typed_arena/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
//! The arena, a fast but limited type of allocator.
//!
//! **A fast (but limited) allocation arena for values of a single type.**
//!
//! Allocated objects are destroyed all at once, when the arena itself is
//! destroyed. There is no deallocation of individual objects while the arena
//! itself is still alive. The flipside is that allocation is fast: typically
//! just a vector push.
//!
//! There is also a method `into_vec()` to recover ownership of allocated
//! objects when the arena is no longer required, instead of destroying
//! everything.
//!
//! ## Example
//!
//! ```
//! use typed_arena::Arena;
//!
//! struct Monster {
//! level: u32,
//! }
//!
//! let monsters = Arena::new();
//!
//! let goku = monsters.alloc(Monster { level: 9001 });
//! assert!(goku.level > 9000);
//! ```
//!
//! ## Safe Cycles
//!
//! All allocated objects get the same lifetime, so you can safely create cycles
//! between them. This can be useful for certain data structures, such as graphs
//! and trees with parent pointers.
//!
//! ```
//! use std::cell::Cell;
//! use typed_arena::Arena;
//!
//! struct CycleParticipant<'a> {
//! other: Cell<Option<&'a CycleParticipant<'a>>>,
//! }
//!
//! let arena = Arena::new();
//!
//! let a = arena.alloc(CycleParticipant { other: Cell::new(None) });
//! let b = arena.alloc(CycleParticipant { other: Cell::new(None) });
//!
//! a.other.set(Some(b));
//! b.other.set(Some(a));
//! ```
// Potential optimizations:
// 1) add and stabilize a method for in-place reallocation of vecs.
// 2) add and stabilize placement new.
// 3) use an iterator. This may add far too much unsafe code.
#![deny(missing_docs)]
#![cfg_attr(not(any(feature = "std", test)), no_std)]
#[cfg(not(feature = "std"))]
extern crate alloc;
#[cfg(any(feature = "std", test))]
extern crate core;
#[cfg(not(feature = "std"))]
use alloc::vec::Vec;
use core::cell::RefCell;
use core::cmp;
use core::iter;
use core::mem;
use core::ptr;
use core::slice;
use core::str;
use mem::MaybeUninit;
#[cfg(test)]
mod test;
// Initial size in bytes.
const INITIAL_SIZE: usize = 1024;
// Minimum capacity. Must be larger than 0.
const MIN_CAPACITY: usize = 1;
/// An arena of objects of type `T`.
///
/// ## Example
///
/// ```
/// use typed_arena::Arena;
///
/// struct Monster {
/// level: u32,
/// }
///
/// let monsters = Arena::new();
///
/// let vegeta = monsters.alloc(Monster { level: 9001 });
/// assert!(vegeta.level > 9000);
/// ```
pub struct Arena<T> {
chunks: RefCell<ChunkList<T>>,
}
struct ChunkList<T> {
current: Vec<T>,
rest: Vec<Vec<T>>,
}
impl<T> Arena<T> {
/// Construct a new arena.
///
/// ## Example
///
/// ```
/// use typed_arena::Arena;
///
/// let arena = Arena::new();
/// # arena.alloc(1);
/// ```
pub fn new() -> Arena<T> {
let size = cmp::max(1, mem::size_of::<T>());
Arena::with_capacity(INITIAL_SIZE / size)
}
/// Construct a new arena with capacity for `n` values pre-allocated.
///
/// ## Example
///
/// ```
/// use typed_arena::Arena;
///
/// let arena = Arena::with_capacity(1337);
/// # arena.alloc(1);
/// ```
pub fn with_capacity(n: usize) -> Arena<T> {
let n = cmp::max(MIN_CAPACITY, n);
Arena {
chunks: RefCell::new(ChunkList {
current: Vec::with_capacity(n),
rest: Vec::new(),
}),
}
}
/// Return the size of the arena
///
/// This is useful for using the size of previous typed arenas to build new typed arenas with large enough spaces.
