lexical_parse_float/bigint.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
//! A simple big-integer type for slow path algorithms.
//!
//! This includes minimal stack vector for use in big-integer arithmetic.
#![doc(hidden)]
use core::{cmp, mem, ops, ptr, slice};
#[cfg(feature = "radix")]
use crate::float::ExtendedFloat80;
use crate::float::RawFloat;
use crate::limits::{u32_power_limit, u64_power_limit};
#[cfg(not(feature = "compact"))]
use crate::table::get_large_int_power;
/// Index an array without bounds checking.
///
/// # Safety
///
/// Safe if `index < array.len()`.
macro_rules! index_unchecked {
($x:ident[$i:expr]) => {
// SAFETY: safe if `index < array.len()`.
*$x.get_unchecked($i)
};
}
// BIGINT
// ------
/// Number of bits in a Bigint.
///
/// This needs to be at least the number of bits required to store
/// a Bigint, which is `log2(radix**digits)`.
/// ≅ 5600 for base-36, rounded-up.
#[cfg(feature = "radix")]
const BIGINT_BITS: usize = 6000;
/// ≅ 3600 for base-10, rounded-up.
#[cfg(not(feature = "radix"))]
const BIGINT_BITS: usize = 4000;
/// The number of limbs for the bigint.
const BIGINT_LIMBS: usize = BIGINT_BITS / Limb::BITS as usize;
/// Storage for a big integer type.
///
/// This is used for algorithms when we have a finite number of digits.
/// Specifically, it stores all the significant digits scaled to the
/// proper exponent, as an integral type, and then directly compares
/// these digits.
///
/// This requires us to store the number of significant bits, plus the
/// number of exponent bits (required) since we scale everything
/// to the same exponent.
#[derive(Clone, PartialEq, Eq)]
pub struct Bigint {
/// Significant digits for the float, stored in a big integer in LE order.
///
/// This is pretty much the same number of digits for any radix, since the
/// significant digits balances out the zeros from the exponent:
/// 1. Decimal is 1091 digits, 767 mantissa digits + 324 exponent zeros.
/// 2. Base 6 is 1097 digits, or 680 mantissa digits + 417 exponent
/// zeros.
/// 3. Base 36 is 1086 digits, or 877 mantissa digits + 209 exponent
/// zeros.
///
/// However, the number of bytes required is larger for large radixes:
/// for decimal, we need `log2(10**1091) ≅ 3600`, while for base 36
/// we need `log2(36**1086) ≅ 5600`. Since we use uninitialized data,
/// we avoid a major performance hit from the large buffer size.
pub data: StackVec<BIGINT_LIMBS>,
}
impl Bigint {
/// Construct a bigfloat representing 0.
#[inline(always)]
pub const fn new() -> Self {
Self {
data: StackVec::new(),
}
}
/// Construct a bigfloat from an integer.
#[inline(always)]
pub fn from_u32(value: u32) -> Self {
Self {
data: StackVec::from_u32(value),
}
}
/// Construct a bigfloat from an integer.
#[inline(always)]
pub fn from_u64(value: u64) -> Self {
Self {
data: StackVec::from_u64(value),
}
}
#[inline(always)]
pub fn hi64(&self) -> (u64, bool) {
self.data.hi64()
}
/// Multiply and assign as if by exponentiation by a power.
#[inline(always)]
pub fn pow(&mut self, base: u32, exp: u32) -> Option<()> {
let (odd, shift) = split_radix(base);
if odd != 0 {
pow::<BIGINT_LIMBS>(&mut self.data, odd, exp)?;
}
if shift != 0 {
shl(&mut self.data, (exp * shift) as usize)?;
}
Some(())
}
/// Calculate the bit-length of the big-integer.
#[inline(always)]
pub fn bit_length(&self) -> u32 {
bit_length(&self.data)
}
}
impl ops::MulAssign<&Bigint> for Bigint {
fn mul_assign(&mut self, rhs: &Bigint) {
self.data *= &rhs.data;
}
}
impl Default for Bigint {
fn default() -> Self {
Self::new()
}
}
/// Number of bits in a Bigfloat.
///
/// This needs to be at least the number of bits required to store
/// a Bigint, which is `F::EXPONENT_BIAS + F::BITS`.
/// Bias ≅ 1075, with 64 extra for the digits.
#[cfg(feature = "radix")]
const BIGFLOAT_BITS: usize = 1200;
/// The number of limbs for the Bigfloat.
#[cfg(feature = "radix")]
const BIGFLOAT_LIMBS: usize = BIGFLOAT_BITS / Limb::BITS as usize;
/// Storage for a big floating-point type.
///
/// This is used for the algorithm with a non-finite digit count, which creates
/// a representation of `b+h` and the float scaled into the range `[1, radix)`.
#[cfg(feature = "radix")]
#[derive(Clone, PartialEq, Eq)]
pub struct Bigfloat {
/// Significant digits for the float, stored in a big integer in LE order.
///
/// This only needs ~1075 bits for the exponent, and ~64 more for the
/// significant digits, since it's based on a theoretical representation
/// of the halfway point. This means we can have a significantly smaller
/// representation. The largest 64-bit exponent in magnitude is 2^1074,
/// which will produce the same number of bits in any radix.
pub data: StackVec<BIGFLOAT_LIMBS>,
/// Binary exponent for the float type.
pub exp: i32,
}
#[cfg(feature = "radix")]
impl Bigfloat {
/// Construct a bigfloat representing 0.
#[inline(always)]
pub const fn new() -> Self {
Self {
data: StackVec::new(),
exp: 0,
}
}
/// Construct a bigfloat from an extended-precision float.
#[inline(always)]
pub fn from_float(fp: ExtendedFloat80) -> Self {
Self {
data: StackVec::from_u64(fp.mant),
exp: fp.exp,
}
}
/// Construct a bigfloat from an integer.
#[inline(always)]
pub fn from_u32(value: u32) -> Self {
Self {
data: StackVec::from_u32(value),
exp: 0,
}
}
/// Construct a bigfloat from an integer.
#[inline(always)]
pub fn from_u64(value: u64) -> Self {
Self {
data: StackVec::from_u64(value),
exp: 0,
}
}
/// Multiply and assign as if by exponentiation by a power.
#[inline(always)]
pub fn pow(&mut self, base: u32, exp: u32) -> Option<()> {
let (odd, shift) = split_radix(base);
if odd != 0 {
pow::<BIGFLOAT_LIMBS>(&mut self.data, odd, exp)?;
}
if shift != 0 {
self.exp += (exp * shift) as i32;
}
Some(())
}
/// Shift-left the entire buffer n bits, where bits is less than the limb
/// size.
