ropey/tree/node_children.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
use std::fmt;
use std::iter::{Iterator, Zip};
use std::slice;
use std::sync::Arc;
use crate::crlf;
use crate::tree::{self, Node, TextInfo, MAX_BYTES};
const MAX_LEN: usize = tree::MAX_CHILDREN;
/// A fixed-capacity vec of child Arc-pointers and child metadata.
///
/// The unsafe guts of this are implemented in NodeChildrenInternal
/// lower down in this file.
#[derive(Clone)]
#[repr(C)]
pub(crate) struct NodeChildren(inner::NodeChildrenInternal);
impl NodeChildren {
/// Creates a new empty array.
pub fn new() -> Self {
NodeChildren(inner::NodeChildrenInternal::new())
}
/// Current length of the array.
pub fn len(&self) -> usize {
self.0.len() as usize
}
/// Returns whether the array is full or not.
pub fn is_full(&self) -> bool {
self.len() == MAX_LEN
}
/// Access to the nodes array.
pub fn nodes(&self) -> &[Arc<Node>] {
self.0.nodes()
}
/// Mutable access to the nodes array.
pub fn nodes_mut(&mut self) -> &mut [Arc<Node>] {
self.0.nodes_mut()
}
/// Access to the info array.
pub fn info(&self) -> &[TextInfo] {
self.0.info()
}
/// Mutable access to the info array.
pub fn info_mut(&mut self) -> &mut [TextInfo] {
self.0.info_mut()
}
/// Mutable access to both the info and nodes arrays simultaneously.
pub fn data_mut(&mut self) -> (&mut [TextInfo], &mut [Arc<Node>]) {
self.0.data_mut()
}
/// Updates the text info of the child at `idx`.
pub fn update_child_info(&mut self, idx: usize) {
let (info, nodes) = self.0.data_mut();
info[idx] = nodes[idx].text_info();
}
/// Pushes an item into the end of the array.
///
/// Increases length by one. Panics if already full.
pub fn push(&mut self, item: (TextInfo, Arc<Node>)) {
self.0.push(item)
}
/// Pushes an element onto the end of the array, and then splits it in half,
/// returning the right half.
///
/// This works even when the array is full.
pub fn push_split(&mut self, new_child: (TextInfo, Arc<Node>)) -> Self {
let r_count = (self.len() + 1) / 2;
let l_count = (self.len() + 1) - r_count;
let mut right = self.split_off(l_count);
right.push(new_child);
right
}
/// Attempts to merge two nodes, and if it's too much data to merge
/// equi-distributes it between the two.
///
/// Returns:
///
/// - True: merge was successful.
/// - False: merge failed, equidistributed instead.
pub fn merge_distribute(&mut self, idx1: usize, idx2: usize) -> bool {
assert!(idx1 < idx2);
assert!(idx2 < self.len());
let remove_right = {
let ((_, node1), (_, node2)) = self.get_two_mut(idx1, idx2);
let node1 = Arc::make_mut(node1);
let node2 = Arc::make_mut(node2);
match *node1 {
Node::Leaf(ref mut text1) => {
if let Node::Leaf(ref mut text2) = *node2 {
if (text1.len() + text2.len()) <= tree::MAX_BYTES {
text1.push_str(text2);
true
} else {
let right = text1.push_str_split(text2);
*text2 = right;
false
}
} else {
panic!("Siblings have different node types");
}
}
Node::Internal(ref mut children1) => {
if let Node::Internal(ref mut children2) = *node2 {
if (children1.len() + children2.len()) <= MAX_LEN {
for _ in 0..children2.len() {
children1.push(children2.remove(0));
}
true
} else {
children1.distribute_with(children2);
false
}
} else {
panic!("Siblings have different node types");
}
}
}
};
if remove_right {
self.remove(idx2);
self.update_child_info(idx1);
return true;
} else {
self.update_child_info(idx1);
self.update_child_info(idx2);
return false;
}
}
/// Equi-distributes the children between the two child arrays,
/// preserving ordering.
