typed_arena/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
//! The arena, a fast but limited type of allocator.
//!
//! **A fast (but limited) allocation arena for values of a single type.**
//!
//! Allocated objects are destroyed all at once, when the arena itself is
//! destroyed. There is no deallocation of individual objects while the arena
//! itself is still alive. The flipside is that allocation is fast: typically
//! just a vector push.
//!
//! There is also a method `into_vec()` to recover ownership of allocated
//! objects when the arena is no longer required, instead of destroying
//! everything.
//!
//! ## Example
//!
//! ```
//! use typed_arena::Arena;
//!
//! struct Monster {
//!     level: u32,
//! }
//!
//! let monsters = Arena::new();
//!
//! let goku = monsters.alloc(Monster { level: 9001 });
//! assert!(goku.level > 9000);
//! ```
//!
//! ## Safe Cycles
//!
//! All allocated objects get the same lifetime, so you can safely create cycles
//! between them. This can be useful for certain data structures, such as graphs
//! and trees with parent pointers.
//!
//! ```
//! use std::cell::Cell;
//! use typed_arena::Arena;
//!
//! struct CycleParticipant<'a> {
//!     other: Cell<Option<&'a CycleParticipant<'a>>>,
//! }
//!
//! let arena = Arena::new();
//!
//! let a = arena.alloc(CycleParticipant { other: Cell::new(None) });
//! let b = arena.alloc(CycleParticipant { other: Cell::new(None) });
//!
//! a.other.set(Some(b));
//! b.other.set(Some(a));
//! ```

// Potential optimizations:
// 1) add and stabilize a method for in-place reallocation of vecs.
// 2) add and stabilize placement new.
// 3) use an iterator. This may add far too much unsafe code.

#![deny(missing_docs)]
#![cfg_attr(not(any(feature = "std", test)), no_std)]

#[cfg(not(feature = "std"))]
extern crate alloc;

#[cfg(any(feature = "std", test))]
extern crate core;

#[cfg(not(feature = "std"))]
use alloc::vec::Vec;

use core::cell::RefCell;
use core::cmp;
use core::iter;
use core::mem;
use core::ptr;
use core::slice;
use core::str;

use mem::MaybeUninit;

#[cfg(test)]
mod test;

// Initial size in bytes.
const INITIAL_SIZE: usize = 1024;
// Minimum capacity. Must be larger than 0.
const MIN_CAPACITY: usize = 1;

/// An arena of objects of type `T`.
///
/// ## Example
///
/// ```
/// use typed_arena::Arena;
///
/// struct Monster {
///     level: u32,
/// }
///
/// let monsters = Arena::new();
///
/// let vegeta = monsters.alloc(Monster { level: 9001 });
/// assert!(vegeta.level > 9000);
/// ```
pub struct Arena<T> {
    chunks: RefCell<ChunkList<T>>,
}

struct ChunkList<T> {
    current: Vec<T>,
    rest: Vec<Vec<T>>,
}

impl<T> Arena<T> {
    /// Construct a new arena.
    ///
    /// ## Example
    ///
    /// ```
    /// use typed_arena::Arena;
    ///
    /// let arena = Arena::new();
    /// # arena.alloc(1);
    /// ```
    pub fn new() -> Arena<T> {
        let size = cmp::max(1, mem::size_of::<T>());
        Arena::with_capacity(INITIAL_SIZE / size)
    }

    /// Construct a new arena with capacity for `n` values pre-allocated.
    ///
    /// ## Example
    ///
    /// ```
    /// use typed_arena::Arena;
    ///
    /// let arena = Arena::with_capacity(1337);
    /// # arena.alloc(1);
    /// ```
    pub fn with_capacity(n: usize) -> Arena<T> {
        let n = cmp::max(MIN_CAPACITY, n);
        Arena {
            chunks: RefCell::new(ChunkList {
                current: Vec::with_capacity(n),
                rest: Vec::new(),
            }),
        }
    }