#[inline(always)]
pub fn shl_bits(&mut self, n: usize) -> Option<()> {
shl_bits(&mut self.data, n)
}
/// Shift-left the entire buffer n limbs.
#[inline(always)]
pub fn shl_limbs(&mut self, n: usize) -> Option<()> {
shl_limbs(&mut self.data, n)
}
/// Shift-left the entire buffer n bits.
#[inline(always)]
pub fn shl(&mut self, n: usize) -> Option<()> {
shl(&mut self.data, n)
}
/// Get number of leading zero bits in the storage.
/// Assumes the value is normalized.
#[inline(always)]
pub fn leading_zeros(&self) -> u32 {
leading_zeros(&self.data)
}
}
#[cfg(feature = "radix")]
impl ops::MulAssign<&Bigfloat> for Bigfloat {
#[inline(always)]
#[allow(clippy::suspicious_op_assign_impl)] // reason="intended increment"
#[allow(clippy::unwrap_used)] // reason="exceeding the bounds is a developer error"
fn mul_assign(&mut self, rhs: &Bigfloat) {
large_mul(&mut self.data, &rhs.data).unwrap();
self.exp += rhs.exp;
}
}
#[cfg(feature = "radix")]
impl Default for Bigfloat {
fn default() -> Self {
Self::new()
}
}
// VEC
// ---
/// Simple stack vector implementation.
#[derive(Clone)]
pub struct StackVec<const SIZE: usize> {
/// The raw buffer for the elements.
data: [mem::MaybeUninit<Limb>; SIZE],
/// The number of elements in the array (we never need more than
/// `u16::MAX`).
length: u16,
}
/// Extract the hi bits from the buffer.
///
/// NOTE: Modifying this to remove unsafety which we statically
/// check directly in every caller leads to ~20% degradation in
/// performance.
/// - `rview` - A reversed view over a slice.
/// - `fn` - The callback to extract the high bits.
macro_rules! hi {
(@1 $self:ident, $rview:ident, $t:ident, $fn:ident) => {{
$fn(unsafe { index_unchecked!($rview[0]) as $t })
}};
// # Safety
//
// Safe as long as the `stackvec.len() >= 2`.
(@2 $self:ident, $rview:ident, $t:ident, $fn:ident) => {{
let r0 = unsafe { index_unchecked!($rview[0]) as $t };
let r1 = unsafe { index_unchecked!($rview[1]) as $t };
$fn(r0, r1)
}};
// # Safety
//
// Safe as long as the `stackvec.len() >= 2`.
(@nonzero2 $self:ident, $rview:ident, $t:ident, $fn:ident) => {{
let (v, n) = hi!(@2 $self, $rview, $t, $fn);
(v, n || unsafe { nonzero($self, 2 ) })
}};
// # Safety
//
// Safe as long as the `stackvec.len() >= 3`.
(@3 $self:ident, $rview:ident, $t:ident, $fn:ident) => {{
let r0 = unsafe { index_unchecked!($rview[0]) as $t };
let r1 = unsafe { index_unchecked!($rview[1]) as $t };
let r2 = unsafe { index_unchecked!($rview[2]) as $t };
$fn(r0, r1, r2)
}};
// # Safety
//
// Safe as long as the `stackvec.len() >= 3`.
(@nonzero3 $self:ident, $rview:ident, $t:ident, $fn:ident) => {{
let (v, n) = hi!(@3 $self, $rview, $t, $fn);
(v, n || unsafe { nonzero($self, 3 ) })
}};
}
impl<const SIZE: usize> StackVec<SIZE> {
/// Construct an empty vector.
#[must_use]
#[inline(always)]
pub const fn new() -> Self {
Self {
length: 0,
data: [mem::MaybeUninit::uninit(); SIZE],
}
}
/// Get a mutable ptr to the current start of the big integer.
#[must_use]
#[inline(always)]
pub fn as_mut_ptr(&mut self) -> *mut Limb {
self.data.as_mut_ptr().cast::<Limb>()
}
/// Get a ptr to the current start of the big integer.
#[must_use]
#[inline(always)]
pub fn as_ptr(&self) -> *const Limb {
self.data.as_ptr().cast::<Limb>()
}
/// Construct a vector from an existing slice.
#[must_use]
#[inline(always)]
pub fn try_from(x: &[Limb]) -> Option<Self> {
let mut vec = Self::new();
vec.try_extend(x)?;
Some(vec)
}
/// Sets the length of a vector.
///
/// This will explicitly set the size of the vector, without actually
/// modifying its buffers, so it is up to the caller to ensure that the
/// vector is actually the specified size.
///
/// # Safety
///
/// Safe as long as `len` is less than `SIZE`.
#[inline(always)]
pub unsafe fn set_len(&mut self, len: usize) {
debug_assert!(len <= u16::MAX as usize, "indexing must fit in 16 bits");
debug_assert!(len <= SIZE, "cannot exceed our array bounds");
self.length = len as u16;
}
/// Get the number of elements stored in the vector.
#[must_use]
#[inline(always)]
pub const fn len(&self) -> usize {
self.length as usize
}
/// If the vector is empty.
#[must_use]
#[inline(always)]
pub const fn is_empty(&self) -> bool {
self.len() == 0
}
/// The number of items the vector can hold.
#[must_use]
#[inline(always)]
pub const fn capacity(&self) -> usize {
SIZE
}
/// Append an item to the vector, without bounds checking.
///
/// # Safety
///
/// Safe if `self.len() < self.capacity()`.
#[inline(always)]
unsafe fn push_unchecked(&mut self, value: Limb) {
debug_assert!(self.len() < self.capacity(), "cannot exceed our array bounds");
// SAFETY: safe, capacity is less than the current size.
unsafe {
let len = self.len();
let ptr = self.as_mut_ptr().add(len);
ptr.write(value);
self.length += 1;
}
}
/// Append an item to the vector.
#[inline(always)]
pub fn try_push(&mut self, value: Limb) -> Option<()> {
if self.len() < self.capacity() {
// SAFETY: safe, capacity is less than the current size.
unsafe { self.push_unchecked(value) };
Some(())
} else {
None
}
}
/// Remove an item from the end of a vector, without bounds checking.
///
/// # Safety
///
/// Safe if `self.len() > 0`.
#[inline(always)]
unsafe fn pop_unchecked(&mut self) -> Limb {
debug_assert!(!self.is_empty(), "cannot pop a value if none exists");
self.length -= 1;
// SAFETY: safe if `self.length > 0`.
// We have a trivial drop and copy, so this is safe.
unsafe { ptr::read(self.as_mut_ptr().add(self.len())) }
}
/// Remove an item from the end of the vector and return it, or None if
/// empty.