///
/// ## Example
///
/// ```
/// use typed_arena::Arena;
///
/// let arena = Arena::with_capacity(0);
/// let a = arena.alloc(1);
/// let b = arena.alloc(2);
///
/// assert_eq!(arena.len(), 2);
/// ```
pub fn len(&self) -> usize {
let chunks = self.chunks.borrow();
let mut res = 0;
for vec in chunks.rest.iter() {
res += vec.len()
}
res + chunks.current.len()
}
/// Allocates a value in the arena, and returns a mutable reference
/// to that value.
///
/// ## Example
///
/// ```
/// use typed_arena::Arena;
///
/// let arena = Arena::new();
/// let x = arena.alloc(42);
/// assert_eq!(*x, 42);
/// ```
#[inline]
pub fn alloc(&self, value: T) -> &mut T {
self.alloc_fast_path(value)
.unwrap_or_else(|value| self.alloc_slow_path(value))
}
#[inline]
fn alloc_fast_path(&self, value: T) -> Result<&mut T, T> {
let mut chunks = self.chunks.borrow_mut();
let len = chunks.current.len();
if len < chunks.current.capacity() {
chunks.current.push(value);
// Avoid going through `Vec::deref_mut`, which overlaps
// other references we have already handed out!
debug_assert!(len < chunks.current.len()); // bounds check
Ok(unsafe { &mut *chunks.current.as_mut_ptr().add(len) })
} else {
Err(value)
}
}
fn alloc_slow_path(&self, value: T) -> &mut T {
&mut self.alloc_extend(iter::once(value))[0]
}
/// Uses the contents of an iterator to allocate values in the arena.
/// Returns a mutable slice that contains these values.
///
/// ## Example
///
/// ```
/// use typed_arena::Arena;
///
/// let arena = Arena::new();
/// let abc = arena.alloc_extend("abcdefg".chars().take(3));
/// assert_eq!(abc, ['a', 'b', 'c']);
/// ```
pub fn alloc_extend<I>(&self, iterable: I) -> &mut [T]
where
I: IntoIterator<Item = T>,
{
let mut iter = iterable.into_iter();
let mut chunks = self.chunks.borrow_mut();
let iter_min_len = iter.size_hint().0;
let mut next_item_index;
debug_assert!(
chunks.current.capacity() >= chunks.current.len(),
"capacity is always greater than or equal to len, so we don't need to worry about underflow"
);
if iter_min_len > chunks.current.capacity() - chunks.current.len() {
chunks.reserve(iter_min_len);
chunks.current.extend(iter);
next_item_index = 0;
} else {
next_item_index = chunks.current.len();
let mut i = 0;
while let Some(elem) = iter.next() {
if chunks.current.len() == chunks.current.capacity() {
// The iterator was larger than we could fit into the current chunk.
let chunks = &mut *chunks;
// Create a new chunk into which we can freely push the entire iterator into
chunks.reserve(i + 1);
let previous_chunk = chunks.rest.last_mut().unwrap();
let previous_chunk_len = previous_chunk.len();
// Move any elements we put into the previous chunk into this new chunk
chunks
.current
.extend(previous_chunk.drain(previous_chunk_len - i..));
chunks.current.push(elem);
// And the remaining elements in the iterator
chunks.current.extend(iter);
next_item_index = 0;
break;
} else {
chunks.current.push(elem);
}
i += 1;
}
}
// Extend the lifetime from that of `chunks_borrow` to that of `self`.
// This is OK because we’re careful to never move items
// by never pushing to inner `Vec`s beyond their initial capacity.
// The returned reference is unique (`&mut`):
// the `Arena` never gives away references to existing items.
unsafe {
let new_len = chunks.current.len() - next_item_index;
slice::from_raw_parts_mut(chunks.current.as_mut_ptr().add(next_item_index), new_len)
}
}
/// Allocates space for a given number of values, but doesn't initialize it.