    /// Return the size of the arena
    ///
    /// This is useful for using the size of previous typed arenas to build new typed arenas with large enough spaces.
    ///
    /// ## Example
    ///
    /// ```
    ///  use typed_arena::Arena;
    ///
    ///  let arena = Arena::with_capacity(0);
    ///  let a = arena.alloc(1);
    ///  let b = arena.alloc(2);
    ///
    ///  assert_eq!(arena.len(), 2);
    /// ```
    pub fn len(&self) -> usize {
        let chunks = self.chunks.borrow();

        let mut res = 0;
        for vec in chunks.rest.iter() {
            res += vec.len()
        }

        res + chunks.current.len()
    }

    /// Allocates a value in the arena, and returns a mutable reference
    /// to that value.
    ///
    /// ## Example
    ///
    /// ```
    /// use typed_arena::Arena;
    ///
    /// let arena = Arena::new();
    /// let x = arena.alloc(42);
    /// assert_eq!(*x, 42);
    /// ```
    #[inline]
    pub fn alloc(&self, value: T) -> &mut T {
        self.alloc_fast_path(value)
            .unwrap_or_else(|value| self.alloc_slow_path(value))
    }

    #[inline]
    fn alloc_fast_path(&self, value: T) -> Result<&mut T, T> {
        let mut chunks = self.chunks.borrow_mut();
        let len = chunks.current.len();
        if len < chunks.current.capacity() {
            chunks.current.push(value);
            // Avoid going through `Vec::deref_mut`, which overlaps
            // other references we have already handed out!
            debug_assert!(len < chunks.current.len()); // bounds check
            Ok(unsafe { &mut *chunks.current.as_mut_ptr().add(len) })
        } else {
            Err(value)
        }
    }

    fn alloc_slow_path(&self, value: T) -> &mut T {
        &mut self.alloc_extend(iter::once(value))[0]
    }

    /// Uses the contents of an iterator to allocate values in the arena.
    /// Returns a mutable slice that contains these values.
    ///
    /// ## Example
    ///
    /// ```
    /// use typed_arena::Arena;
    ///
    /// let arena = Arena::new();
    /// let abc = arena.alloc_extend("abcdefg".chars().take(3));
    /// assert_eq!(abc, ['a', 'b', 'c']);
    /// ```
    pub fn alloc_extend<I>(&self, iterable: I) -> &mut [T]
    where
        I: IntoIterator<Item = T>,
    {
        let mut iter = iterable.into_iter();

        let mut chunks = self.chunks.borrow_mut();

        let iter_min_len = iter.size_hint().0;
        let mut next_item_index;
        debug_assert!(
            chunks.current.capacity() >= chunks.current.len(),
            "capacity is always greater than or equal to len, so we don't need to worry about underflow"
        );
        if iter_min_len > chunks.current.capacity() - chunks.current.len() {
            chunks.reserve(iter_min_len);
            chunks.current.extend(iter);
            next_item_index = 0;
        } else {
            next_item_index = chunks.current.len();
            let mut i = 0;
            while let Some(elem) = iter.next() {
                if chunks.current.len() == chunks.current.capacity() {
                    // The iterator was larger than we could fit into the current chunk.
                    let chunks = &mut *chunks;
                    // Create a new chunk into which we can freely push the entire iterator into
                    chunks.reserve(i + 1);
                    let previous_chunk = chunks.rest.last_mut().unwrap();
                    let previous_chunk_len = previous_chunk.len();
                    // Move any elements we put into the previous chunk into this new chunk
                    chunks
                        .current
                        .extend(previous_chunk.drain(previous_chunk_len - i..));
                    chunks.current.push(elem);
                    // And the remaining elements in the iterator
                    chunks.current.extend(iter);
                    next_item_index = 0;
                    break;
                } else {
                    chunks.current.push(elem);
                }
                i += 1;
            }
        }

        // Extend the lifetime from that of `chunks_borrow` to that of `self`.
        // This is OK because we’re careful to never move items
        // by never pushing to inner `Vec`s beyond their initial capacity.
        // The returned reference is unique (`&mut`):
        // the `Arena` never gives away references to existing items.
        unsafe {
            let new_len = chunks.current.len() - next_item_index;
            slice::from_raw_parts_mut(chunks.current.as_mut_ptr().add(next_item_index), new_len)
        }
    }