#[inline(always)]
pub fn pop(&mut self) -> Option<Limb> {
if self.is_empty() {
None
} else {
// SAFETY: safe, since `self.len() > 0`.
unsafe { Some(self.pop_unchecked()) }
}
}
/// Add items from a slice to the vector, without bounds checking.
///
/// # Safety
///
/// Safe if `self.len() + slc.len() <= self.capacity()`.
#[inline(always)]
unsafe fn extend_unchecked(&mut self, slc: &[Limb]) {
let index = self.len();
let new_len = index + slc.len();
debug_assert!(self.len() + slc.len() <= self.capacity(), "cannot exceed our array bounds");
let src = slc.as_ptr();
// SAFETY: safe if `self.len() + slc.len() <= self.capacity()`.
unsafe {
let dst = self.as_mut_ptr().add(index);
ptr::copy_nonoverlapping(src, dst, slc.len());
self.set_len(new_len);
}
}
/// Copy elements from a slice and append them to the vector.
#[inline(always)]
pub fn try_extend(&mut self, slc: &[Limb]) -> Option<()> {
if self.len() + slc.len() <= self.capacity() {
// SAFETY: safe, since `self.len() + slc.len() <= self.capacity()`.
unsafe { self.extend_unchecked(slc) };
Some(())
} else {
None
}
}
/// Truncate vector to new length, dropping any items after `len`.
///
/// # Safety
///
/// Safe as long as `len <= self.capacity()`.
unsafe fn truncate_unchecked(&mut self, len: usize) {
debug_assert!(len <= self.capacity(), "cannot exceed our array bounds");
self.length = len as u16;
}
/// Resize the buffer, without bounds checking.
///
/// # Safety
///
/// Safe as long as `len <= self.capacity()`.
#[inline(always)]
pub unsafe fn resize_unchecked(&mut self, len: usize, value: Limb) {
debug_assert!(len <= self.capacity(), "cannot exceed our array bounds");
let old_len = self.len();
if len > old_len {
// We have a trivial drop, so there's no worry here.
// Just, don't set the length until all values have been written,
// so we don't accidentally read uninitialized memory.
let count = len - old_len;
for index in 0..count {
// SAFETY: safe if `len < self.capacity()`.
unsafe {
let dst = self.as_mut_ptr().add(old_len + index);
ptr::write(dst, value);
}
}
self.length = len as u16;
} else {
// SAFETY: safe since `len < self.len()`.
unsafe { self.truncate_unchecked(len) };
}
}
/// Try to resize the buffer.
///
/// If the new length is smaller than the current length, truncate
/// the input. If it's larger, then append elements to the buffer.
#[inline(always)]
pub fn try_resize(&mut self, len: usize, value: Limb) -> Option<()> {
if len > self.capacity() {
None
} else {
// SAFETY: safe, since `len <= self.capacity()`.
unsafe { self.resize_unchecked(len, value) };
Some(())
}
}
// HI
/// Get the high 16 bits from the vector.
#[inline(always)]
pub fn hi16(&self) -> (u16, bool) {
let rview = self.rview();
// SAFETY: the buffer must be at least length bytes long which we check on the
// match.
unsafe {
match rview.len() {
0 => (0, false),
1 if Limb::BITS == 32 => hi!(@1 self, rview, u32, u32_to_hi16_1),
1 => hi!(@1 self, rview, u64, u64_to_hi16_1),
_ if Limb::BITS == 32 => hi!(@nonzero2 self, rview, u32, u32_to_hi16_2),
_ => hi!(@nonzero2 self, rview, u64, u64_to_hi16_2),
}
}
}
/// Get the high 32 bits from the vector.
#[inline(always)]
pub fn hi32(&self) -> (u32, bool) {
let rview = self.rview();
// SAFETY: the buffer must be at least length bytes long which we check on the
// match.
unsafe {
match rview.len() {
0 => (0, false),
1 if Limb::BITS == 32 => hi!(@1 self, rview, u32, u32_to_hi32_1),
1 => hi!(@1 self, rview, u64, u64_to_hi32_1),
_ if Limb::BITS == 32 => hi!(@nonzero2 self, rview, u32, u32_to_hi32_2),
_ => hi!(@nonzero2 self, rview, u64, u64_to_hi32_2),
}
}
}
/// Get the high 64 bits from the vector.
#[inline(always)]
pub fn hi64(&self) -> (u64, bool) {
let rview = self.rview();
// SAFETY: the buffer must be at least length bytes long which we check on the
// match.
unsafe {
match rview.len() {
0 => (0, false),
1 if Limb::BITS == 32 => hi!(@1 self, rview, u32, u32_to_hi64_1),
1 => hi!(@1 self, rview, u64, u64_to_hi64_1),
2 if Limb::BITS == 32 => hi!(@2 self, rview, u32, u32_to_hi64_2),
2 => hi!(@2 self, rview, u64, u64_to_hi64_2),
_ if Limb::BITS == 32 => hi!(@nonzero3 self, rview, u32, u32_to_hi64_3),
_ => hi!(@nonzero2 self, rview, u64, u64_to_hi64_2),
}
}
}
// FROM
/// Create `StackVec` from u16 value.
#[must_use]
#[inline(always)]
pub fn from_u16(x: u16) -> Self {
let mut vec = Self::new();
assert!(1 <= vec.capacity(), "cannot exceed our array bounds");
_ = vec.try_push(x as Limb);
vec.normalize();
vec
}
/// Create `StackVec` from u32 value.
#[must_use]
#[inline(always)]
pub fn from_u32(x: u32) -> Self {
let mut vec = Self::new();
debug_assert!(1 <= vec.capacity(), "cannot exceed our array bounds");
assert!(1 <= SIZE, "cannot exceed our array bounds");
_ = vec.try_push(x as Limb);
vec.normalize();
vec
}
/// Create `StackVec` from u64 value.
#[must_use]
#[inline(always)]
pub fn from_u64(x: u64) -> Self {
let mut vec = Self::new();
debug_assert!(2 <= vec.capacity(), "cannot exceed our array bounds");
assert!(2 <= SIZE, "cannot exceed our array bounds");
if Limb::BITS == 32 {
_ = vec.try_push(x as Limb);
_ = vec.try_push((x >> 32) as Limb);
} else {
_ = vec.try_push(x as Limb);
}
vec.normalize();
vec
}
// INDEX
/// Create a reverse view of the vector for indexing.
#[must_use]
#[inline(always)]
pub fn rview(&self) -> ReverseView<Limb> {
ReverseView {
inner: self,
}
}
// MATH
/// Normalize the integer, so any leading zero values are removed.