pub fn distribute_with(&mut self, other: &mut Self) {
let r_target_len = (self.len() + other.len()) / 2;
while other.len() < r_target_len {
other.insert(0, self.pop());
}
while other.len() > r_target_len {
self.push(other.remove(0));
}
}
/// If the children are leaf nodes, compacts them to take up the fewest
/// nodes.
pub fn compact_leaves(&mut self) {
if !self.nodes()[0].is_leaf() || self.len() < 2 {
return;
}
let mut i = 1;
while i < self.len() {
if (self.nodes()[i - 1].leaf_text().len() + self.nodes()[i].leaf_text().len())
<= MAX_BYTES
{
// Scope to contain borrows
{
let ((_, node_l), (_, node_r)) = self.get_two_mut(i - 1, i);
let text_l = Arc::make_mut(node_l).leaf_text_mut();
let text_r = node_r.leaf_text();
text_l.push_str(text_r);
}
self.remove(i);
} else if self.nodes()[i - 1].leaf_text().len() < MAX_BYTES {
// Scope to contain borrows
{
let ((_, node_l), (_, node_r)) = self.get_two_mut(i - 1, i);
let text_l = Arc::make_mut(node_l).leaf_text_mut();
let text_r = Arc::make_mut(node_r).leaf_text_mut();
let split_idx_r = crlf::prev_break(MAX_BYTES - text_l.len(), text_r.as_bytes());
text_l.push_str(&text_r[..split_idx_r]);
text_r.truncate_front(split_idx_r);
}
i += 1;
} else {
i += 1;
}
}
for i in 0..self.len() {
self.update_child_info(i);
}
}
/// Pops an item off the end of the array and returns it.
///
/// Decreases length by one. Panics if already empty.
pub fn pop(&mut self) -> (TextInfo, Arc<Node>) {
self.0.pop()
}
/// Inserts an item into the the array at the given index.
///
/// Increases length by one. Panics if already full. Preserves ordering
/// of the other items.
pub fn insert(&mut self, idx: usize, item: (TextInfo, Arc<Node>)) {
self.0.insert(idx, item)
}
/// Inserts an element into a the array, and then splits it in half, returning
/// the right half.
///
/// This works even when the array is full.
pub fn insert_split(&mut self, idx: usize, item: (TextInfo, Arc<Node>)) -> Self {
assert!(self.len() > 0);
assert!(idx <= self.len());
let extra = if idx < self.len() {
let extra = self.pop();
self.insert(idx, item);
extra
} else {
item
};
self.push_split(extra)
}
/// Removes the item at the given index from the the array.
///
/// Decreases length by one. Preserves ordering of the other items.
pub fn remove(&mut self, idx: usize) -> (TextInfo, Arc<Node>) {
self.0.remove(idx)
}
/// Splits the array in two at `idx`, returning the right part of the split.
///
/// TODO: implement this more efficiently.
pub fn split_off(&mut self, idx: usize) -> Self {
assert!(idx <= self.len());
let mut other = NodeChildren::new();
let count = self.len() - idx;
for _ in 0..count {
other.push(self.remove(idx));
}
other
}
/// Fetches two children simultaneously, returning mutable references
/// to their info and nodes.
///
/// `idx1` must be less than `idx2`.
pub fn get_two_mut(
&mut self,
idx1: usize,
idx2: usize,
) -> (
(&mut TextInfo, &mut Arc<Node>),
(&mut TextInfo, &mut Arc<Node>),
) {
assert!(idx1 < idx2);
assert!(idx2 < self.len());
let split_idx = idx1 + 1;
let (info, nodes) = self.data_mut();
let (info1, info2) = info.split_at_mut(split_idx);
let (nodes1, nodes2) = nodes.split_at_mut(split_idx);
(
(&mut info1[idx1], &mut nodes1[idx1]),
(&mut info2[idx2 - split_idx], &mut nodes2[idx2 - split_idx]),
)
}
/// Creates an iterator over the array's items.
pub fn iter(&self) -> Zip<slice::Iter<TextInfo>, slice::Iter<Arc<Node>>> {
Iterator::zip(self.info().iter(), self.nodes().iter())
}
#[allow(clippy::needless_range_loop)]
pub fn combined_info(&self) -> TextInfo {
let info = self.info();
let mut acc = TextInfo::new();
// Doing this with an explicit loop is notably faster than
// using an iterator in this case.
for i in 0..info.len() {
acc += info[i];
}
acc
}
/// Returns the child index and left-side-accumulated text info of the
/// first child that matches the given predicate.