    /// Allocates space for a given number of values, but doesn't initialize it.
    ///
    /// ## Safety
    ///
    /// After calling this method, the arena considers the elements initialized. If you fail to
    /// initialize them (which includes because of panicking during the initialization), the arena
    /// will run destructors on the uninitialized memory. Therefore, you must initialize them.
    ///
    /// Considering how easy it is to cause undefined behaviour using this, you're advised to
    /// prefer the other (safe) methods, like [`alloc_extend`][Arena::alloc_extend].
    ///
    /// ## Example
    ///
    /// ```rust
    /// use std::mem::{self, MaybeUninit};
    /// use std::ptr;
    /// use typed_arena::Arena;
    ///
    /// // Transmute from MaybeUninit slice to slice of initialized T.
    /// // It is a separate function to preserve the lifetime of the reference.
    /// unsafe fn transmute_uninit<A>(r: &mut [MaybeUninit<A>]) -> &mut [A] {
    ///     mem::transmute(r)
    /// }
    ///
    /// let arena: Arena<bool> = Arena::new();
    /// let slice: &mut [bool];
    /// unsafe {
    ///     let uninitialized = arena.alloc_uninitialized(10);
    ///     for elem in uninitialized.iter_mut() {
    ///         ptr::write(elem.as_mut_ptr(), true);
    ///     }
    ///     slice = transmute_uninit(uninitialized);
    /// }
    /// ```
    ///
    /// ## Alternative allocation pattern
    ///
    /// To avoid the problem of dropping assumed to be initialized elements on panic, it is also
    /// possible to combine the [`reserve_extend`][Arena::reserve_extend] with
    /// [`uninitialized_array`][Arena::uninitialized_array], initialize the elements and confirm
    /// them by this method. In such case, when there's a panic during initialization, the already
    /// initialized elements would leak but it wouldn't cause UB.
    ///
    /// ```rust
    /// use std::mem::{self, MaybeUninit};
    /// use std::ptr;
    /// use typed_arena::Arena;
    ///
    /// unsafe fn transmute_uninit<A>(r: &mut [MaybeUninit<A>]) -> &mut [A] {
    ///     mem::transmute(r)
    /// }
    ///
    /// const COUNT: usize = 2;
    ///
    /// let arena: Arena<String> = Arena::new();
    ///
    /// arena.reserve_extend(COUNT);
    /// let slice: &mut [String];
    /// unsafe {
    ///     // Perform initialization before we claim the memory.
    ///     let uninitialized = arena.uninitialized_array();
    ///     assert!((*uninitialized).len() >= COUNT); // Ensured by the reserve_extend
    ///     for elem in &mut (*uninitialized)[..COUNT] {
    ///         ptr::write(elem.as_mut_ptr(), "Hello".to_owned());
    ///     }
    ///     let addr = (*uninitialized).as_ptr() as usize;
    ///
    ///     // The alloc_uninitialized returns the same memory, but "confirms" its allocation.
    ///     slice = transmute_uninit(arena.alloc_uninitialized(COUNT));
    ///     assert_eq!(addr, slice.as_ptr() as usize);
    ///     assert_eq!(slice, &["Hello".to_owned(), "Hello".to_owned()]);
    /// }
    /// ```
    pub unsafe fn alloc_uninitialized(&self, num: usize) -> &mut [MaybeUninit<T>] {
        let mut chunks = self.chunks.borrow_mut();

        debug_assert!(
            chunks.current.capacity() >= chunks.current.len(),
            "capacity is always greater than or equal to len, so we don't need to worry about underflow"
        );
        if num > chunks.current.capacity() - chunks.current.len() {
            chunks.reserve(num);
        }

        // At this point, the current chunk must have free capacity.
        let next_item_index = chunks.current.len();
        chunks.current.set_len(next_item_index + num);

        // Go through pointers, to make sure we never create a reference to uninitialized T.
        let start = chunks.current.as_mut_ptr().offset(next_item_index as isize);
        let start_uninit = start as *mut MaybeUninit<T>;
        slice::from_raw_parts_mut(start_uninit, num)
    }