#[inline(always)]
pub fn normalize(&mut self) {
// We don't care if this wraps: the index is bounds-checked.
while let Some(&value) = self.get(self.len().wrapping_sub(1)) {
if value == 0 {
self.length -= 1;
} else {
break;
}
}
}
/// Get if the big integer is normalized.
#[must_use]
#[inline(always)]
pub fn is_normalized(&self) -> bool {
// We don't care if this wraps: the index is bounds-checked.
self.get(self.len().wrapping_sub(1)) != Some(&0)
}
/// Calculate the fast quotient for a single limb-bit quotient.
///
/// This requires a non-normalized divisor, where there at least
/// `integral_binary_factor` 0 bits set, to ensure at maximum a single
/// digit will be produced for a single base.
///
/// Warning: This is not a general-purpose division algorithm,
/// it is highly specialized for peeling off singular digits.
#[inline(always)]
#[cfg(feature = "radix")]
pub fn quorem(&mut self, y: &Self) -> Limb {
large_quorem(self, y)
}
/// `AddAssign` small integer.
#[inline(always)]
pub fn add_small(&mut self, y: Limb) -> Option<()> {
small_add(self, y)
}
/// `MulAssign` small integer.
#[inline(always)]
pub fn mul_small(&mut self, y: Limb) -> Option<()> {
small_mul(self, y)
}
}
impl<const SIZE: usize> PartialEq for StackVec<SIZE> {
#[inline(always)]
#[allow(clippy::op_ref)] // reason="need to convert to slice for equality"
fn eq(&self, other: &Self) -> bool {
use core::ops::Deref;
self.len() == other.len() && self.deref() == other.deref()
}
}
impl<const SIZE: usize> Eq for StackVec<SIZE> {
}
impl<const SIZE: usize> cmp::PartialOrd for StackVec<SIZE> {
#[inline(always)]
fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
Some(self.cmp(other))
}
}
impl<const SIZE: usize> cmp::Ord for StackVec<SIZE> {
#[inline(always)]
fn cmp(&self, other: &Self) -> cmp::Ordering {
compare(self, other)
}
}
impl<const SIZE: usize> ops::Deref for StackVec<SIZE> {
type Target = [Limb];
#[inline(always)]
fn deref(&self) -> &[Limb] {
debug_assert!(self.len() <= self.capacity(), "cannot exceed our array bounds");
// SAFETY: safe since `self.data[..self.len()]` must be initialized
// and `self.len() <= self.capacity()`.
unsafe {
let ptr = self.data.as_ptr() as *const Limb;
slice::from_raw_parts(ptr, self.len())
}
}
}
impl<const SIZE: usize> ops::DerefMut for StackVec<SIZE> {
#[inline(always)]
fn deref_mut(&mut self) -> &mut [Limb] {
debug_assert!(self.len() <= self.capacity(), "cannot exceed our array bounds");
// SAFETY: safe since `self.data[..self.len()]` must be initialized
// and `self.len() <= self.capacity()`.
unsafe {
let ptr = self.data.as_mut_ptr() as *mut Limb;
slice::from_raw_parts_mut(ptr, self.len())
}
}
}
impl<const SIZE: usize> ops::MulAssign<&[Limb]> for StackVec<SIZE> {
#[inline(always)]
#[allow(clippy::unwrap_used)] // reason="exceeding the bounds is a developer error"
fn mul_assign(&mut self, rhs: &[Limb]) {
large_mul(self, rhs).unwrap();
}
}
impl<const SIZE: usize> Default for StackVec<SIZE> {
fn default() -> Self {
Self::new()
}
}
// REVERSE VIEW
/// Reverse, immutable view of a sequence.
pub struct ReverseView<'a, T: 'a> {
inner: &'a [T],
}
impl<'a, T: 'a> ReverseView<'a, T> {
/// Get a reference to a value, without bounds checking.
///
/// # Safety
///
/// Safe if forward indexing would be safe for the type,
/// or `index < self.inner.len()`.
#[inline(always)]
pub unsafe fn get_unchecked(&self, index: usize) -> &T {
debug_assert!(index < self.inner.len(), "cannot exceed our array bounds");
let len = self.inner.len();
// SAFETY: Safe as long as the index < length, so len - index - 1 >= 0 and <=
// len.
unsafe { self.inner.get_unchecked(len - index - 1) }
}
/// Get a reference to a value.
#[inline(always)]
pub fn get(&self, index: usize) -> Option<&T> {
let len = self.inner.len();
// We don't care if this wraps: the index is bounds-checked.
self.inner.get(len.wrapping_sub(index + 1))
}
/// Get the length of the inner buffer.
#[inline(always)]
pub const fn len(&self) -> usize {
self.inner.len()
}
/// If the vector is empty.
#[inline(always)]
pub const fn is_empty(&self) -> bool {
self.inner.is_empty()
}
}
impl<T> ops::Index<usize> for ReverseView<'_, T> {
type Output = T;
#[inline(always)]
fn index(&self, index: usize) -> &T {
let len = self.inner.len();
&(*self.inner)[len - index - 1]
}
}
// HI
// --
/// Check if any of the remaining bits are non-zero.
///
/// # Safety
///
/// Safe as long as `rindex <= x.len()`. This is only called
/// where the type size is directly from the caller, and removing
/// it leads to a ~20% degradation in performance.
#[must_use]
#[inline(always)]
pub unsafe fn nonzero(x: &[Limb], rindex: usize) -> bool {
debug_assert!(rindex <= x.len(), "cannot exceed our array bounds");
let len = x.len();
// SAFETY: safe if `rindex < x.len()`, since then `x.len() - rindex < x.len()`.
let slc = unsafe { &index_unchecked!(x[..len - rindex]) };
slc.iter().rev().any(|&x| x != 0)
}
// These return the high X bits and if the bits were truncated.
/// Shift 32-bit integer to high 16-bits.
#[must_use]
#[inline(always)]
pub const fn u32_to_hi16_1(r0: u32) -> (u16, bool) {
let r0 = u32_to_hi32_1(r0).0;
((r0 >> 16) as u16, r0 as u16 != 0)
}
/// Shift 2 32-bit integers to high 16-bits.
#[must_use]
#[inline(always)]
pub const fn u32_to_hi16_2(r0: u32, r1: u32) -> (u16, bool) {
let (r0, n) = u32_to_hi32_2(r0, r1);
((r0 >> 16) as u16, n || r0 as u16 != 0)
}
/// Shift 32-bit integer to high 32-bits.
#[must_use]
#[inline(always)]
pub const fn u32_to_hi32_1(r0: u32) -> (u32, bool) {
let ls = r0.leading_zeros();
(r0 << ls, false)
}
/// Shift 2 32-bit integers to high 32-bits.
