arrow_buffer/bigint/
div.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! N-digit division
//!
//! Implementation heavily inspired by [uint]
//!
//! [uint]: https://github.com/paritytech/parity-common/blob/d3a9327124a66e52ca1114bb8640c02c18c134b8/uint/src/uint.rs#L844

/// Unsigned, little-endian, n-digit division with remainder
///
/// # Panics
///
/// Panics if divisor is zero
pub fn div_rem<const N: usize>(numerator: &[u64; N], divisor: &[u64; N]) -> ([u64; N], [u64; N]) {
    let numerator_bits = bits(numerator);
    let divisor_bits = bits(divisor);
    assert_ne!(divisor_bits, 0, "division by zero");

    if numerator_bits < divisor_bits {
        return ([0; N], *numerator);
    }

    if divisor_bits <= 64 {
        return div_rem_small(numerator, divisor[0]);
    }

    let numerator_words = (numerator_bits + 63) / 64;
    let divisor_words = (divisor_bits + 63) / 64;
    let n = divisor_words;
    let m = numerator_words - divisor_words;

    div_rem_knuth(numerator, divisor, n, m)
}

/// Return the least number of bits needed to represent the number
fn bits(arr: &[u64]) -> usize {
    for (idx, v) in arr.iter().enumerate().rev() {
        if *v > 0 {
            return 64 - v.leading_zeros() as usize + 64 * idx;
        }
    }
    0
}

/// Division of numerator by a u64 divisor
fn div_rem_small<const N: usize>(numerator: &[u64; N], divisor: u64) -> ([u64; N], [u64; N]) {
    let mut rem = 0u64;
    let mut numerator = *numerator;
    numerator.iter_mut().rev().for_each(|d| {
        let (q, r) = div_rem_word(rem, *d, divisor);
        *d = q;
        rem = r;
    });

    let mut rem_padded = [0; N];
    rem_padded[0] = rem;
    (numerator, rem_padded)
}

/// Use Knuth Algorithm D to compute `numerator / divisor` returning the
/// quotient and remainder
///
/// `n` is the number of non-zero 64-bit words in `divisor`
/// `m` is the number of non-zero 64-bit words present in `numerator` beyond `divisor`, and
/// therefore the number of words in the quotient
///
/// A good explanation of the algorithm can be found [here](https://ridiculousfish.com/blog/posts/labor-of-division-episode-iv.html)
fn div_rem_knuth<const N: usize>(
    numerator: &[u64; N],
    divisor: &[u64; N],
    n: usize,
    m: usize,
) -> ([u64; N], [u64; N]) {
    assert!(n + m <= N);

    // The algorithm works by incrementally generating guesses `q_hat`, for the next digit
    // of the quotient, starting from the most significant digit.
    //
    // This relies on the property that for any `q_hat` where
    //
    //      (q_hat << (j * 64)) * divisor <= numerator`
    //
    // We can set
    //
    //      q += q_hat << (j * 64)
    //      numerator -= (q_hat << (j * 64)) * divisor
    //
    // And then iterate until `numerator < divisor`

    // We normalize the divisor so that the highest bit in the highest digit of the
    // divisor is set, this ensures our initial guess of `q_hat` is at most 2 off from
    // the correct value for q[j]
    let shift = divisor[n - 1].leading_zeros();
    // As the shift is computed based on leading zeros, don't need to perform full_shl
    let divisor = shl_word(divisor, shift);
    // numerator may have fewer leading zeros than divisor, so must add another digit
    let mut numerator = full_shl(numerator, shift);

    // The two most significant digits of the divisor
    let b0 = divisor[n - 1];
    let b1 = divisor[n - 2];

    let mut q = [0; N];

    for j in (0..=m).rev() {
        let a0 = numerator[j + n];
        let a1 = numerator[j + n - 1];

        let mut q_hat = if a0 < b0 {
            // The first estimate is [a1, a0] / b0, it may be too large by at most 2
            let (mut q_hat, mut r_hat) = div_rem_word(a0, a1, b0);

            // r_hat = [a1, a0] - q_hat * b0
            //
            // Now we want to compute a more precise estimate [a2,a1,a0] / [b1,b0]
            // which can only be less or equal to the current q_hat
            //
            // q_hat is too large if:
            // [a2,a1,a0] < q_hat * [b1,b0]
            // [a2,r_hat] < q_hat * b1
            let a2 = numerator[j + n - 2];
            loop {
                let r = u128::from(q_hat) * u128::from(b1);
                let (lo, hi) = (r as u64, (r >> 64) as u64);
                if (hi, lo) <= (r_hat, a2) {
                    break;
                }

                q_hat -= 1;
                let (new_r_hat, overflow) = r_hat.overflowing_add(b0);
                r_hat = new_r_hat;

                if overflow {
                    break;
                }
            }
            q_hat
        } else {
            u64::MAX
        };

        // q_hat is now either the correct quotient digit, or in rare cases 1 too large

        // Compute numerator -= (q_hat * divisor) << (j * 64)
        let q_hat_v = full_mul_u64(&divisor, q_hat);
        let c = sub_assign(&mut numerator[j..], &q_hat_v[..n + 1]);

