>,
    next_index: usize,
}

enum SlabSlot<T> {
    Empty { next: usize },
    Full { value: T },
}

pub struct Slot {
    idx: usize,
}

impl<T: Ord> Heap<T> {
    pub fn new() -> Heap<T> {
        Heap {
            items: Vec::new(),
            index: Vec::new(),
            next_index: 0,
        }
    }

    /// Pushes an element onto this heap, returning a slot token indicating
    /// where it was pushed on to.
    ///
    /// The slot can later get passed to `remove` to remove the element from the
    /// heap, but only if the element was previously not removed from the heap.
    pub fn push(&mut self, t: T) -> Slot {
        self.assert_consistent();
        let len = self.items.len();
        let slot = SlabSlot::Full { value: len };
        let slot_idx = if self.next_index == self.index.len() {
            self.next_index += 1;
            self.index.push(slot);
            self.index.len() - 1
        } else {
            match mem::replace(&mut self.index[self.next_index], slot) {
                SlabSlot::Empty { next } => mem::replace(&mut self.next_index, next),
                SlabSlot::Full { .. } => panic!(),
            }
        };
        self.items.push((t, slot_idx));
        self.percolate_up(len);
        self.assert_consistent();
        Slot { idx: slot_idx }
    }

    pub fn peek(&self) -> Option<&T> {
        self.assert_consistent();
        self.items.get(0).map(|i| &i.0)
    }

    pub fn pop(&mut self) -> Option<T> {
        self.assert_consistent();
        if self.items.is_empty() {
            return None;
        }
        let slot = Slot {
            idx: self.items[0].1,
        };
        Some(self.remove(slot))
    }

    pub fn remove(&mut self, slot: Slot) -> T {
        self.assert_consistent();
        let empty = SlabSlot::Empty {
            next: self.next_index,
        };
        let idx = match mem::replace(&mut self.index[slot.idx], empty) {
            SlabSlot::Full { value } => value,
            SlabSlot::Empty { .. } => panic!(),
        };
        self.next_index = slot.idx;
        let (item, slot_idx) = self.items.swap_remove(idx);
        debug_assert_eq!(slot.idx, slot_idx);
        if idx < self.items.len() {
            set_index(&mut self.index, self.items[idx].1, idx);
            if self.items[idx].0 < item {
                self.percolate_up(idx);
            } else {
                self.percolate_down(idx);
            }
        }
        self.assert_consistent();
        item
    }

    fn percolate_up(&mut self, mut idx: usize) -> usize {
        while idx > 0 {
            let parent = (idx - 1) / 2;
            if self.items[idx].0 >= self.items[parent].0 {
                break;
            }
            let (a, b) = self.items.split_at_mut(idx);
            mem::swap(&mut a[parent], &mut b[0]);
            set_index(&mut self.index, a[parent].1, parent);
            set_index(&mut self.index, b[0].1, idx);
            idx = parent;
        }
        idx
    }

    fn percolate_down(&mut self, mut idx: usize) -> usize {
        loop {
            let left = 2 * idx + 1;
            let right = 2 * idx + 2;

            let mut swap_left = true;
            match (self.items.get(left), self.items.get(right)) {
                (Some(left), None) => {
                    if left.0 >= self.items[idx].0 {
                        break;
                    }
                }
                (Some(left), Some(right)) => {
                    if left.0 < self.items[idx].0 {
                        if right.0 < left.0 {
                            swap_left = false;
                        }
                    } else if right.0 < self.items[idx].0 {
                        swap_left = false;
                    } else {
                        break;
                    }
                }

                (None, None) => break,
                (None, Some(_right)) => panic!("not possible"),
            }

            let (a, b) = if swap_left {
                self.items.split_at_mut(left)
            } else {
                self.items.split_at_mut(right)
            };
            mem::swap(&mut a[idx], &mut b[0]);
            set_index(&mut self.index, a[idx].1, idx);
            set_index(&mut self.index, b[0].1, a.len());
            idx = a.len();
        }
        idx
    }

    fn assert_consistent(&self) {
        if !cfg!(assert_timer_heap_consistent) {
            return;
        }

        assert_eq!(
            self.items.len(),
            self.index
                .iter()
                .filter(|slot| {
                    match **slot {
                        SlabSlot::Full { .. } => true,
                        SlabSlot::Empty { .. } => false,
                    }
                })
                .count()
        );

        for (i, &(_, j)) in self.items.iter().enumerate() {
            let index = match self.index[j] {
                SlabSlot::Full { value } => value,
                SlabSlot::Empty { .. } => panic!(),
            };
            if index != i {
                panic!(
                    "self.index[j] != i : i={} j={} self.index[j]={}",
                    i, j, index
                );
            }
        }

        for (i, &(ref item, _)) in self.items.iter().enumerate() {
            if i > 0 {
                assert!(*item >= self.items[(i - 1) / 2].0, "bad at index: {}", i);
            }
            if let Some(left) = self.items.get(2 * i + 1) {
                assert!(*item <= left.0, "bad left at index: {}", i);
            }
            if let Some(right) = self.items.get(2 * i + 2) {
                assert!(*item <= right.0, "bad right at index: {}", i);
            }
        }
    }
}

fn set_index<T>(slab: &mut Vec<SlabSlot<T>>, slab_slot: usize, val: T) {
    match slab[slab_slot] {
        SlabSlot::Full { ref mut value } => *value = val,
        SlabSlot::Empty { .. } => panic!(),
    }
}