#[must_use]
#[inline(always)]
pub const fn u32_to_hi32_2(r0: u32, r1: u32) -> (u32, bool) {
let ls = r0.leading_zeros();
let rs = 32 - ls;
let v = match ls {
0 => r0,
_ => (r0 << ls) | (r1 >> rs),
};
let n = r1 << ls != 0;
(v, n)
}
/// Shift 32-bit integer to high 64-bits.
#[must_use]
#[inline(always)]
pub const fn u32_to_hi64_1(r0: u32) -> (u64, bool) {
u64_to_hi64_1(r0 as u64)
}
/// Shift 2 32-bit integers to high 64-bits.
#[must_use]
#[inline(always)]
pub const fn u32_to_hi64_2(r0: u32, r1: u32) -> (u64, bool) {
let r0 = (r0 as u64) << 32;
let r1 = r1 as u64;
u64_to_hi64_1(r0 | r1)
}
/// Shift 3 32-bit integers to high 64-bits.
#[must_use]
#[inline(always)]
pub const fn u32_to_hi64_3(r0: u32, r1: u32, r2: u32) -> (u64, bool) {
let r0 = r0 as u64;
let r1 = (r1 as u64) << 32;
let r2 = r2 as u64;
u64_to_hi64_2(r0, r1 | r2)
}
/// Shift 64-bit integer to high 16-bits.
#[must_use]
#[inline(always)]
pub const fn u64_to_hi16_1(r0: u64) -> (u16, bool) {
let r0 = u64_to_hi64_1(r0).0;
((r0 >> 48) as u16, r0 as u16 != 0)
}
/// Shift 2 64-bit integers to high 16-bits.
#[must_use]
#[inline(always)]
pub const fn u64_to_hi16_2(r0: u64, r1: u64) -> (u16, bool) {
let (r0, n) = u64_to_hi64_2(r0, r1);
((r0 >> 48) as u16, n || r0 as u16 != 0)
}
/// Shift 64-bit integer to high 32-bits.
#[must_use]
#[inline(always)]
pub const fn u64_to_hi32_1(r0: u64) -> (u32, bool) {
let r0 = u64_to_hi64_1(r0).0;
((r0 >> 32) as u32, r0 as u32 != 0)
}
/// Shift 2 64-bit integers to high 32-bits.
#[must_use]
#[inline(always)]
pub const fn u64_to_hi32_2(r0: u64, r1: u64) -> (u32, bool) {
let (r0, n) = u64_to_hi64_2(r0, r1);
((r0 >> 32) as u32, n || r0 as u32 != 0)
}
/// Shift 64-bit integer to high 64-bits.
#[must_use]
#[inline(always)]
pub const fn u64_to_hi64_1(r0: u64) -> (u64, bool) {
let ls = r0.leading_zeros();
(r0 << ls, false)
}
/// Shift 2 64-bit integers to high 64-bits.
#[must_use]
#[inline(always)]
pub const fn u64_to_hi64_2(r0: u64, r1: u64) -> (u64, bool) {
let ls = r0.leading_zeros();
let rs = 64 - ls;
let v = match ls {
0 => r0,
_ => (r0 << ls) | (r1 >> rs),
};
let n = r1 << ls != 0;
(v, n)
}
// POWERS
// ------
/// MulAssign by a power.
///
/// Theoretically...
///
/// Use an exponentiation by squaring method, since it reduces the time
/// complexity of the multiplication to ~`O(log(n))` for the squaring,
/// and `O(n*m)` for the result. Since `m` is typically a lower-order
/// factor, this significantly reduces the number of multiplications
/// we need to do. Iteratively multiplying by small powers follows
/// the nth triangular number series, which scales as `O(p^2)`, but
/// where `p` is `n+m`. In short, it scales very poorly.
///
/// Practically....
///
/// Exponentiation by Squaring:
/// running 2 tests
/// test bigcomp_f32_lexical ... bench: 1,018 ns/iter (+/- 78)
/// test bigcomp_f64_lexical ... bench: 3,639 ns/iter (+/- 1,007)
///
/// Exponentiation by Iterative Small Powers:
/// running 2 tests
/// test bigcomp_f32_lexical ... bench: 518 ns/iter (+/- 31)
/// test bigcomp_f64_lexical ... bench: 583 ns/iter (+/- 47)
///
/// Exponentiation by Iterative Large Powers (of 2):
/// running 2 tests
/// test bigcomp_f32_lexical ... bench: 671 ns/iter (+/- 31)
/// test bigcomp_f64_lexical ... bench: 1,394 ns/iter (+/- 47)
///
/// The following benchmarks were run on `1 * 5^300`, using native `pow`,
/// a version with only small powers, and one with pre-computed powers
/// of `5^(3 * max_exp)`, rather than `5^(5 * max_exp)`.
///
/// However, using large powers is crucial for good performance for higher
/// powers.
/// pow/default time: [426.20 ns 427.96 ns 429.89 ns]
/// pow/small time: [2.9270 us 2.9411 us 2.9565 us]
/// pow/large:3 time: [838.51 ns 842.21 ns 846.27 ns]
///
/// Even using worst-case scenarios, exponentiation by squaring is
/// significantly slower for our workloads. Just multiply by small powers,
/// in simple cases, and use pre-calculated large powers in other cases.
///
/// Furthermore, using sufficiently big large powers is also crucial for
/// performance. This is a trade-off of binary size and performance, and
/// using a single value at ~`5^(5 * max_exp)` seems optimal.
#[allow(clippy::doc_markdown)] // reason="not attempted to be referencing items"
#[allow(clippy::missing_inline_in_public_items)] // reason="only public for testing"
pub fn pow<const SIZE: usize>(x: &mut StackVec<SIZE>, base: u32, mut exp: u32) -> Option<()> {
// Minimize the number of iterations for large exponents: just
// do a few steps with a large powers.
#[cfg(not(feature = "compact"))]
{
let (large, step) = get_large_int_power(base);
while exp >= step {
large_mul(x, large)?;
exp -= step;
}
}
// Now use our pre-computed small powers iteratively.
let small_step = if Limb::BITS == 32 {
u32_power_limit(base)
} else {
u64_power_limit(base)
};
let max_native = (base as Limb).pow(small_step);
while exp >= small_step {
small_mul(x, max_native)?;
exp -= small_step;
}
if exp != 0 {
let small_power = f64::int_pow_fast_path(exp as usize, base);
small_mul(x, small_power as Limb)?;
}
Some(())
}
// SCALAR
// ------
/// Add two small integers and return the resulting value and if overflow
/// happens.
#[must_use]
#[inline(always)]
pub const fn scalar_add(x: Limb, y: Limb) -> (Limb, bool) {
x.overflowing_add(y)
}
/// Multiply two small integers (with carry) (and return the overflow
/// contribution).
