1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! An interface/trait that provides write and read timestamps, reads observe
//! exactly their preceding writes.
//!
//! Specifically, all read timestamps will be greater or equal to all previously
//! reported completed write timestamps, and strictly less than all subsequently
//! emitted write timestamps.
use async_trait::async_trait;
use mz_ore::now::{EpochMillis, NowFn};
pub mod batching_oracle;
pub mod metrics;
pub mod postgres_oracle;
pub mod retry;
/// Timestamps used by writes in an Append command.
#[derive(Debug)]
pub struct WriteTimestamp<T = mz_repr::Timestamp> {
/// Timestamp that the write will take place on.
pub timestamp: T,
/// Timestamp to advance the appended table to.
pub advance_to: T,
}
/// A type that provides write and read timestamps, reads observe exactly their
/// preceding writes.
///
/// Specifically, all read timestamps will be greater or equal to all previously
/// reported completed write timestamps, and strictly less than all subsequently
/// emitted write timestamps.
#[async_trait]
pub trait TimestampOracle<T>: std::fmt::Debug {
/// Acquire a new timestamp for writing.
///
/// This timestamp will be strictly greater than all prior values of
/// `self.read_ts()` and `self.write_ts()`.
async fn write_ts(&self) -> WriteTimestamp<T>;
/// Peek the current write timestamp.
async fn peek_write_ts(&self) -> T;
/// Acquire a new timestamp for reading.
///
/// This timestamp will be greater or equal to all prior values of
/// `self.apply_write(write_ts)`, and strictly less than all subsequent
/// values of `self.write_ts()`.
async fn read_ts(&self) -> T;
/// Mark a write at `write_ts` completed.
///
/// All subsequent values of `self.read_ts()` will be greater or equal to
/// `write_ts`.
async fn apply_write(&self, lower_bound: T);
}
/// A [`NowFn`] that is generic over the timestamp.
///
/// The oracle operations work in terms of [`mz_repr::Timestamp`] and we could
/// work around it by bridging between the two in the oracle implementation
/// itself. This wrapper type makes that slightly easier, though.
pub trait GenericNowFn<T>: Clone + Send + Sync {
fn now(&self) -> T;
}
impl GenericNowFn<mz_repr::Timestamp> for NowFn<EpochMillis> {
fn now(&self) -> mz_repr::Timestamp {
(self)().into()
}
}
impl<T: Clone + Send + Sync> GenericNowFn<T> for NowFn<T> {
fn now(&self) -> T {
(self)()
}
}
// TODO: Gate this with a `#[cfg(test)]` again once the legacy catalog impl goes
// away.
pub mod tests {
use std::sync::Arc;
use futures::Future;
use mz_repr::Timestamp;
use super::*;
// These test methods are meant to be used by tests for timestamp oracle
// implementations.
pub async fn timestamp_oracle_impl_test<F, NewFn>(
mut new_fn: NewFn,
) -> Result<(), anyhow::Error>
where
F: Future<Output = Arc<dyn TimestampOracle<Timestamp> + Send + Sync>>,
NewFn: FnMut(String, NowFn, Timestamp) -> F,
{
// Normally, these could all be separate test methods but we bundle them
// all together so that it's easier to call this one test method from
// the implementation tests.
// Timestamp::MIN as initial timestamp
let timeline = uuid::Uuid::new_v4().to_string();
let oracle = new_fn(timeline, NowFn::from(|| 0u64), Timestamp::MIN).await;
assert_eq!(oracle.read_ts().await, Timestamp::MIN);
assert_eq!(oracle.peek_write_ts().await, Timestamp::MIN);
// Timestamp::MAX as initial timestamp
let timeline = uuid::Uuid::new_v4().to_string();
let oracle = new_fn(timeline, NowFn::from(|| 0u64), Timestamp::MAX).await;
assert_eq!(oracle.read_ts().await, Timestamp::MAX);
assert_eq!(oracle.peek_write_ts().await, Timestamp::MAX);
// Timestamp::MAX-1 from NowFn. We have to step back by one, otherwise
// `write_ts` can't determine the "advance_to" timestamp.