///
/// If no child matches the predicate, the last child is returned.
#[inline(always)]
pub fn search_by<F>(&self, pred: F) -> (usize, TextInfo)
where
// (left-accumulated start info, left-accumulated end info)
F: Fn(TextInfo, TextInfo) -> bool,
{
debug_assert!(self.len() > 0);
let mut accum = TextInfo::new();
let mut idx = 0;
for info in self.info()[0..(self.len() - 1)].iter() {
let next_accum = accum + *info;
if pred(accum, next_accum) {
break;
}
accum = next_accum;
idx += 1;
}
(idx, accum)
}
/// Returns the child index and left-side-accumulated text info of the
/// child that contains the given byte.
///
/// One-past-the end is valid, and will return the last child.
pub fn search_byte_idx(&self, byte_idx: usize) -> (usize, TextInfo) {
let (idx, accum) = self.search_by(|_, end| byte_idx < end.bytes as usize);
debug_assert!(
byte_idx <= (accum.bytes + self.info()[idx].bytes) as usize,
"Index out of bounds."
);
(idx, accum)
}
/// Returns the child index and left-side-accumulated text info of the
/// child that contains the given char.
///
/// One-past-the end is valid, and will return the last child.
pub fn search_char_idx(&self, char_idx: usize) -> (usize, TextInfo) {
let (idx, accum) = self.search_by(|_, end| char_idx < end.chars as usize);
debug_assert!(
char_idx <= (accum.chars + self.info()[idx].chars) as usize,
"Index out of bounds."
);
(idx, accum)
}
/// Returns the child index and left-side-accumulated text info of the
/// child that contains the given utf16 code unit offset.
///
/// One-past-the end is valid, and will return the last child.
pub fn search_utf16_code_unit_idx(&self, utf16_idx: usize) -> (usize, TextInfo) {
let (idx, accum) =
self.search_by(|_, end| utf16_idx < (end.chars + end.utf16_surrogates) as usize);
debug_assert!(
utf16_idx
<= (accum.chars
+ accum.utf16_surrogates
+ self.info()[idx].chars
+ self.info()[idx].utf16_surrogates) as usize,
"Index out of bounds."
);
(idx, accum)
}
/// Same as `search_char_idx()` above, except that it only calulates the
/// left-side-accumulated _char_ index rather than the full text info.
///
/// Return is (child_index, left_acc_char_index)
///
/// One-past-the end is valid, and will return the last child.
#[inline(always)]
pub fn search_char_idx_only(&self, char_idx: usize) -> (usize, usize) {
debug_assert!(self.len() > 0);
let mut accum_char_idx = 0;
let mut idx = 0;
for info in self.info()[0..(self.len() - 1)].iter() {
let next_accum = accum_char_idx + info.chars as usize;
if char_idx < next_accum {
break;
}
accum_char_idx = next_accum;
idx += 1;
}
debug_assert!(
char_idx <= (accum_char_idx + self.info()[idx].chars as usize) as usize,
"Index out of bounds."
);
(idx, accum_char_idx)
}
/// Returns the child index and left-side-accumulated text info of the
/// child that contains the given line break.
///
/// Beginning of the rope is considered index 0, although is not
/// considered a line break for the returned left-side-accumulated
/// text info.