///
/// Returns the (low, high) components.
#[must_use]
#[inline(always)]
pub const fn scalar_mul(x: Limb, y: Limb, carry: Limb) -> (Limb, Limb) {
// Cannot overflow, as long as wide is 2x as wide. This is because
// the following is always true:
// `Wide::MAX - (Narrow::MAX * Narrow::MAX) >= Narrow::MAX`
let z: Wide = (x as Wide) * (y as Wide) + (carry as Wide);
(z as Limb, (z >> Limb::BITS) as Limb)
}
// SMALL
// -----
/// Add small integer to bigint starting from offset.
#[inline(always)]
pub fn small_add_from<const SIZE: usize>(
x: &mut StackVec<SIZE>,
y: Limb,
start: usize,
) -> Option<()> {
let mut index = start;
let mut carry = y;
while carry != 0 && index < x.len() {
// NOTE: Don't need unsafety because the compiler will optimize it out.
let result = scalar_add(x[index], carry);
x[index] = result.0;
carry = result.1 as Limb;
index += 1;
}
// If we carried past all the elements, add to the end of the buffer.
if carry != 0 {
x.try_push(carry)?;
}
Some(())
}
/// Add small integer to bigint.
#[inline(always)]
pub fn small_add<const SIZE: usize>(x: &mut StackVec<SIZE>, y: Limb) -> Option<()> {
small_add_from(x, y, 0)
}
/// Multiply bigint by small integer.
#[inline(always)]
pub fn small_mul<const SIZE: usize>(x: &mut StackVec<SIZE>, y: Limb) -> Option<()> {
let mut carry = 0;
for xi in x.iter_mut() {
let result = scalar_mul(*xi, y, carry);
*xi = result.0;
carry = result.1;
}
// If we carried past all the elements, add to the end of the buffer.
if carry != 0 {
x.try_push(carry)?;
}
Some(())
}
// LARGE
// -----
/// Add bigint to bigint starting from offset.
#[allow(clippy::missing_inline_in_public_items)] // reason="only public for testing"
pub fn large_add_from<const SIZE: usize>(
x: &mut StackVec<SIZE>,
y: &[Limb],
start: usize,
) -> Option<()> {
// The effective `x` buffer is from `xstart..x.len()`, so we need to treat
// that as the current range. If the effective `y` buffer is longer, need
// to resize to that, + the start index.
if y.len() > x.len().saturating_sub(start) {
// Ensure we panic if we can't extend the buffer.
// This avoids any unsafe behavior afterwards.
x.try_resize(y.len() + start, 0)?;
}
// Iteratively add elements from `y` to `x`.
let mut carry = false;
for index in 0..y.len() {
let xi = &mut x[start + index];
let yi = y[index];
// Only one op of the two ops can overflow, since we added at max
// `Limb::max_value() + Limb::max_value()`. Add the previous carry,
// and store the current carry for the next.
let result = scalar_add(*xi, yi);
*xi = result.0;
let mut tmp = result.1;
if carry {
let result = scalar_add(*xi, 1);
*xi = result.0;
tmp |= result.1;
}
carry = tmp;
}
// Handle overflow.
if carry {
small_add_from(x, 1, y.len() + start)?;
}
Some(())
}
/// Add bigint to bigint.
#[inline(always)]
pub fn large_add<const SIZE: usize>(x: &mut StackVec<SIZE>, y: &[Limb]) -> Option<()> {
large_add_from(x, y, 0)
}
/// Grade-school multiplication algorithm.
///
/// Slow, naive algorithm, using limb-bit bases and just shifting left for
/// each iteration. This could be optimized with numerous other algorithms,
/// but it's extremely simple, and works in O(n*m) time, which is fine
/// by me. Each iteration, of which there are `m` iterations, requires
/// `n` multiplications, and `n` additions, or grade-school multiplication.
///
/// Don't use Karatsuba multiplication, since out implementation seems to
/// be slower asymptotically, which is likely just due to the small sizes
/// we deal with here. For example, running on the following data:
///
/// ```text
/// const SMALL_X: &[u32] = &[
/// 766857581, 3588187092, 1583923090, 2204542082, 1564708913, 2695310100, 3676050286,
/// 1022770393, 468044626, 446028186
/// ];
/// const SMALL_Y: &[u32] = &[
/// 3945492125, 3250752032, 1282554898, 1708742809, 1131807209, 3171663979, 1353276095,
/// 1678845844, 2373924447, 3640713171
/// ];
/// const LARGE_X: &[u32] = &[
/// 3647536243, 2836434412, 2154401029, 1297917894, 137240595, 790694805, 2260404854,
/// 3872698172, 690585094, 99641546, 3510774932, 1672049983, 2313458559, 2017623719,
/// 638180197, 1140936565, 1787190494, 1797420655, 14113450, 2350476485, 3052941684,
/// 1993594787, 2901001571, 4156930025, 1248016552, 848099908, 2660577483, 4030871206,
/// 692169593, 2835966319, 1781364505, 4266390061, 1813581655, 4210899844, 2137005290,
/// 2346701569, 3715571980, 3386325356, 1251725092, 2267270902, 474686922, 2712200426,
/// 197581715, 3087636290, 1379224439, 1258285015, 3230794403, 2759309199, 1494932094,
/// 326310242
/// ];
/// const LARGE_Y: &[u32] = &[
/// 1574249566, 868970575, 76716509, 3198027972, 1541766986, 1095120699, 3891610505,
/// 2322545818, 1677345138, 865101357, 2650232883, 2831881215, 3985005565, 2294283760,
/// 3468161605, 393539559, 3665153349, 1494067812, 106699483, 2596454134, 797235106,
/// 705031740, 1209732933, 2732145769, 4122429072, 141002534, 790195010, 4014829800,
/// 1303930792, 3649568494, 308065964, 1233648836, 2807326116, 79326486, 1262500691,
/// 621809229, 2258109428, 3819258501, 171115668, 1139491184, 2979680603, 1333372297,
/// 1657496603, 2790845317, 4090236532, 4220374789, 601876604, 1828177209, 2372228171,
/// 2247372529
/// ];
/// ```
///
/// We get the following results:
///
/// ```text
/// mul/small:long time: [220.23 ns 221.47 ns 222.81 ns]
/// Found 4 outliers among 100 measurements (4.00%)
/// 2 (2.00%) high mild
/// 2 (2.00%) high severe
/// mul/small:karatsuba time: [233.88 ns 234.63 ns 235.44 ns]
/// Found 11 outliers among 100 measurements (11.00%)
/// 8 (8.00%) high mild
/// 3 (3.00%) high severe
/// mul/large:long time: [1.9365 us 1.9455 us 1.9558 us]
/// Found 12 outliers among 100 measurements (12.00%)
/// 7 (7.00%) high mild
/// 5 (5.00%) high severe
/// mul/large:karatsuba time: [4.4250 us 4.4515 us 4.4812 us]
/// ```
///
/// In short, Karatsuba multiplication is never worthwhile for out use-case.