let timeline = uuid::Uuid::new_v4().to_string();
let oracle = new_fn(
timeline,
NowFn::from(|| Timestamp::MAX.step_back().expect("known to work").into()),
Timestamp::MIN,
)
.await;
// At first, read_ts and peek_write_ts stay where they are.
assert_eq!(oracle.read_ts().await, Timestamp::MIN);
assert_eq!(oracle.peek_write_ts().await, Timestamp::MIN);
assert_eq!(
oracle.write_ts().await.timestamp,
Timestamp::MAX.step_back().expect("known to work")
);
// Now peek_write_ts jump to MAX-1 but read_ts stays.
assert_eq!(oracle.read_ts().await, Timestamp::MIN);
assert_eq!(
oracle.peek_write_ts().await,
Timestamp::MAX.step_back().expect("known to work")
);
// Repeated write_ts calls advance the timestamp.
let timeline = uuid::Uuid::new_v4().to_string();
let oracle = new_fn(timeline, NowFn::from(|| 0u64), Timestamp::MIN).await;
assert_eq!(oracle.write_ts().await.timestamp, Timestamp::from(1u64));
assert_eq!(oracle.write_ts().await.timestamp, Timestamp::from(2u64));
// Repeated peek_write_ts calls _DON'T_ advance the timestamp.
let timeline = uuid::Uuid::new_v4().to_string();
let oracle = new_fn(timeline, NowFn::from(|| 0u64), Timestamp::MIN).await;
assert_eq!(oracle.peek_write_ts().await, Timestamp::from(0u64));
assert_eq!(oracle.peek_write_ts().await, Timestamp::from(0u64));
// Interesting scenarios around apply_write, from its rustdoc.
//
// Scenario #1:
// input <= r_0 <= w_0 -> r_1 = r_0 and w_1 = w_0
let timeline = uuid::Uuid::new_v4().to_string();
let oracle = new_fn(timeline, NowFn::from(|| 0u64), 10u64.into()).await;
oracle.apply_write(5u64.into()).await;
assert_eq!(oracle.peek_write_ts().await, Timestamp::from(10u64));
assert_eq!(oracle.read_ts().await, Timestamp::from(10u64));
// Scenario #2:
// r_0 <= input <= w_0 -> r_1 = input and w_1 = w_0
let timeline = uuid::Uuid::new_v4().to_string();
let oracle = new_fn(timeline, NowFn::from(|| 0u64), 0u64.into()).await;
// Have to bump the write_ts up manually:
assert_eq!(oracle.write_ts().await.timestamp, Timestamp::from(1u64));
assert_eq!(oracle.write_ts().await.timestamp, Timestamp::from(2u64));
assert_eq!(oracle.write_ts().await.timestamp, Timestamp::from(3u64));
assert_eq!(oracle.write_ts().await.timestamp, Timestamp::from(4u64));
oracle.apply_write(2u64.into()).await;
assert_eq!(oracle.peek_write_ts().await, Timestamp::from(4u64));
assert_eq!(oracle.read_ts().await, Timestamp::from(2u64));
// Scenario #3:
// r_0 <= w_0 <= input -> r_1 = input and w_1 = input
let timeline = uuid::Uuid::new_v4().to_string();
let oracle = new_fn(timeline, NowFn::from(|| 0u64), 0u64.into()).await;
oracle.apply_write(2u64.into()).await;
assert_eq!(oracle.peek_write_ts().await, Timestamp::from(2u64));
assert_eq!(oracle.read_ts().await, Timestamp::from(2u64));
oracle.apply_write(4u64.into()).await;
assert_eq!(oracle.peek_write_ts().await, Timestamp::from(4u64));
assert_eq!(oracle.read_ts().await, Timestamp::from(4u64));
Ok(())
}
}