///
/// One-past-the end is valid, and will return the last child.
pub fn search_line_break_idx(&self, line_break_idx: usize) -> (usize, TextInfo) {
let (idx, accum) = self.search_by(|_, end| line_break_idx <= end.line_breaks as usize);
debug_assert!(
line_break_idx <= (accum.line_breaks + self.info()[idx].line_breaks + 1) as usize,
"Index out of bounds."
);
(idx, accum)
}
/// Returns the child indices at the start and end of the given char
/// range, and returns their left-side-accumulated char indices as well.
///
/// Return is:
/// (
/// (left_node_index, left_acc_left_side_char_index),
/// (right_node_index, right_acc_left_side_char_index),
/// )
///
/// One-past-the end is valid, and corresponds to the last child.
#[inline(always)]
pub fn search_char_idx_range(
&self,
start_idx: usize,
end_idx: usize,
) -> ((usize, usize), (usize, usize)) {
debug_assert!(start_idx <= end_idx);
debug_assert!(self.len() > 0);
let mut accum_char_idx = 0;
let mut idx = 0;
// Find left child and info
for info in self.info()[..(self.len() - 1)].iter() {
let next_accum = accum_char_idx + info.chars as usize;
if start_idx < next_accum {
break;
}
accum_char_idx = next_accum;
idx += 1;
}
let l_child_i = idx;
let l_acc_info = accum_char_idx;
// Find right child and info
for info in self.info()[idx..(self.len() - 1)].iter() {
let next_accum = accum_char_idx + info.chars as usize;
if end_idx <= next_accum {
break;
}
accum_char_idx = next_accum;
idx += 1;
}
#[cfg(any(test, debug_assertions))]
assert!(
end_idx <= accum_char_idx + self.info()[idx].chars as usize,
"Index out of bounds."
);
((l_child_i, l_acc_info), (idx, accum_char_idx))
}
// Debug function, to help verify tree integrity
pub fn is_info_accurate(&self) -> bool {
for (info, node) in self.info().iter().zip(self.nodes().iter()) {
if *info != node.text_info() {
return false;
}
}
true
}
}
impl fmt::Debug for NodeChildren {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("NodeChildren")
.field("len", &self.len())
.field("info", &&self.info())
.field("nodes", &&self.nodes())
.finish()
}
}
//===========================================================================
/// The unsafe guts of NodeChildren, exposed through a safe API.
///
/// Try to keep this as small as possible, and implement functionality on
/// NodeChildren via the safe APIs whenever possible.
///
/// It's split out this way because it was too easy to accidentally access the
/// fixed size arrays directly, leading to memory-unsafety bugs when accidentally
/// accessing elements that are semantically out of bounds. This happened once,
/// and it was a pain to track down--as memory safety bugs often are.
mod inner {
use super::{Node, TextInfo, MAX_LEN};
use std::mem;
use std::mem::MaybeUninit;
use std::ptr;
use std::sync::Arc;
/// This is essentially a fixed-capacity, stack-allocated `Vec`. However,
/// it actually containts _two_ arrays rather than just one, but which
/// share a length.
#[repr(C)]
pub(crate) struct NodeChildrenInternal {
/// An array of the child nodes.
/// INVARIANT: The nodes from 0..len must be initialized
nodes: [MaybeUninit<Arc<Node>>; MAX_LEN],
/// An array of the child node text infos
/// INVARIANT: The nodes from 0..len must be initialized
info: [MaybeUninit<TextInfo>; MAX_LEN],
len: u8,
}
impl NodeChildrenInternal {
/// Creates a new empty array.
#[inline(always)]
pub fn new() -> NodeChildrenInternal {
// SAFETY: Uninit data is valid for arrays of MaybeUninit.
// len is zero, so it's ok for all of them to be uninit
NodeChildrenInternal {
nodes: unsafe { MaybeUninit::uninit().assume_init() },
info: unsafe { MaybeUninit::uninit().assume_init() },
len: 0,
}
}
/// Current length of the array.
#[inline(always)]
pub fn len(&self) -> usize {
self.len as usize
}
/// Access to the nodes array.