///
/// ## Safety
///
/// After calling this method, the arena considers the elements initialized. If you fail to
/// initialize them (which includes because of panicking during the initialization), the arena
/// will run destructors on the uninitialized memory. Therefore, you must initialize them.
///
/// Considering how easy it is to cause undefined behaviour using this, you're advised to
/// prefer the other (safe) methods, like [`alloc_extend`][Arena::alloc_extend].
///
/// ## Example
///
/// ```rust
/// use std::mem::{self, MaybeUninit};
/// use std::ptr;
/// use typed_arena::Arena;
///
/// // Transmute from MaybeUninit slice to slice of initialized T.
/// // It is a separate function to preserve the lifetime of the reference.
/// unsafe fn transmute_uninit<A>(r: &mut [MaybeUninit<A>]) -> &mut [A] {
/// mem::transmute(r)
/// }
///
/// let arena: Arena<bool> = Arena::new();
/// let slice: &mut [bool];
/// unsafe {
/// let uninitialized = arena.alloc_uninitialized(10);
/// for elem in uninitialized.iter_mut() {
/// ptr::write(elem.as_mut_ptr(), true);
/// }
/// slice = transmute_uninit(uninitialized);
/// }
/// ```
///
/// ## Alternative allocation pattern
///
/// To avoid the problem of dropping assumed to be initialized elements on panic, it is also
/// possible to combine the [`reserve_extend`][Arena::reserve_extend] with
/// [`uninitialized_array`][Arena::uninitialized_array], initialize the elements and confirm
/// them by this method. In such case, when there's a panic during initialization, the already
/// initialized elements would leak but it wouldn't cause UB.
///
/// ```rust
/// use std::mem::{self, MaybeUninit};
/// use std::ptr;
/// use typed_arena::Arena;
///
/// unsafe fn transmute_uninit<A>(r: &mut [MaybeUninit<A>]) -> &mut [A] {
/// mem::transmute(r)
/// }
///
/// const COUNT: usize = 2;
///
/// let arena: Arena<String> = Arena::new();
///
/// arena.reserve_extend(COUNT);
/// let slice: &mut [String];
/// unsafe {
/// // Perform initialization before we claim the memory.
/// let uninitialized = arena.uninitialized_array();
/// assert!((*uninitialized).len() >= COUNT); // Ensured by the reserve_extend
/// for elem in &mut (*uninitialized)[..COUNT] {
/// ptr::write(elem.as_mut_ptr(), "Hello".to_owned());
/// }
/// let addr = (*uninitialized).as_ptr() as usize;
///
/// // The alloc_uninitialized returns the same memory, but "confirms" its allocation.
/// slice = transmute_uninit(arena.alloc_uninitialized(COUNT));
/// assert_eq!(addr, slice.as_ptr() as usize);
/// assert_eq!(slice, &["Hello".to_owned(), "Hello".to_owned()]);
/// }
/// ```
pub unsafe fn alloc_uninitialized(&self, num: usize) -> &mut [MaybeUninit<T>] {
let mut chunks = self.chunks.borrow_mut();
debug_assert!(
chunks.current.capacity() >= chunks.current.len(),
"capacity is always greater than or equal to len, so we don't need to worry about underflow"
);
if num > chunks.current.capacity() - chunks.current.len() {
chunks.reserve(num);
}
// At this point, the current chunk must have free capacity.
let next_item_index = chunks.current.len();
chunks.current.set_len(next_item_index + num);
// Go through pointers, to make sure we never create a reference to uninitialized T.
let start = chunks.current.as_mut_ptr().offset(next_item_index as isize);
let start_uninit = start as *mut MaybeUninit<T>;
slice::from_raw_parts_mut(start_uninit, num)
}
/// Makes sure there's enough continuous space for at least `num` elements.