    /// Makes sure there's enough continuous space for at least `num` elements.
    ///
    /// This may save some work if called before [`alloc_extend`][Arena::alloc_extend]. It also
    /// allows somewhat safer use pattern of [`alloc_uninitialized`][Arena::alloc_uninitialized].
    /// On the other hand this might waste up to `n - 1` elements of space. In case new allocation
    /// is needed, the unused ones in current chunk are never used.
    pub fn reserve_extend(&self, num: usize) {
        let mut chunks = self.chunks.borrow_mut();

        debug_assert!(
            chunks.current.capacity() >= chunks.current.len(),
            "capacity is always greater than or equal to len, so we don't need to worry about underflow"
        );
        if num > chunks.current.capacity() - chunks.current.len() {
            chunks.reserve(num);
        }
    }

    /// Returns unused space.
    ///
    /// *This unused space is still not considered "allocated".* Therefore, it
    /// won't be dropped unless there are further calls to `alloc`,
    /// [`alloc_uninitialized`][Arena::alloc_uninitialized], or
    /// [`alloc_extend`][Arena::alloc_extend] which is why the method is safe.
    ///
    /// It returns a raw pointer to avoid creating multiple mutable references to the same place.
    /// It is up to the caller not to dereference it after any of the `alloc_` methods are called.
    pub fn uninitialized_array(&self) -> *mut [MaybeUninit<T>] {
        let mut chunks = self.chunks.borrow_mut();
        let len = chunks.current.capacity() - chunks.current.len();
        let next_item_index = chunks.current.len();

        unsafe {
            // Go through pointers, to make sure we never create a reference to uninitialized T.
            let start = chunks.current.as_mut_ptr().offset(next_item_index as isize);
            let start_uninit = start as *mut MaybeUninit<T>;
            ptr::slice_from_raw_parts_mut(start_uninit, len)
        }
    }

    /// Convert this `Arena` into a `Vec<T>`.
    ///
    /// Items in the resulting `Vec<T>` appear in the order that they were
    /// allocated in.
    ///
    /// ## Example
    ///
    /// ```
    /// use typed_arena::Arena;
    ///
    /// let arena = Arena::new();
    ///
    /// arena.alloc("a");
    /// arena.alloc("b");
    /// arena.alloc("c");
    ///
    /// let easy_as_123 = arena.into_vec();
    ///
    /// assert_eq!(easy_as_123, vec!["a", "b", "c"]);
    /// ```
    pub fn into_vec(self) -> Vec<T> {
        let mut chunks = self.chunks.into_inner();
        // keep order of allocation in the resulting Vec
        let n = chunks
            .rest
            .iter()
            .fold(chunks.current.len(), |a, v| a + v.len());
        let mut result = Vec::with_capacity(n);
        for mut vec in chunks.rest {
            result.append(&mut vec);
        }
        result.append(&mut chunks.current);
        result
    }

    /// Returns an iterator that allows modifying each value.
    ///
    /// Items are yielded in the order that they were allocated.
    ///
    /// ## Example
    ///
    /// ```
    /// use typed_arena::Arena;
    ///
    /// #[derive(Debug, PartialEq, Eq)]
    /// struct Point { x: i32, y: i32 };
    ///
    /// let mut arena = Arena::new();
    ///
    /// arena.alloc(Point { x: 0, y: 0 });
    /// arena.alloc(Point { x: 1, y: 1 });
    ///
    /// for point in arena.iter_mut() {
    ///     point.x += 10;
    /// }
    ///
    /// let points = arena.into_vec();
    ///
    /// assert_eq!(points, vec![Point { x: 10, y: 0 }, Point { x: 11, y: 1 }]);
    ///
    /// ```
    ///
    /// ## Immutable Iteration
    ///
    /// Note that there is no corresponding `iter` method. Access to the arena's contents
    /// requries mutable access to the arena itself.
    ///
    /// ```compile_fail
    /// use typed_arena::Arena;
    ///
    /// let mut arena = Arena::new();
    /// let x = arena.alloc(1);
    ///
    /// // borrow error!
    /// for i in arena.iter_mut() {
    ///     println!("i: {}", i);
    /// }
    ///
    /// // borrow error!
    /// *x = 2;
    /// ```
    #[inline]
    pub fn iter_mut(&mut self) -> IterMut<T> {
        let chunks = self.chunks.get_mut();
        let position = if !chunks.rest.is_empty() {
            let index = 0;
            let inner_iter = chunks.rest[index].iter_mut();
            // Extend the lifetime of the individual elements to that of the arena.
            // This is OK because we borrow the arena mutably to prevent new allocations
            // and we take care here to never move items inside the arena while the
            // iterator is alive.
            let inner_iter = unsafe { mem::transmute(inner_iter) };
            IterMutState::ChunkListRest { index, inner_iter }
        } else {
            // Extend the lifetime of the individual elements to that of the arena.
            let iter = unsafe { mem::transmute(chunks.current.iter_mut()) };
            IterMutState::ChunkListCurrent { iter }
        };
        IterMut {
            chunks,
            state: position,
        }
    }
}