#[inline(always)]
pub fn nodes(&self) -> &[Arc<Node>] {
// SAFETY: MaybeUninit<T> is layout compatible with T, and
// the nodes from 0..len are guaranteed to be initialized
unsafe { mem::transmute(&self.nodes[..(self.len())]) }
}
/// Mutable access to the nodes array.
#[inline(always)]
pub fn nodes_mut(&mut self) -> &mut [Arc<Node>] {
// SAFETY: MaybeUninit<T> is layout compatible with T, and
// the nodes from 0..len are guaranteed to be initialized
unsafe { mem::transmute(&mut self.nodes[..(self.len as usize)]) }
}
/// Access to the info array.
#[inline(always)]
pub fn info(&self) -> &[TextInfo] {
// SAFETY: MaybeUninit<T> is layout compatible with T, and
// the info from 0..len are guaranteed to be initialized
unsafe { mem::transmute(&self.info[..(self.len())]) }
}
/// Mutable access to the info array.
#[inline(always)]
pub fn info_mut(&mut self) -> &mut [TextInfo] {
// SAFETY: MaybeUninit<T> is layout compatible with T, and
// the info from 0..len are guaranteed to be initialized
unsafe { mem::transmute(&mut self.info[..(self.len as usize)]) }
}
/// Mutable access to both the info and nodes arrays simultaneously.
#[inline(always)]
pub fn data_mut(&mut self) -> (&mut [TextInfo], &mut [Arc<Node>]) {
// SAFETY: MaybeUninit<T> is layout compatible with T, and
// the info from 0..len are guaranteed to be initialized
(
unsafe { mem::transmute(&mut self.info[..(self.len as usize)]) },
unsafe { mem::transmute(&mut self.nodes[..(self.len as usize)]) },
)
}
/// Pushes an item into the end of the array.
///
/// Increases length by one. Panics if already full.
#[inline(always)]
pub fn push(&mut self, item: (TextInfo, Arc<Node>)) {
assert!(self.len() < MAX_LEN);
self.info[self.len()] = MaybeUninit::new(item.0);
self.nodes[self.len as usize] = MaybeUninit::new(item.1);
// We have just initialized both info and node and 0..=len, so we can increase it
self.len += 1;
}
/// Pops an item off the end of the array and returns it.
///
/// Decreases length by one. Panics if already empty.
#[inline(always)]
pub fn pop(&mut self) -> (TextInfo, Arc<Node>) {
assert!(self.len() > 0);
self.len -= 1;
// SAFETY: before this, len was long enough to guarantee that both must be init
// We just decreased the length, guaranteeing that the elements will never be read again
(unsafe { self.info[self.len()].assume_init() }, unsafe {
ptr::read(&self.nodes[self.len()]).assume_init()
})
}
/// Inserts an item into the the array at the given index.
///
/// Increases length by one. Panics if already full. Preserves ordering
/// of the other items.
#[inline(always)]
pub fn insert(&mut self, idx: usize, item: (TextInfo, Arc<Node>)) {
assert!(idx <= self.len());
assert!(self.len() < MAX_LEN);
let len = self.len();
// This unsafe code simply shifts the elements of the arrays over
// to make space for the new inserted value. The `.info` array
// shifting can be done with a safe call to `copy_within()`.
// However, the `.nodes` array shift cannot, because of the
// specific drop semantics needed for safety.
unsafe {
let ptr = self.nodes.as_mut_ptr();
ptr::copy(ptr.add(idx), ptr.add(idx + 1), len - idx);
}
self.info.copy_within(idx..len, idx + 1);
// We have just made space for the two new elements, so insert them
self.info[idx] = MaybeUninit::new(item.0);
self.nodes[idx] = MaybeUninit::new(item.1);
// Now that all elements from 0..=len are initialized, we can increase the length
self.len += 1;
}
/// Removes the item at the given index from the the array.
///
/// Decreases length by one. Preserves ordering of the other items.