///
/// This may save some work if called before [`alloc_extend`][Arena::alloc_extend]. It also
/// allows somewhat safer use pattern of [`alloc_uninitialized`][Arena::alloc_uninitialized].
/// On the other hand this might waste up to `n - 1` elements of space. In case new allocation
/// is needed, the unused ones in current chunk are never used.
pub fn reserve_extend(&self, num: usize) {
let mut chunks = self.chunks.borrow_mut();
debug_assert!(
chunks.current.capacity() >= chunks.current.len(),
"capacity is always greater than or equal to len, so we don't need to worry about underflow"
);
if num > chunks.current.capacity() - chunks.current.len() {
chunks.reserve(num);
}
}
/// Returns unused space.
///
/// *This unused space is still not considered "allocated".* Therefore, it
/// won't be dropped unless there are further calls to `alloc`,
/// [`alloc_uninitialized`][Arena::alloc_uninitialized], or
/// [`alloc_extend`][Arena::alloc_extend] which is why the method is safe.
///
/// It returns a raw pointer to avoid creating multiple mutable references to the same place.
/// It is up to the caller not to dereference it after any of the `alloc_` methods are called.
pub fn uninitialized_array(&self) -> *mut [MaybeUninit<T>] {
let mut chunks = self.chunks.borrow_mut();
let len = chunks.current.capacity() - chunks.current.len();
let next_item_index = chunks.current.len();
unsafe {
// Go through pointers, to make sure we never create a reference to uninitialized T.
let start = chunks.current.as_mut_ptr().offset(next_item_index as isize);
let start_uninit = start as *mut MaybeUninit<T>;
ptr::slice_from_raw_parts_mut(start_uninit, len)
}
}
/// Convert this `Arena` into a `Vec<T>`.
///
/// Items in the resulting `Vec<T>` appear in the order that they were
/// allocated in.
///
/// ## Example
///
/// ```
/// use typed_arena::Arena;
///
/// let arena = Arena::new();
///
/// arena.alloc("a");
/// arena.alloc("b");
/// arena.alloc("c");
///
/// let easy_as_123 = arena.into_vec();
///
/// assert_eq!(easy_as_123, vec!["a", "b", "c"]);
/// ```
pub fn into_vec(self) -> Vec<T> {
let mut chunks = self.chunks.into_inner();
// keep order of allocation in the resulting Vec
let n = chunks
.rest
.iter()
.fold(chunks.current.len(), |a, v| a + v.len());
let mut result = Vec::with_capacity(n);
for mut vec in chunks.rest {
result.append(&mut vec);
}
result.append(&mut chunks.current);
result
}
/// Returns an iterator that allows modifying each value.
///
/// Items are yielded in the order that they were allocated.
///
/// ## Example
///
/// ```
/// use typed_arena::Arena;
///
/// #[derive(Debug, PartialEq, Eq)]
/// struct Point { x: i32, y: i32 };
///
/// let mut arena = Arena::new();
///
/// arena.alloc(Point { x: 0, y: 0 });
/// arena.alloc(Point { x: 1, y: 1 });
///
/// for point in arena.iter_mut() {
/// point.x += 10;
/// }
///
/// let points = arena.into_vec();
///
/// assert_eq!(points, vec![Point { x: 10, y: 0 }, Point { x: 11, y: 1 }]);
///
/// ```
///
/// ## Immutable Iteration
///
/// Note that there is no corresponding `iter` method. Access to the arena's contents
/// requries mutable access to the arena itself.
///
/// ```compile_fail
/// use typed_arena::Arena;
///
/// let mut arena = Arena::new();
/// let x = arena.alloc(1);
///
/// // borrow error!
/// for i in arena.iter_mut() {
/// println!("i: {}", i);
/// }
///
/// // borrow error!
/// *x = 2;
/// ```
#[inline]
pub fn iter_mut(&mut self) -> IterMut<T> {
let chunks = self.chunks.get_mut();
let position = if !chunks.rest.is_empty() {
let index = 0;
let inner_iter = chunks.rest[index].iter_mut();
// Extend the lifetime of the individual elements to that of the arena.