#[must_use]
#[allow(clippy::needless_range_loop)] // reason="required for performance, see benches"
#[allow(clippy::missing_inline_in_public_items)] // reason="only public for testing"
pub fn long_mul<const SIZE: usize>(x: &[Limb], y: &[Limb]) -> Option<StackVec<SIZE>> {
// Using the immutable value, multiply by all the scalars in y, using
// the algorithm defined above. Use a single buffer to avoid
// frequent reallocations. Handle the first case to avoid a redundant
// addition, since we know y.len() >= 1.
let mut z = StackVec::<SIZE>::try_from(x)?;
if let Some(&y0) = y.first() {
small_mul(&mut z, y0)?;
// NOTE: Don't use enumerate/skip since it's slow.
for index in 1..y.len() {
let yi = y[index];
if yi != 0 {
let mut zi = StackVec::<SIZE>::try_from(x)?;
small_mul(&mut zi, yi)?;
large_add_from(&mut z, &zi, index)?;
}
}
}
z.normalize();
Some(z)
}
/// Multiply bigint by bigint using grade-school multiplication algorithm.
#[inline(always)]
pub fn large_mul<const SIZE: usize>(x: &mut StackVec<SIZE>, y: &[Limb]) -> Option<()> {
// Karatsuba multiplication never makes sense, so just use grade school
// multiplication.
if y.len() == 1 {
// SAFETY: safe since `y.len() == 1`.
// NOTE: The compiler does not seem to optimize this out correctly.
small_mul(x, unsafe { index_unchecked!(y[0]) })?;
} else {
*x = long_mul(y, x)?;
}
Some(())
}
/// Emit a single digit for the quotient and store the remainder in-place.
///
/// An extremely efficient division algorithm for small quotients, requiring
/// you to know the full range of the quotient prior to use. For example,
/// with a quotient that can range from [0, 10), you must have 4 leading
/// zeros in the divisor, so we can use a single-limb division to get
/// an accurate estimate of the quotient. Since we always underestimate
/// the quotient, we can add 1 and then emit the digit.
///
/// Requires a non-normalized denominator, with at least [1-6] leading
/// zeros, depending on the base (for example, 1 for base2, 6 for base36).
///
/// Adapted from David M. Gay's dtoa, and therefore under an MIT license:
/// www.netlib.org/fp/dtoa.c
#[cfg(feature = "radix")]
#[allow(clippy::many_single_char_names)] // reason = "mathematical names of variables"
pub fn large_quorem<const SIZE: usize>(x: &mut StackVec<SIZE>, y: &[Limb]) -> Limb {
// If we have an empty divisor, error out early.
assert!(!y.is_empty(), "large_quorem:: division by zero error.");
assert!(x.len() <= y.len(), "large_quorem:: oversized numerator.");
let mask = Limb::MAX as Wide;
// Numerator is smaller the denominator, quotient always 0.
if x.len() < y.len() {
return 0;
}
// Calculate our initial estimate for q.
let xm_1 = x[x.len() - 1];
let yn_1 = y[y.len() - 1];
let mut q = xm_1 / (yn_1 + 1);
// Need to calculate the remainder if we don't have a 0 quotient.
if q != 0 {
let mut borrow: Wide = 0;
let mut carry: Wide = 0;
for j in 0..x.len() {
let yj = y[j] as Wide;
let p = yj * q as Wide + carry;
carry = p >> Limb::BITS;
let xj = x[j] as Wide;
let t = xj.wrapping_sub(p & mask).wrapping_sub(borrow);
borrow = (t >> Limb::BITS) & 1;
x[j] = t as Limb;
}
x.normalize();
}
// Check if we under-estimated x.
if compare(x, y) != cmp::Ordering::Less {
q += 1;
let mut borrow: Wide = 0;
let mut carry: Wide = 0;
for j in 0..x.len() {
let yj = y[j] as Wide;
let p = yj + carry;
carry = p >> Limb::BITS;
let xj = x[j] as Wide;
let t = xj.wrapping_sub(p & mask).wrapping_sub(borrow);
borrow = (t >> Limb::BITS) & 1;
x[j] = t as Limb;
}
x.normalize();
}
q
}
// COMPARE
// -------
/// Compare `x` to `y`, in little-endian order.
#[must_use]
#[inline(always)]
pub fn compare(x: &[Limb], y: &[Limb]) -> cmp::Ordering {
match x.len().cmp(&y.len()) {
cmp::Ordering::Equal => {
let iter = x.iter().rev().zip(y.iter().rev());
for (&xi, yi) in iter {
match xi.cmp(yi) {
cmp::Ordering::Equal => (),
ord => return ord,
}
}
// Equal case.
cmp::Ordering::Equal
},
ord => ord,
}
}
// SHIFT
// -----
/// Shift-left `n` bits inside a buffer.
#[inline(always)]
pub fn shl_bits<const SIZE: usize>(x: &mut StackVec<SIZE>, n: usize) -> Option<()> {
debug_assert!(n != 0, "cannot shift left by 0 bits");
// Internally, for each item, we shift left by n, and add the previous
// right shifted limb-bits.
// For example, we transform (for u8) shifted left 2, to:
// b10100100 b01000010
// b10 b10010001 b00001000
debug_assert!(n < Limb::BITS as usize, "cannot shift left more bits than in our limb");
let rshift = Limb::BITS as usize - n;
let lshift = n;
let mut prev: Limb = 0;
for xi in x.iter_mut() {
let tmp = *xi;
*xi <<= lshift;
*xi |= prev >> rshift;
prev = tmp;
}
// Always push the carry, even if it creates a non-normal result.
let carry = prev >> rshift;
if carry != 0 {
x.try_push(carry)?;
}
Some(())
}
/// Shift-left `n` limbs inside a buffer.
#[inline(always)]
pub fn shl_limbs<const SIZE: usize>(x: &mut StackVec<SIZE>, n: usize) -> Option<()> {
debug_assert!(n != 0, "cannot shift left by 0 bits");
if n + x.len() > x.capacity() {
None
} else if !x.is_empty() {
let len = n + x.len();
let x_len = x.len();
let ptr = x.as_mut_ptr();
let src = ptr;
// SAFETY: since x is not empty, and `x.len() + n <= x.capacity()`.
unsafe {
// Move the elements.
let dst = ptr.add(n);
ptr::copy(src, dst, x_len);
// Write our 0s.
ptr::write_bytes(ptr, 0, n);
x.set_len(len);
}
Some(())
} else {
Some(())
}
}
/// Shift-left buffer by n bits.