#[inline(always)]
pub fn remove(&mut self, idx: usize) -> (TextInfo, Arc<Node>) {
assert!(self.len() > 0);
assert!(idx < self.len());
// Read out the elements, they must not be touched again. We copy the elements
// after them into them, and decrease the length at the end
let item = (unsafe { self.info[idx].assume_init() }, unsafe {
ptr::read(&self.nodes[idx]).assume_init()
});
let len = self.len();
// This unsafe code simply shifts the elements of the arrays over
// to fill in the gap left by the removed element. The `.info`
// array shifting can be done with a safe call to `copy_within()`.
// However, the `.nodes` array shift cannot, because of the
// specific drop semantics needed for safety.
unsafe {
let ptr = self.nodes.as_mut_ptr();
ptr::copy(ptr.add(idx + 1), ptr.add(idx), len - idx - 1);
}
self.info.copy_within((idx + 1)..len, idx);
// Now that the gap is filled, decrease the length
self.len -= 1;
return item;
}
}
impl Drop for NodeChildrenInternal {
fn drop(&mut self) {
// The `.nodes` array contains `MaybeUninit` wrappers, which need
// to be manually dropped if valid. We drop only the valid ones
// here.
for node in &mut self.nodes[..self.len as usize] {
unsafe { ptr::drop_in_place(node.as_mut_ptr()) };
}
}
}
impl Clone for NodeChildrenInternal {
fn clone(&self) -> NodeChildrenInternal {
// Create an empty NodeChildrenInternal first, then fill it
let mut clone_array = NodeChildrenInternal::new();
// Copy nodes... carefully.
for (clone_arc, arc) in Iterator::zip(
clone_array.nodes[..self.len()].iter_mut(),
self.nodes[..self.len()].iter(),
) {
*clone_arc = MaybeUninit::new(Arc::clone(unsafe { &*arc.as_ptr() }));
}
// Copy TextInfo
for (clone_info, info) in Iterator::zip(
clone_array.info[..self.len()].iter_mut(),
self.info[..self.len()].iter(),
) {
*clone_info = *info;
}
// Set length
clone_array.len = self.len;
// Some sanity checks for debug builds
#[cfg(debug_assertions)]
{
for (a, b) in Iterator::zip(
(&clone_array.info[..clone_array.len()]).iter(),
(&self.info[..self.len()]).iter(),
) {
assert_eq!(unsafe { a.assume_init() }, unsafe { b.assume_init() },);
}
for (a, b) in Iterator::zip(
(&clone_array.nodes[..clone_array.len()]).iter(),
(&self.nodes[..clone_array.len()]).iter(),
) {
assert!(Arc::ptr_eq(unsafe { &*a.as_ptr() }, unsafe {
&*b.as_ptr()
},));
}
}
clone_array
}
}
}
//===========================================================================
#[cfg(test)]
mod tests {
use super::*;
use crate::tree::{Node, NodeText, TextInfo};
use std::sync::Arc;
#[test]
fn search_char_idx_01() {
let mut children = NodeChildren::new();
children.push((
TextInfo::new(),
Arc::new(Node::Leaf(NodeText::from_str("Hello "))),
));
children.push((
TextInfo::new(),
Arc::new(Node::Leaf(NodeText::from_str("there "))),
));
children.push((
TextInfo::new(),
Arc::new(Node::Leaf(NodeText::from_str("world!"))),
));
children.update_child_info(0);
children.update_child_info(1);
children.update_child_info(2);
assert_eq!(0, children.search_char_idx(0).0);
assert_eq!(0, children.search_char_idx(1).0);
assert_eq!(0, children.search_char_idx(0).1.chars);
assert_eq!(0, children.search_char_idx(1).1.chars);
assert_eq!(0, children.search_char_idx(5).0);
assert_eq!(1, children.search_char_idx(6).0);