        // If underflow, q_hat was too large by 1
        if c {
            // Reduce q_hat by 1
            q_hat -= 1;

            // Add back one multiple of divisor
            let c = add_assign(&mut numerator[j..], &divisor[..n]);
            numerator[j + n] = numerator[j + n].wrapping_add(u64::from(c));
        }

        // q_hat is the correct value for q[j]
        q[j] = q_hat;
    }

    // The remainder is what is left in numerator, with the initial normalization shl reversed
    let remainder = full_shr(&numerator, shift);
    (q, remainder)
}

/// Perform narrowing division of a u128 by a u64 divisor, returning the quotient and remainder
///
/// This method may trap or panic if hi >= divisor, i.e. the quotient would not fit
/// into a 64-bit integer
fn div_rem_word(hi: u64, lo: u64, divisor: u64) -> (u64, u64) {
    debug_assert!(hi < divisor);
    debug_assert_ne!(divisor, 0);

    // LLVM fails to use the div instruction as it is not able to prove
    // that hi < divisor, and therefore the result will fit into 64-bits
    #[cfg(all(target_arch = "x86_64", not(miri)))]
    unsafe {
        let mut quot = lo;
        let mut rem = hi;
        std::arch::asm!(
            "div {divisor}",
            divisor = in(reg) divisor,
            inout("rax") quot,
            inout("rdx") rem,
            options(pure, nomem, nostack)
        );
        (quot, rem)
    }
    #[cfg(any(not(target_arch = "x86_64"), miri))]
    {
        let x = (u128::from(hi) << 64) + u128::from(lo);
        let y = u128::from(divisor);
        ((x / y) as u64, (x % y) as u64)
    }
}

/// Perform `a += b`
fn add_assign(a: &mut [u64], b: &[u64]) -> bool {
    binop_slice(a, b, u64::overflowing_add)
}

/// Perform `a -= b`
fn sub_assign(a: &mut [u64], b: &[u64]) -> bool {
    binop_slice(a, b, u64::overflowing_sub)
}

/// Converts an overflowing binary operation on scalars to one on slices
fn binop_slice(a: &mut [u64], b: &[u64], binop: impl Fn(u64, u64) -> (u64, bool) + Copy) -> bool {
    let mut c = false;
    a.iter_mut().zip(b.iter()).for_each(|(x, y)| {
        let (res1, overflow1) = y.overflowing_add(u64::from(c));
        let (res2, overflow2) = binop(*x, res1);
        *x = res2;
        c = overflow1 || overflow2;
    });
    c
}

/// Widening multiplication of an N-digit array with a u64
fn full_mul_u64<const N: usize>(a: &[u64; N], b: u64) -> ArrayPlusOne<u64, N> {
    let mut carry = 0;
    let mut out = [0; N];
    out.iter_mut().zip(a).for_each(|(o, v)| {
        let r = *v as u128 * b as u128 + carry as u128;
        *o = r as u64;
        carry = (r >> 64) as u64;
    });
    ArrayPlusOne(out, carry)
}

/// Left shift of an N-digit array by at most 63 bits
fn shl_word<const N: usize>(v: &[u64; N], shift: u32) -> [u64; N] {
    full_shl(v, shift).0
}

/// Widening left shift of an N-digit array by at most 63 bits
fn full_shl<const N: usize>(v: &[u64; N], shift: u32) -> ArrayPlusOne<u64, N> {
    debug_assert!(shift < 64);
    if shift == 0 {
        return ArrayPlusOne(*v, 0);
    }
    let mut out = [0u64; N];
    out[0] = v[0] << shift;
    for i in 1..N {
        out[i] = v[i - 1] >> (64 - shift) | v[i] << shift
    }
    let carry = v[N - 1] >> (64 - shift);
    ArrayPlusOne(out, carry)
}

/// Narrowing right shift of an (N+1)-digit array by at most 63 bits
fn full_shr<const N: usize>(a: &ArrayPlusOne<u64, N>, shift: u32) -> [u64; N] {
    debug_assert!(shift < 64);
    if shift == 0 {
        return a.0;
    }
    let mut out = [0; N];
    for i in 0..N - 1 {
        out[i] = a[i] >> shift | a[i + 1] << (64 - shift)
    }
    out[N - 1] = a[N - 1] >> shift;
    out
}

/// An array of N + 1 elements
///
/// This is a hack around lack of support for const arithmetic
#[repr(C)]
struct ArrayPlusOne<T, const N: usize>([T; N], T);

impl<T, const N: usize> std::ops::Deref for ArrayPlusOne<T, N> {
    type Target = [T];

    #[inline]
    fn deref(&self) -> &Self::Target {
        let x = self as *const Self;
        unsafe { std::slice::from_raw_parts(x as *const T, N + 1) }
    }
}

impl<T, const N: usize> std::ops::DerefMut for ArrayPlusOne<T, N> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        let x = self as *mut Self;
        unsafe { std::slice::from_raw_parts_mut(x as *mut T, N + 1) }
    }
}