#[must_use]
#[inline(always)]
pub fn shl<const SIZE: usize>(x: &mut StackVec<SIZE>, n: usize) -> Option<()> {
let rem = n % Limb::BITS as usize;
let div = n / Limb::BITS as usize;
if rem != 0 {
shl_bits(x, rem)?;
}
if div != 0 {
shl_limbs(x, div)?;
}
Some(())
}
/// Get number of leading zero bits in the storage.
#[must_use]
#[inline(always)]
pub fn leading_zeros(x: &[Limb]) -> u32 {
let length = x.len();
// `wrapping_sub` is fine, since it'll just return None.
if let Some(&value) = x.get(length.wrapping_sub(1)) {
value.leading_zeros()
} else {
0
}
}
/// Calculate the bit-length of the big-integer.
#[must_use]
#[inline(always)]
pub fn bit_length(x: &[Limb]) -> u32 {
let nlz = leading_zeros(x);
Limb::BITS * x.len() as u32 - nlz
}
// RADIX
// -----
/// Get the base, odd radix, and the power-of-two for the type.
#[must_use]
#[inline(always)]
#[cfg(feature = "radix")]
pub const fn split_radix(radix: u32) -> (u32, u32) {
match radix {
2 => (0, 1),
3 => (3, 0),
4 => (0, 2),
5 => (5, 0),
6 => (3, 1),
7 => (7, 0),
8 => (0, 3),
9 => (9, 0),
10 => (5, 1),
11 => (11, 0),
12 => (6, 1),
13 => (13, 0),
14 => (7, 1),
15 => (15, 0),
16 => (0, 4),
17 => (17, 0),
18 => (9, 1),
19 => (19, 0),
20 => (5, 2),
21 => (21, 0),
22 => (11, 1),
23 => (23, 0),
24 => (3, 3),
25 => (25, 0),
26 => (13, 1),
27 => (27, 0),
28 => (7, 2),
29 => (29, 0),
30 => (15, 1),
31 => (31, 0),
32 => (0, 5),
33 => (33, 0),
34 => (17, 1),
35 => (35, 0),
36 => (9, 2),
// Any other radix should be unreachable.
_ => (0, 0),
}
}
/// Get the base, odd radix, and the power-of-two for the type.
#[must_use]
#[inline(always)]
#[cfg(all(feature = "power-of-two", not(feature = "radix")))]
pub const fn split_radix(radix: u32) -> (u32, u32) {
match radix {
// Is also needed for decimal floats, due to `negative_digit_comp`.
2 => (0, 1),
4 => (0, 2),
// Is also needed for decimal floats, due to `negative_digit_comp`.
5 => (5, 0),
8 => (0, 3),
10 => (5, 1),
16 => (0, 4),
32 => (0, 5),
// Any other radix should be unreachable.
_ => (0, 0),
}
}
/// Get the base, odd radix, and the power-of-two for the type.
#[must_use]
#[inline(always)]
#[cfg(not(feature = "power-of-two"))]
pub const fn split_radix(radix: u32) -> (u32, u32) {
match radix {
// Is also needed for decimal floats, due to `negative_digit_comp`.
2 => (0, 1),
// Is also needed for decimal floats, due to `negative_digit_comp`.
5 => (5, 0),
10 => (5, 1),
// Any other radix should be unreachable.
_ => (0, 0),
}
}
// LIMB
// ----
// Type for a single limb of the big integer.
//
// A limb is analogous to a digit in base10, except, it stores 32-bit
// or 64-bit numbers instead. We want types where 64-bit multiplication
// is well-supported by the architecture, rather than emulated in 3
// instructions. The quickest way to check this support is using a
// cross-compiler for numerous architectures, along with the following
// source file and command:
//
// Compile with `gcc main.c -c -S -O3 -masm=intel`
//
// And the source code is:
// ```text
// #include <stdint.h>
//
// struct i128 {
// uint64_t hi;
// uint64_t lo;
// };
//
// // Type your code here, or load an example.
// struct i128 square(uint64_t x, uint64_t y) {
// __int128 prod = (__int128)x * (__int128)y;
// struct i128 z;
// z.hi = (uint64_t)(prod >> 64);
// z.lo = (uint64_t)prod;
// return z;
// }
// ```
//
// If the result contains `call __multi3`, then the multiplication
// is emulated by the compiler. Otherwise, it's natively supported.
//
// This should be all-known 64-bit platforms supported by Rust.
// https://forge.rust-lang.org/platform-support.html
//
// # Supported
//
// Platforms where native 128-bit multiplication is explicitly supported:
// - x86_64 (Supported via `MUL`).
// - mips64 (Supported via `DMULTU`, which `HI` and `LO` can be read-from).
// - s390x (Supported via `MLGR`).
//
// # Efficient
//
// Platforms where native 64-bit multiplication is supported and
// you can extract hi-lo for 64-bit multiplications.
// - aarch64 (Requires `UMULH` and `MUL` to capture high and low bits).
// - powerpc64 (Requires `MULHDU` and `MULLD` to capture high and low
// bits).
// - riscv64 (Requires `MUL` and `MULH` to capture high and low bits).
//
// # Unsupported
//
// Platforms where native 128-bit multiplication is not supported,
// requiring software emulation.
// sparc64 (`UMUL` only supports double-word arguments).
// sparcv9 (Same as sparc64).
//
// These tests are run via `xcross`, my own library for C cross-compiling,
// which supports numerous targets (far in excess of Rust's tier 1 support,
// or rust-embedded/cross's list). xcross may be found here:
// https://github.com/Alexhuszagh/xcross
//
// To compile for the given target, run:
// `xcross gcc main.c -c -S -O3 --target $target`
//
// All 32-bit architectures inherently do not have support. That means
// we can essentially look for 64-bit architectures that are not SPARC.
#[cfg(all(target_pointer_width = "64", not(target_arch = "sparc")))]
pub type Limb = u64;
#[cfg(all(target_pointer_width = "64", not(target_arch = "sparc")))]
pub type Wide = u128;
#[cfg(all(target_pointer_width = "64", not(target_arch = "sparc")))]
pub type SignedWide = i128;
#[cfg(not(all(target_pointer_width = "64", not(target_arch = "sparc"))))]
pub type Limb = u32;
#[cfg(not(all(target_pointer_width = "64", not(target_arch = "sparc"))))]
pub type Wide = u64;
#[cfg(not(all(target_pointer_width = "64", not(target_arch = "sparc"))))]
pub type SignedWide = i64;