assert_eq!(0, children.search_char_idx(5).1.chars);
assert_eq!(6, children.search_char_idx(6).1.chars);
assert_eq!(1, children.search_char_idx(11).0);
assert_eq!(2, children.search_char_idx(12).0);
assert_eq!(6, children.search_char_idx(11).1.chars);
assert_eq!(12, children.search_char_idx(12).1.chars);
assert_eq!(2, children.search_char_idx(17).0);
assert_eq!(2, children.search_char_idx(18).0);
assert_eq!(12, children.search_char_idx(17).1.chars);
assert_eq!(12, children.search_char_idx(18).1.chars);
}
#[test]
#[should_panic]
fn search_char_idx_02() {
let mut children = NodeChildren::new();
children.push((
TextInfo::new(),
Arc::new(Node::Leaf(NodeText::from_str("Hello "))),
));
children.push((
TextInfo::new(),
Arc::new(Node::Leaf(NodeText::from_str("there "))),
));
children.push((
TextInfo::new(),
Arc::new(Node::Leaf(NodeText::from_str("world!"))),
));
children.update_child_info(0);
children.update_child_info(1);
children.update_child_info(2);
children.search_char_idx(19);
}
#[test]
fn search_char_idx_range_01() {
let mut children = NodeChildren::new();
children.push((
TextInfo::new(),
Arc::new(Node::Leaf(NodeText::from_str("Hello "))),
));
children.push((
TextInfo::new(),
Arc::new(Node::Leaf(NodeText::from_str("there "))),
));
children.push((
TextInfo::new(),
Arc::new(Node::Leaf(NodeText::from_str("world!"))),
));
children.update_child_info(0);
children.update_child_info(1);
children.update_child_info(2);
let at_0_0 = children.search_char_idx_range(0, 0);
let at_6_6 = children.search_char_idx_range(6, 6);
let at_12_12 = children.search_char_idx_range(12, 12);
let at_18_18 = children.search_char_idx_range(18, 18);
assert_eq!(0, (at_0_0.0).0);
assert_eq!(0, (at_0_0.1).0);
assert_eq!(0, (at_0_0.0).1);
assert_eq!(0, (at_0_0.1).1);
assert_eq!(1, (at_6_6.0).0);
assert_eq!(1, (at_6_6.1).0);
assert_eq!(6, (at_6_6.0).1);
assert_eq!(6, (at_6_6.1).1);
assert_eq!(2, (at_12_12.0).0);
assert_eq!(2, (at_12_12.1).0);
assert_eq!(12, (at_12_12.0).1);
assert_eq!(12, (at_12_12.1).1);
assert_eq!(2, (at_18_18.0).0);
assert_eq!(2, (at_18_18.1).0);
assert_eq!(12, (at_18_18.0).1);
assert_eq!(12, (at_18_18.1).1);
let at_0_6 = children.search_char_idx_range(0, 6);
let at_6_12 = children.search_char_idx_range(6, 12);
let at_12_18 = children.search_char_idx_range(12, 18);
assert_eq!(0, (at_0_6.0).0);
assert_eq!(0, (at_0_6.1).0);
assert_eq!(0, (at_0_6.0).1);
assert_eq!(0, (at_0_6.1).1);
assert_eq!(1, (at_6_12.0).0);
assert_eq!(1, (at_6_12.1).0);
assert_eq!(6, (at_6_12.0).1);
assert_eq!(6, (at_6_12.1).1);
assert_eq!(2, (at_12_18.0).0);
assert_eq!(2, (at_12_18.1).0);
assert_eq!(12, (at_12_18.0).1);
assert_eq!(12, (at_12_18.1).1);
let at_5_7 = children.search_char_idx_range(5, 7);
let at_11_13 = children.search_char_idx_range(11, 13);
assert_eq!(0, (at_5_7.0).0);
assert_eq!(1, (at_5_7.1).0);
assert_eq!(0, (at_5_7.0).1);
assert_eq!(6, (at_5_7.1).1);
assert_eq!(1, (at_11_13.0).0);
assert_eq!(2, (at_11_13.1).0);
assert_eq!(6, (at_11_13.0).1);
assert_eq!(12, (at_11_13.1).1);
}
#[test]
#[should_panic]
fn search_char_idx_range_02() {
let mut children = NodeChildren::new();
children.push((
TextInfo::new(),
Arc::new(Node::Leaf(NodeText::from_str("Hello "))),
));
children.push((