#[cfg(test)]
mod tests {
    use super::Heap;

    #[test]
    fn simple() {
        let mut h = Heap::new();
        h.push(1);
        h.push(2);
        h.push(8);
        h.push(4);
        assert_eq!(h.pop(), Some(1));
        assert_eq!(h.pop(), Some(2));
        assert_eq!(h.pop(), Some(4));
        assert_eq!(h.pop(), Some(8));
        assert_eq!(h.pop(), None);
        assert_eq!(h.pop(), None);
    }

    #[test]
    fn simple2() {
        let mut h = Heap::new();
        h.push(5);
        h.push(4);
        h.push(3);
        h.push(2);
        h.push(1);
        assert_eq!(h.pop(), Some(1));
        h.push(8);
        assert_eq!(h.pop(), Some(2));
        h.push(1);
        assert_eq!(h.pop(), Some(1));
        assert_eq!(h.pop(), Some(3));
        assert_eq!(h.pop(), Some(4));
        h.push(5);
        assert_eq!(h.pop(), Some(5));
        assert_eq!(h.pop(), Some(5));
        assert_eq!(h.pop(), Some(8));
    }

    #[test]
    fn remove() {
        let mut h = Heap::new();
        h.push(5);
        h.push(4);
        h.push(3);
        let two = h.push(2);
        h.push(1);
        assert_eq!(h.pop(), Some(1));
        assert_eq!(h.remove(two), 2);
        h.push(1);
        assert_eq!(h.pop(), Some(1));
        assert_eq!(h.pop(), Some(3));
    }

    fn vec2heap<T: Ord>(v: Vec<T>) -> Heap<T> {
        let mut h = Heap::new();
        for t in v {
            h.push(t);
        }
        return h;
    }

    #[test]
    fn test_peek_and_pop() {
        let data = vec![2, 4, 6, 2, 1, 8, 10, 3, 5, 7, 0, 9, 1];
        let mut sorted = data.clone();
        sorted.sort();
        let mut heap = vec2heap(data);
        while heap.peek().is_some() {
            assert_eq!(heap.peek().unwrap(), sorted.first().unwrap());
            assert_eq!(heap.pop().unwrap(), sorted.remove(0));
        }
    }

    #[test]
    fn test_push() {
        let mut heap = Heap::new();
        heap.push(-2);
        heap.push(-4);
        heap.push(-9);
        assert!(*heap.peek().unwrap() == -9);
        heap.push(-11);
        assert!(*heap.peek().unwrap() == -11);
        heap.push(-5);
        assert!(*heap.peek().unwrap() == -11);
        heap.push(-27);
        assert!(*heap.peek().unwrap() == -27);
        heap.push(-3);
        assert!(*heap.peek().unwrap() == -27);
        heap.push(-103);
        assert!(*heap.peek().unwrap() == -103);
    }

    fn check_to_vec(mut data: Vec<i32>) {
        let mut heap = Heap::new();
        for data in data.iter() {
            heap.push(*data);
        }
        data.sort();
        let mut v = Vec::new();
        while let Some(i) = heap.pop() {
            v.push(i);
        }
        assert_eq!(v, data);
    }

    #[test]
    fn test_to_vec() {
        check_to_vec(vec![]);
        check_to_vec(vec![5]);
        check_to_vec(vec![3, 2]);
        check_to_vec(vec![2, 3]);
        check_to_vec(vec![5, 1, 2]);
        check_to_vec(vec![1, 100, 2, 3]);
        check_to_vec(vec![1, 3, 5, 7, 9, 2, 4, 6, 8, 0]);
        check_to_vec(vec![2, 4, 6, 2, 1, 8, 10, 3, 5, 7, 0, 9, 1]);
        check_to_vec(vec![9, 11, 9, 9, 9, 9, 11, 2, 3, 4, 11, 9, 0, 0, 0, 0]);
        check_to_vec(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);
        check_to_vec(vec![10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]);
        check_to_vec(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 0, 0, 1, 2]);
        check_to_vec(vec![5, 4, 3, 2, 1, 5, 4, 3, 2, 1, 5, 4, 3, 2, 1]);
    }

    #[test]
    fn test_empty_pop() {
        let mut heap = Heap::<i32>::new();
        assert!(heap.pop().is_none());
    }

    #[test]
    fn test_empty_peek() {
        let empty = Heap::<i32>::new();
        assert!(empty.peek().is_none());
    }
}