impl Arena<u8> {
    /// Allocates a string slice and returns a mutable reference to it.
    ///
    /// This is on `Arena<u8>`, because string slices use byte slices (`[u8]`) as their backing
    /// storage.
    ///
    /// # Example
    ///
    /// ```
    /// use typed_arena::Arena;
    ///
    /// let arena: Arena<u8> = Arena::new();
    /// let hello = arena.alloc_str("Hello world");
    /// assert_eq!("Hello world", hello);
    /// ```
    #[inline]
    pub fn alloc_str(&self, s: &str) -> &mut str {
        let buffer = self.alloc_extend(s.bytes());
        // Can't fail the utf8 validation, it already came in as utf8
        unsafe { str::from_utf8_unchecked_mut(buffer) }
    }
}

impl<T> Default for Arena<T> {
    fn default() -> Self {
        Self::new()
    }
}

impl<T> ChunkList<T> {
    #[inline(never)]
    #[cold]
    fn reserve(&mut self, additional: usize) {
        let double_cap = self
            .current
            .capacity()
            .checked_mul(2)
            .expect("capacity overflow");
        let required_cap = additional
            .checked_next_power_of_two()
            .expect("capacity overflow");
        let new_capacity = cmp::max(double_cap, required_cap);
        let chunk = mem::replace(&mut self.current, Vec::with_capacity(new_capacity));
        self.rest.push(chunk);
    }
}

enum IterMutState<'a, T> {
    ChunkListRest {
        index: usize,
        inner_iter: slice::IterMut<'a, T>,
    },
    ChunkListCurrent {
        iter: slice::IterMut<'a, T>,
    },
}

/// Mutable arena iterator.
///
/// This struct is created by the [`iter_mut`](struct.Arena.html#method.iter_mut) method on [Arenas](struct.Arena.html).
pub struct IterMut<'a, T: 'a> {
    chunks: &'a mut ChunkList<T>,
    state: IterMutState<'a, T>,
}

impl<'a, T> Iterator for IterMut<'a, T> {
    type Item = &'a mut T;
    fn next(&mut self) -> Option<&'a mut T> {
        loop {
            self.state = match self.state {
                IterMutState::ChunkListRest {
                    mut index,
                    ref mut inner_iter,
                } => {
                    match inner_iter.next() {
                        Some(item) => return Some(item),
                        None => {
                            index += 1;
                            if index < self.chunks.rest.len() {
                                let inner_iter = self.chunks.rest[index].iter_mut();
                                // Extend the lifetime of the individual elements to that of the arena.
                                let inner_iter = unsafe { mem::transmute(inner_iter) };
                                IterMutState::ChunkListRest { index, inner_iter }
                            } else {
                                let iter = self.chunks.current.iter_mut();
                                // Extend the lifetime of the individual elements to that of the arena.
                                let iter = unsafe { mem::transmute(iter) };
                                IterMutState::ChunkListCurrent { iter }
                            }
                        }
                    }
                }
                IterMutState::ChunkListCurrent { ref mut iter } => return iter.next(),
            };
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let current_len = self.chunks.current.len();
        let current_cap = self.chunks.current.capacity();
        if self.chunks.rest.is_empty() {
            (current_len, Some(current_len))
        } else {
            let rest_len = self.chunks.rest.len();
            let last_chunk_len = self
                .chunks
                .rest
                .last()
                .map(|chunk| chunk.len())
                .unwrap_or(0);

            let min = current_len + last_chunk_len;
            let max = min + (rest_len * current_cap / rest_len);

            (min, Some(max))
        }
    }
}