// This is OK because we borrow the arena mutably to prevent new allocations
// and we take care here to never move items inside the arena while the
// iterator is alive.
let inner_iter = unsafe { mem::transmute(inner_iter) };
IterMutState::ChunkListRest { index, inner_iter }
} else {
// Extend the lifetime of the individual elements to that of the arena.
let iter = unsafe { mem::transmute(chunks.current.iter_mut()) };
IterMutState::ChunkListCurrent { iter }
};
IterMut {
chunks,
state: position,
}
}
}
impl Arena<u8> {
/// Allocates a string slice and returns a mutable reference to it.
///
/// This is on `Arena<u8>`, because string slices use byte slices (`[u8]`) as their backing
/// storage.
///
/// # Example
///
/// ```
/// use typed_arena::Arena;
///
/// let arena: Arena<u8> = Arena::new();
/// let hello = arena.alloc_str("Hello world");
/// assert_eq!("Hello world", hello);
/// ```
#[inline]
pub fn alloc_str(&self, s: &str) -> &mut str {
let buffer = self.alloc_extend(s.bytes());
// Can't fail the utf8 validation, it already came in as utf8
unsafe { str::from_utf8_unchecked_mut(buffer) }
}
}
impl<T> Default for Arena<T> {
fn default() -> Self {
Self::new()
}
}
impl<T> ChunkList<T> {
#[inline(never)]
#[cold]
fn reserve(&mut self, additional: usize) {
let double_cap = self
.current
.capacity()
.checked_mul(2)
.expect("capacity overflow");
let required_cap = additional
.checked_next_power_of_two()
.expect("capacity overflow");
let new_capacity = cmp::max(double_cap, required_cap);
let chunk = mem::replace(&mut self.current, Vec::with_capacity(new_capacity));
self.rest.push(chunk);
}
}
enum IterMutState<'a, T> {
ChunkListRest {
index: usize,
inner_iter: slice::IterMut<'a, T>,
},
ChunkListCurrent {
iter: slice::IterMut<'a, T>,
},
}
/// Mutable arena iterator.
///
/// This struct is created by the [`iter_mut`](struct.Arena.html#method.iter_mut) method on [Arenas](struct.Arena.html).
pub struct IterMut<'a, T: 'a> {
chunks: &'a mut ChunkList<T>,
state: IterMutState<'a, T>,
}
impl<'a, T> Iterator for IterMut<'a, T> {
type Item = &'a mut T;
fn next(&mut self) -> Option<&'a mut T> {
loop {
self.state = match self.state {
IterMutState::ChunkListRest {
mut index,
ref mut inner_iter,
} => {
match inner_iter.next() {
Some(item) => return Some(item),
None => {
index += 1;
if index < self.chunks.rest.len() {
let inner_iter = self.chunks.rest[index].iter_mut();
// Extend the lifetime of the individual elements to that of the arena.
let inner_iter = unsafe { mem::transmute(inner_iter) };
IterMutState::ChunkListRest { index, inner_iter }
} else {
let iter = self.chunks.current.iter_mut();
// Extend the lifetime of the individual elements to that of the arena.
let iter = unsafe { mem::transmute(iter) };
IterMutState::ChunkListCurrent { iter }
}
}
}
}
IterMutState::ChunkListCurrent { ref mut iter } => return iter.next(),
};
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
let current_len = self.chunks.current.len();
let current_cap = self.chunks.current.capacity();
if self.chunks.rest.is_empty() {
(current_len, Some(current_len))
} else {
let rest_len = self.chunks.rest.len();
let last_chunk_len = self
.chunks
.rest
.last()
.map(|chunk| chunk.len())
.unwrap_or(0);
let min = current_len + last_chunk_len;
let max = min + (rest_len * current_cap / rest_len);
(min, Some(max))
}
}
}