TextInfo::new(),
Arc::new(Node::Leaf(NodeText::from_str("there "))),
));
children.push((
TextInfo::new(),
Arc::new(Node::Leaf(NodeText::from_str("world!"))),
));
children.update_child_info(0);
children.update_child_info(1);
children.update_child_info(2);
children.search_char_idx_range(18, 19);
}
#[test]
fn search_line_break_idx_01() {
let mut children = NodeChildren::new();
children.push((
TextInfo::new(),
Arc::new(Node::Leaf(NodeText::from_str("Hello\n"))),
));
children.push((
TextInfo::new(),
Arc::new(Node::Leaf(NodeText::from_str("\nthere\n"))),
));
children.push((
TextInfo::new(),
Arc::new(Node::Leaf(NodeText::from_str("world!\n"))),
));
children.update_child_info(0);
children.update_child_info(1);
children.update_child_info(2);
assert_eq!(0, children.search_line_break_idx(0).0);
assert_eq!(0, children.search_line_break_idx(0).1.line_breaks);
assert_eq!(0, children.search_line_break_idx(1).0);
assert_eq!(0, children.search_line_break_idx(1).1.line_breaks);
assert_eq!(1, children.search_line_break_idx(2).0);
assert_eq!(1, children.search_line_break_idx(2).1.line_breaks);
assert_eq!(1, children.search_line_break_idx(3).0);
assert_eq!(1, children.search_line_break_idx(3).1.line_breaks);
assert_eq!(2, children.search_line_break_idx(4).0);
assert_eq!(3, children.search_line_break_idx(4).1.line_breaks);
assert_eq!(2, children.search_line_break_idx(5).0);
assert_eq!(3, children.search_line_break_idx(5).1.line_breaks);
}
#[test]
fn search_line_break_idx_02() {
let mut children = NodeChildren::new();
children.push((
TextInfo::new(),
Arc::new(Node::Leaf(NodeText::from_str("Hello\n"))),
));
children.push((
TextInfo::new(),
Arc::new(Node::Leaf(NodeText::from_str("there"))),
));
children.push((
TextInfo::new(),
Arc::new(Node::Leaf(NodeText::from_str("world!"))),
));
children.update_child_info(0);
children.update_child_info(1);
children.update_child_info(2);
assert_eq!(0, children.search_line_break_idx(0).0);
assert_eq!(0, children.search_line_break_idx(0).1.line_breaks);
assert_eq!(0, children.search_line_break_idx(1).0);
assert_eq!(0, children.search_line_break_idx(1).1.line_breaks);
assert_eq!(2, children.search_line_break_idx(2).0);
assert_eq!(1, children.search_line_break_idx(2).1.line_breaks);
}
#[test]
fn search_line_break_idx_03() {
let mut children = NodeChildren::new();
children.push((
TextInfo::new(),
Arc::new(Node::Leaf(NodeText::from_str(""))),
));
children.update_child_info(0);
assert_eq!(0, children.search_line_break_idx(0).0);
assert_eq!(0, children.search_line_break_idx(0).1.line_breaks);
assert_eq!(0, children.search_line_break_idx(1).0);
assert_eq!(0, children.search_line_break_idx(1).1.line_breaks);
}
#[test]
#[should_panic]
fn search_line_break_idx_04() {
let mut children = NodeChildren::new();
children.push((
TextInfo::new(),
Arc::new(Node::Leaf(NodeText::from_str(""))),
));
children.update_child_info(0);
assert_eq!(0, children.search_line_break_idx(0).0);
assert_eq!(0, children.search_line_break_idx(0).1.line_breaks);
assert_eq!(0, children.search_line_break_idx(1).0);
assert_eq!(0, children.search_line_break_idx(1).1.line_breaks);
assert_eq!(0, children.search_line_break_idx(2).0);
assert_eq!(0, children.search_line_break_idx(2).1.line_breaks);
}
}